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An Application of the Fermat-Torricelli Point

Dana Heuberger, Dan Ştefan Marinescu

Abstract: In this note we will give several proofs of some interesting inequalities con-

cerning the Fermat-Torricelli point of a triangle

In this paper we will prove some interesting results derived from the Fermat-Torricelli

point of a triangle.

At first, we will see some fundamental properties, which are proven in the book [1]

Definition 1. Let ABC be a triangle. The Fermat point of ABC (also known as its Fermat-

Torricelli point) is that point of the plane (ABC) for which the sum MA + MB + MC is

minimal, where M is a point of (ABC).

Theorem 1. (Torricelli) Let ABC be a triangle with the measure of each angle smaller

than 2π
3 . Let ABC1, ACB1 and BCA1 be equilateral triangles, with their interiors situated

in the exterior of ABC. Then, the circumscribed circles of these triangles have a common

point, T .

Remark. From the proof of the previous theorem it

follows that an unique point T of the plane exists such

that µ
(
ÂTB

)
= µ

(
ÂTC

)
= µ

(
B̂TC

)
= 2π

3 .

T is named the Torricelli point of the triangle ABC.

Theorem 2. Let ABC be a triangle with the measure of each angle smaller than 2π
3 , the

equilateral triangles ABC1, ACB1 and BCA1 with their interiors situated in the exterior of

ABC and the Torricelli point T of ABC. Then:

(a) The lines AA1, BB1 and CC1 are concurrent.

(b) AT +BT + CT = AA1 = BB1 = CC1.

Theorem 3. (Fermat) The sum MA + MB + MC, where M is a point of (ABC), is

minimal iff M coincides with the Torricelli point T of ABC. Therefore, the Fermat point

and the Torricelli point of a triangle coincide.
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Remark. If A ≥ 2π
3 , then the Fermat-Torricelli point of ABC coincides with A.

In what follows, we will see some interesting applications of the Fermat-Torricelli point.

Proposition 1. Let ABC be a triangle and T its Fermat-Torricelli point. Then,

BT + CT ≤ 2√
3
BC.

Proof 1.

Case I: A < 2π
3 , B < 2π

3 , C < 2π
3 .

From Theorem 2 we have AT +BT + CT = AA1.

Let {M} = BC ∩AA1.

As µ
(
B̂TA1

)
= µ

(
ĈTA1

)
= π

3 , we obtain d (B,AA1) = BT
√
3

2 ≤ BM and

d (C,AA1) = CT
√
3

2 ≤ CM , so

d (B,AA1) + d (C,AA1) =
BT
√

3

2
+
CT
√

3

2
≤ BM + CM = BC

Therefore

BT + CT ≤ 2√
3
BC.

The equality holds when BC ⊥ AA1. In this case, as the triangles BTM and CTM are

congruent, it results that BM = CM , i.e. AA1 is the mediator of [BC]. In other words, the

equality holds iff AB = AC.

Case II: A ≥ 2π
3 .

Then, cosA ≤ − 1
2 , T = A and the statement becomes

c+ b ≤ 2√
3
· a.

But a2 = b2 + c2 − 2bc · cosA ≥ b2 + c2 + bc ≥ 3(b+c)2

4 , and from here we deduce that

a ≥
√
3
2 (b+ c). The equality holds iff b = c.

Case III: B ≥ 2π
3 or C ≥ 2π

3 .

Then T = B or T = C and the statement becomes BC ≤ 2√
3
·BC, which is true.
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Proof 2. We will use the following result:

Lemma 1 For all x, y, α ∈ R,

x2 − 2xy · cosα+ y2 ≥ (x+ y)
2 · sin2 α

2
.

The equality holds iff x = y or α = (2k + 1)π, with k ∈ Z.

Proof of Lemma 1: The inequality is equivalent to

x2
(

1− sin2 α

2

)
+ y2

(
1− sin2 α

2

)
− 2xy

(
cosα+ sin2 α

2

)
≥ 0 ⇔ (x− y)

2 · cos2
α

2
≥ 0

which is true.

The equality holds iff x = y or α = (2k + 1)π, cu k ∈ Z.

Back to the proof of Proposition 1:

Case I: A < 2π
3 , B < 2π

3 , C < 2π
3 .

Then, µ
(
B̂TC

)
= 2π

3 and using Lemma 1 we have:

a2 = BT 2 + CT 2 − 2BT · CT · cos
2π

3
≥ (BT + CT )

2 · sin2 π

3

We obtain BC ≥ (BT + CT ) ·
√
3
2 .

The equality holds iff BT = CT , i.e. iff AB = AC.

Case II: A ≥ 2π
3 . We have T = A, therefore TB + TC = AB +AC.

Then, √
3

2
≤ sin

A

2
≤ a

b+ c
,

with equality iff b = c.

We used Lemma 1, for α = A, x = b, y = c.

Case III can be solved as in the first proof.

Proof 3. (Rachid Moussaoui, Maroc)

Cases II and III can be solved as in

the first proof, so we will prove only

Case I.

We have µ
(
B̂TC

)
= 2π

3 .

Then, BC2 = BT 2 + CT 2 +BT · CT = (BT + CT )
2 −BT · CT .

Therefore, the sum BT +CT is maximal iff the product BT ·CT is maximal. We have
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BT · CT = 4√
3
· SBTC ≤ 4√

3
· SBQC , where Q is the point of the arch BTC for which

QM ⊥ BC and M is the midpoint of [BC]. So, BT · CT ≤ 4√
3
· BQ

2·sin 2π
3

2 = BC2

3 .

Therefore (BT + CT )
2 ≤ BC2 +BT · CT = 4·BC2

3 . It follows BT + CT ≤ 2·BC√
3

.

The equality holds iff T = Q, i.e. iff AB = AC.

Proposition 2. Let ABC be a triangle with A ≤ 2π
3 and T its Fermat-Torricelli point.

Then, 3
(
BT 2 + CT 2

)
≥ 2BC2.

Proof We will use the following result:

Lemma 2 If x, y, α ∈ R, such that cosα ≤ 0, then

2
(
x2 + y2

)
· sin2 α

2
≥ x2 − 2xy · cosα+ y2

The equality holds iff x = y or α = (2k+1)π
2 , with k ∈ Z.

Proof of Lemma 2: As 2 sin2 α
2 = 1 − cosα, the inequality is equivalent with(

x2 + y2
)
−
(
x2 + y2

)
· cosα ≥ x2 − 2xy · cosα+ y2 ⇔ 0 ≥ (x− y)

2 · cosα, which is true.

The equality case is easy to prove.

Back to the proof of Proposition 2:

Case I: A < 2π
3 , B < 2π

3 , C < 2π
3 .

Then, µ
(
B̂TC

)
= 2π

3 and from Lemma 2 we obtain:

a2 = BT 2 − 2BT · CT · cos
2π

3
+ CT 2 ≤ 2

(
BT 2 + CT 2

)
· sin2 π

3
,

and the conclusion follows.

Case II: A = 2π
3 . Then T = A, and the inequality reduces to: 3

(
b2 + c2

)
≥ 2 · a2.

The last inequality is a consequence of Lemma 2, for x = b, y = c, α = A.

Case III: B ≥ 2π
3 or C ≥ 2π

3 . Then T = B or T = C and the inequality reduces to:

3 · a2 ≥ 2 · a2, which is true.

Remark. The condition A ≤ 2π
3 is an essential one.

Indeed, let ABC be a triangle with A = π − α, where α ∈
(
0, π3

)
, and AB = AC = x > 0.

Then T = A, and the inequality to prove turns into:

3
(
AB2 +AC2

)
≥ 2BC2 ⇔ 6x2 ≥ 4x2 (1 + cosα) ,

which is not necessarily true.

(For α→ 0 we obtain 6 ≥ 8. )

Problem 1 Prove that for all x, y, z ∈ (0,∞),

x2 + xy + y2

z
+
y2 + yz + z2

x
+
z2 + zx+ x2

y
≥ 3 (x+ y + z)
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Proof We will use the following result:

Lemma 3 Let ABC be a triangle with the measures of all its angles smaller than 2π
3 and

T , its Torricelli point. Then,

AT +BT + CT ≤ AB +BC + CA√
3

Proof of Lemma 3: From the Propozition 1. we obtain:

BT + CT ≤ 2√
3
BC, CT +AT ≤ 2√

3
CA, and AT +BT ≤ 2√

3
AB.

By summing these three inequalities, the conclusion follows .

Back to the proof of the Problem 1:

We choose A,B,C, T such that AT = x, BT = y, CT = z, and

µ
(
B̂TC

)
= µ

(
ÂTC

)
= µ

(
ÂTB

)
= 2π

3 .

Then T is the Torricelli point of the triangle ABC,

a2 = y2 + yz + z2, b2 = x2 + xz + z2, c2 = x2 + xy + y2 and

x2 + xy + y2

z
+
y2 + yz + z2

x
+
z2 + zx+ x2

y
=
c2

z
+
a2

x
+
b2

y

Bergstrom

≥

≥ (a+ b+ c)
2

x+ y + z

Lemma3
≥

(√
3 (x+ y + z)

)2
x+ y + z

= 3 (x+ y + z)

We invite the reader to use this ideas to solve the following:

Problem 2 Prove that for all x, y, z ∈ (0,∞),

∑
cyc.

√
x2 + y2 ≥

√
6

3
·
∑
cyc.

√
x2 + xy + y2.
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