An Application of the Fermat-Torricelli Point

Dana Heuberger, Dan Ştefan Marinescu

Abstract

In this note we will give several proofs of some interesting inequalities concerning the Fermat-Torricelli point of a triangle

In this paper we will prove some interesting results derived from the Fermat-Torricelli point of a triangle.

At first, we will see some fundamental properties, which are proven in the book [1]
Definition 1. Let $A B C$ be a triangle. The Fermat point of $A B C$ (also known as its FermatTorricelli point) is that point of the plane (ABC) for which the sum $M A+M B+M C$ is minimal, where M is a point of $(A B C)$.

Theorem 1. (Torricelli) Let $A B C$ be a triangle with the measure of each angle smaller than $\frac{2 \pi}{3}$. Let $A B C_{1}, A C B_{1}$ and $B C A_{1}$ be equilateral triangles, with their interiors situated in the exterior of $A B C$. Then, the circumscribed circles of these triangles have a common point, T.

Remark. From the proof of the previous theorem it follows that an unique point T of the plane exists such that $\mu(\widehat{A T B})=\mu(\widehat{A T C})=\mu(\widehat{B T C})=\frac{2 \pi}{3}$. T is named the Torricelli point of the triangle $A B C$.

Theorem 2. Let $A B C$ be a triangle with the measure of each angle smaller than $\frac{2 \pi}{3}$, the equilateral triangles $A B C_{1}, A C B_{1}$ and $B C A_{1}$ with their interiors situated in the exterior of $A B C$ and the Torricelli point T of $A B C$. Then:
(a) The lines $A A_{1}, B B_{1}$ and $C C_{1}$ are concurrent.
(b) $A T+B T+C T=A A_{1}=B B_{1}=C C_{1}$.

Theorem 3. (Fermat) The sum $M A+M B+M C$, where M is a point of $(A B C)$, is minimal iff M coincides with the Torricelli point T of $A B C$. Therefore, the Fermat point and the Torricelli point of a triangle coincide.

Remark. If $A \geq \frac{2 \pi}{3}$, then the Fermat-Torricelli point of $A B C$ coincides with A.
In what follows, we will see some interesting applications of the Fermat-Torricelli point.

Proposition 1. Let $A B C$ be a triangle and T its Fermat-Torricelli point. Then,

$$
B T+C T \leq \frac{2}{\sqrt{3}} B C
$$

Proof 1.

Case I: $A<\frac{2 \pi}{3}, B<\frac{2 \pi}{3}, C<\frac{2 \pi}{3}$.
From Theorem 2 we have $A T+B T+C T=A A_{1}$.
Let $\{M\}=B C \cap A A_{1}$.
As $\mu\left(\widehat{B T A_{1}}\right)=\mu\left(\widehat{C T A_{1}}\right)=\frac{\pi}{3}$, we obtain $\quad d\left(B, A A_{1}\right)=\frac{B T \sqrt{3}}{2} \leq B M \quad$ and $d\left(C, A A_{1}\right)=\frac{C T \sqrt{3}}{2} \leq C M$, so

$$
d\left(B, A A_{1}\right)+d\left(C, A A_{1}\right)=\frac{B T \sqrt{3}}{2}+\frac{C T \sqrt{3}}{2} \leq B M+C M=B C
$$

Therefore

$$
B T+C T \leq \frac{2}{\sqrt{3}} B C
$$

The equality holds when $B C \perp A A_{1}$. In this case, as the triangles $B T M$ and $C T M$ are congruent, it results that $B M=C M$, i.e. $A A_{1}$ is the mediator of $[B C]$. In other words, the equality holds iff $A B=A C$.
Case II: $A \geq \frac{2 \pi}{3}$.
Then, $\cos A \leq-\frac{1}{2}, \quad T=A$ and the statement becomes

$$
c+b \leq \frac{2}{\sqrt{3}} \cdot a
$$

But $\quad a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A \geq b^{2}+c^{2}+b c \geq \frac{3(b+c)^{2}}{4}, \quad$ and from here we deduce that $a \geq \frac{\sqrt{3}}{2}(b+c)$. The equality holds iff $b=c$.
Case III: $B \geq \frac{2 \pi}{3}$ or $C \geq \frac{2 \pi}{3}$.
Then $T=B$ or $T=C \quad$ and the statement becomes $B C \leq \frac{2}{\sqrt{3}} \cdot B C, \quad$ which is true.

Proof 2. We will use the following result:

Lemma 1 For all $x, y, \alpha \in \mathbb{R}$,

$$
x^{2}-2 x y \cdot \cos \alpha+y^{2} \geq(x+y)^{2} \cdot \sin ^{2} \frac{\alpha}{2} .
$$

The equality holds iff $x=y$ or $\alpha=(2 k+1) \pi$, with $k \in \mathbb{Z}$.

Proof of Lemma 1: The inequality is equivalent to

$$
x^{2}\left(1-\sin ^{2} \frac{\alpha}{2}\right)+y^{2}\left(1-\sin ^{2} \frac{\alpha}{2}\right)-2 x y\left(\cos \alpha+\sin ^{2} \frac{\alpha}{2}\right) \geq 0 \Leftrightarrow(x-y)^{2} \cdot \cos ^{2} \frac{\alpha}{2} \geq 0
$$

which is true.
The equality holds iff $x=y$ or $\alpha=(2 k+1) \pi$, cu $k \in \mathbb{Z}$.

Back to the proof of Proposition 1:

Case I: $A<\frac{2 \pi}{3}, B<\frac{2 \pi}{3}, C<\frac{2 \pi}{3}$.
Then, $\mu(\widehat{B T C})=\frac{2 \pi}{3}$ and using Lemma 1 we have:

$$
a^{2}=B T^{2}+C T^{2}-2 B T \cdot C T \cdot \cos \frac{2 \pi}{3} \geq(B T+C T)^{2} \cdot \sin ^{2} \frac{\pi}{3}
$$

We obtain $\quad B C \geq(B T+C T) \cdot \frac{\sqrt{3}}{2}$.
The equality holds iff $B T=C T$, i.e. iff $A B=A C$.
Case II: $A \geq \frac{2 \pi}{3}$. We have $T=A$, therefore $T B+T C=A B+A C$.
Then,

$$
\frac{\sqrt{3}}{2} \leq \sin \frac{A}{2} \leq \frac{a}{b+c},
$$

with equality iff $b=c$.
We used Lemma 1, for $\alpha=A, x=b, y=c$.
Case III can be solved as in the first proof.

Proof 3. (Rachid Moussaoui, Maroc)

Cases II and III can be solved as in the first proof, so we will prove only Case I.

We have $\mu(\widehat{B T C})=\frac{2 \pi}{3}$.

Then, $\quad B C^{2}=B T^{2}+C T^{2}+B T \cdot C T=(B T+C T)^{2}-B T \cdot C T$.
Therefore, the sum $B T+C T$ is maximal iff the product $B T \cdot C T$ is maximal. We have
$B T \cdot C T=\frac{4}{\sqrt{3}} \cdot S_{B T C} \leq \frac{4}{\sqrt{3}} \cdot S_{B Q C}, \quad$ where Q is the point of the arch $B T C$ for which $Q M \perp B C$ and M is the midpoint of $[B C]$. So, $B T \cdot C T \leq \frac{4}{\sqrt{3}} \cdot \frac{B Q^{2} \cdot \sin \frac{2 \pi}{3}}{2}=\frac{B C^{2}}{3}$.
Therefore $(B T+C T)^{2} \leq B C^{2}+B T \cdot C T=\frac{4 \cdot B C^{2}}{3}$. It follows $B T+C T \leq \frac{2 \cdot B C}{\sqrt{3}}$.
The equality holds iff $T=Q$, i.e. iff $A B=A C$.
Proposition 2. Let $A B C$ be a triangle with $A \leq \frac{2 \pi}{3}$ and T its Fermat-Torricelli point. Then, $\quad 3\left(B T^{2}+C T^{2}\right) \geq 2 B C^{2}$.

Proof We will use the following result:

Lemma 2 If $x, y, \alpha \in \mathbb{R}$, such that $\cos \alpha \leq 0$, then

$$
2\left(x^{2}+y^{2}\right) \cdot \sin ^{2} \frac{\alpha}{2} \geq x^{2}-2 x y \cdot \cos \alpha+y^{2}
$$

The equality holds iff $x=y$ or $\alpha=\frac{(2 k+1) \pi}{2}$, with $k \in \mathbb{Z}$.

Proof of Lemma 2: As $2 \sin ^{2} \frac{\alpha}{2}=1-\cos \alpha$, the inequality is equivalent with $\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}\right) \cdot \cos \alpha \geq x^{2}-2 x y \cdot \cos \alpha+y^{2} \Leftrightarrow 0 \geq(x-y)^{2} \cdot \cos \alpha$, which is true. The equality case is easy to prove.

Back to the proof of Proposition 2:
Case I: $A<\frac{2 \pi}{3}, B<\frac{2 \pi}{3}, C<\frac{2 \pi}{3}$.
Then, $\mu(\widehat{B T C})=\frac{2 \pi}{3}$ and from Lemma 2 we obtain:

$$
a^{2}=B T^{2}-2 B T \cdot C T \cdot \cos \frac{2 \pi}{3}+C T^{2} \leq 2\left(B T^{2}+C T^{2}\right) \cdot \sin ^{2} \frac{\pi}{3}
$$

and the conclusion follows.
Case II: $A=\frac{2 \pi}{3}$. Then $T=A$, and the inequality reduces to: $3\left(b^{2}+c^{2}\right) \geq 2 \cdot a^{2}$.
The last inequality is a consequence of Lemma 2 , for $x=b, y=c, \alpha=A$.
Case III: $B \geq \frac{2 \pi}{3}$ or $C \geq \frac{2 \pi}{3}$. Then $T=B$ or $T=C$ and the inequality reduces to: $3 \cdot a^{2} \geq 2 \cdot a^{2}, \quad$ which is true.

Remark. The condition $A \leq \frac{2 \pi}{3}$ is an essential one.
Indeed, let $A B C$ be a triangle with $A=\pi-\alpha$, where $\alpha \in\left(0, \frac{\pi}{3}\right)$, and $A B=A C=x>0$. Then $T=A$, and the inequality to prove turns into:

$$
3\left(A B^{2}+A C^{2}\right) \geq 2 B C^{2} \Leftrightarrow 6 x^{2} \geq 4 x^{2}(1+\cos \alpha),
$$

which is not necessarily true
(For $\alpha \rightarrow 0$ we obtain $6 \geq 8$.)

Problem 1 Prove that for all $x, y, z \in(0, \infty)$,

$$
\frac{x^{2}+x y+y^{2}}{z}+\frac{y^{2}+y z+z^{2}}{x}+\frac{z^{2}+z x+x^{2}}{y} \geq 3(x+y+z)
$$

Proof We will use the following result:

Lemma 3 Let $A B C$ be a triangle with the measures of all its angles smaller than $\frac{2 \pi}{3}$ and T, its Torricelli point. Then,

$$
A T+B T+C T \leq \frac{A B+B C+C A}{\sqrt{3}}
$$

Proof of Lemma 3: From the Propozition 1. we obtain:
$B T+C T \leq \frac{2}{\sqrt{3}} B C, \quad C T+A T \leq \frac{2}{\sqrt{3}} C A, \quad$ and $\quad A T+B T \leq \frac{2}{\sqrt{3}} A B$.
By summing these three inequalities, the conclusion follows .

Back to the proof of the Problem 1:

We choose A, B, C, T such that $A T=x, B T=y, C T=z$, and $\mu(\widehat{B T C})=\mu(\widehat{A T C})=\mu(\widehat{A T B})=\frac{2 \pi}{3}$.
Then T is the Torricelli point of the triangle $A B C$,

$$
\begin{gathered}
a^{2}=y^{2}+y z+z^{2}, \quad b^{2}=x^{2}+x z+z^{2}, \quad c^{2}=x^{2}+x y+y^{2} \quad \text { and } \\
\frac{x^{2}+x y+y^{2}}{z}+\frac{y^{2}+y z+z^{2}}{x}+\frac{z^{2}+z x+x^{2}}{y}=\frac{c^{2}}{z}+\frac{a^{2}}{x}+\frac{b^{2}}{y} \stackrel{\text { Bergstrom }}{\geq} \\
\geq \frac{(a+b+c)^{2}}{x+y+z} \stackrel{\text { Lemma3 }}{\geq} \frac{(\sqrt{3}(x+y+z))^{2}}{x+y+z}=3(x+y+z)
\end{gathered}
$$

We invite the reader to use this ideas to solve the following:

Problem 2 Prove that for all $x, y, z \in(0, \infty)$,

$$
\sum_{\text {cyc. }} \sqrt{x^{2}+y^{2}} \geq \frac{\sqrt{6}}{3} \cdot \sum_{c y c .} \sqrt{x^{2}+x y+y^{2}}
$$

References

[1] L. Nicolescu, V. Boskoff Probleme practice de geometrie, Editura Tehnică, Bucureşti 1990
[2] Olimpiada pe Şcoală (The School Yard Olympiad), Forum interactiv de matematică, https://www.facebook.com/groups/1593739420880226/?fref=ts
teacher, Colegiul Naţional "Gheorghe Şincai", Baia Mare, România teacher, Colegiul Naťional "Iancu de Hunedoara", Hunedoara, România

