An Application of the Fermat-Torricelli Point

Dana Heuberger, Dan Ştefan Marinescu

Abstract: In this note we will give several proofs of some interesting inequalities concerning the Fermat-Torricelli point of a triangle

In this paper we will prove some interesting results derived from the Fermat-Torricelli point of a triangle.

At first, we will see some fundamental properties, which are proven in the book [1]

Definition 1. Let ABC be a triangle. The Fermat point of ABC (also known as its Fermat-Torricelli point) is that point of the plane (ABC) for which the sum MA + MB + MC is minimal, where M is a point of (ABC).

Theorem 1. (Torricelli) Let ABC be a triangle with the measure of each angle smaller than $\frac{2\pi}{3}$. Let ABC₁, ACB₁ and BCA₁ be equilateral triangles, with their interiors situated in the exterior of ABC. Then, the circumscribed circles of these triangles have a common point, T.

Remark. From the proof of the previous theorem it follows that an unique point T of the plane exists such that $\mu\left(\widehat{ATB}\right) = \mu\left(\widehat{ATC}\right) = \mu\left(\widehat{BTC}\right) = \frac{2\pi}{3}$. T is named the Torricelli point of the triangle ABC.

Theorem 2. Let ABC be a triangle with the measure of each angle smaller than $\frac{2\pi}{3}$, the equilateral triangles ABC₁, ACB₁ and BCA₁ with their interiors situated in the exterior of ABC and the Torricelli point T of ABC. Then:

- (a) The lines AA_1 , BB_1 and CC_1 are concurrent.
- (b) $AT + BT + CT = AA_1 = BB_1 = CC_1$.

Theorem 3. (Fermat) The sum MA + MB + MC, where M is a point of (ABC), is minimal iff M coincides with the Torricelli point T of ABC. Therefore, the Fermat point and the Torricelli point of a triangle coincide.

Remark. If $A \ge \frac{2\pi}{3}$, then the Fermat-Torricelli point of ABC coincides with A.

In what follows, we will see some interesting applications of the Fermat-Torricelli point.

Proposition 1. Let ABC be a triangle and T its Fermat-Torricelli point. Then,

$$BT + CT \le \frac{2}{\sqrt{3}}BC.$$

Proof 1.

Case I: $A < \frac{2\pi}{3}, B < \frac{2\pi}{3}, C < \frac{2\pi}{3}$. From Theorem 2 we have $AT + BT + CT = AA_1$. Let $\{M\} = BC \cap AA_1$. As $\mu\left(\widehat{BTA_1}\right) = \mu\left(\widehat{CTA_1}\right) = \frac{\pi}{3}$, we obtain $d(B, AA_1) = \frac{BT\sqrt{3}}{2} \leq BM$ and $d(C, AA_1) = \frac{CT\sqrt{3}}{2} \leq CM$, so

$$d(B, AA_1) + d(C, AA_1) = \frac{BT\sqrt{3}}{2} + \frac{CT\sqrt{3}}{2} \le BM + CM = BC$$

Therefore

$$BT + CT \le \frac{2}{\sqrt{3}}BC.$$

The equality holds when $BC \perp AA_1$. In this case, as the triangles BTM and CTM are congruent, it results that BM = CM, i.e. AA_1 is the mediator of [BC]. In other words, the equality holds iff AB = AC.

Case II: $A \geq \frac{2\pi}{3}$.

Then, $\cos A \leq -\frac{1}{2}$, T = A and the statement becomes

$$c+b \le \frac{2}{\sqrt{3}} \cdot a.$$

But $a^2 = b^2 + c^2 - 2bc \cdot cosA \ge b^2 + c^2 + bc \ge \frac{3(b+c)^2}{4}$, and from here we deduce that $a \ge \frac{\sqrt{3}}{2}(b+c)$. The equality holds iff b = c. **Case III:** $B \ge \frac{2\pi}{3}$ or $C \ge \frac{2\pi}{3}$.

Then T = B or T = C and the statement becomes $BC \leq \frac{2}{\sqrt{3}} \cdot BC$, which is true.

Proof 2. We will use the following result:

Lemma 1 For all $x, y, \alpha \in \mathbb{R}$,

$$x^{2} - 2xy \cdot \cos \alpha + y^{2} \ge (x+y)^{2} \cdot \sin^{2} \frac{\alpha}{2}$$

Proof of Lemma 1: The inequality is equivalent to

$$x^{2}\left(1-\sin^{2}\frac{\alpha}{2}\right)+y^{2}\left(1-\sin^{2}\frac{\alpha}{2}\right)-2xy\left(\cos\alpha+\sin^{2}\frac{\alpha}{2}\right)\geq0\iff\left(x-y\right)^{2}\cdot\cos^{2}\frac{\alpha}{2}\geq0$$

which is true.

The equality holds iff x = y or $\alpha = (2k+1)\pi$, cu $k \in \mathbb{Z}$.

Back to the proof of Proposition 1:

Case I: $A < \frac{2\pi}{3}, B < \frac{2\pi}{3}, C < \frac{2\pi}{3}$. Then, $\mu\left(\widehat{BTC}\right) = \frac{2\pi}{3}$ and using Lemma 1 we have:

$$a^{2} = BT^{2} + CT^{2} - 2BT \cdot CT \cdot \cos \frac{2\pi}{3} \ge (BT + CT)^{2} \cdot \sin^{2} \frac{\pi}{3}$$

We obtain $BC \ge (BT + CT) \cdot \frac{\sqrt{3}}{2}$. The equality holds iff BT = CT, i.e. iff AB = AC. **Case II:** $A \ge \frac{2\pi}{3}$. We have T = A, therefore TB + TC = AB + AC. Then,

$$\frac{\sqrt{3}}{2} \le \sin\frac{A}{2} \le \frac{a}{b+c},$$

with equality iff b = c.

We used Lemma 1, for $\alpha = A, x = b, y = c$. Case III can be solved as in the first proof.

Proof 3. (Rachid Moussaoui, Maroc)

Cases II and III can be solved as in the first proof, so we will prove only Case I.

We have
$$\mu\left(\widehat{BTC}\right) = \frac{2\pi}{3}$$
.

Then, $BC^{2} = BT^{2} + CT^{2} + BT \cdot CT = (BT + CT)^{2} - BT \cdot CT.$

Therefore, the sum BT + CT is maximal iff the product $BT \cdot CT$ is maximal. We have

 $BT \cdot CT = \frac{4}{\sqrt{3}} \cdot S_{BTC} \leq \frac{4}{\sqrt{3}} \cdot S_{BQC}$, where Q is the point of the arch BTC for which $QM \perp BC$ and M is the midpoint of [BC]. So, $BT \cdot CT \leq \frac{4}{\sqrt{3}} \cdot \frac{BQ^2 \cdot \sin \frac{2\pi}{3}}{2} = \frac{BC^2}{3}$. Therefore $(BT + CT)^2 \leq BC^2 + BT \cdot CT = \frac{4 \cdot BC^2}{3}$. It follows $BT + CT \leq \frac{2 \cdot BC}{\sqrt{3}}$. The equality holds iff T = Q, i.e. iff AB = AC.

Proposition 2. Let ABC be a triangle with $A \leq \frac{2\pi}{3}$ and T its Fermat-Torricelli point. Then, $3(BT^2 + CT^2) \geq 2BC^2$.

Proof We will use the following result:

Lemma 2 If $x, y, \alpha \in \mathbb{R}$, such that $\cos \alpha \leq 0$, then

$$2(x^{2} + y^{2}) \cdot \sin^{2} \frac{\alpha}{2} \ge x^{2} - 2xy \cdot \cos \alpha + y^{2}$$

The equality holds iff x = y or $\alpha = \frac{(2k+1)\pi}{2}$, with $k \in \mathbb{Z}$.

Proof of Lemma 2: As $2\sin^2 \frac{\alpha}{2} = 1 - \cos \alpha$, the inequality is equivalent with $(x^2 + y^2) - (x^2 + y^2) \cdot \cos \alpha \ge x^2 - 2xy \cdot \cos \alpha + y^2 \Leftrightarrow 0 \ge (x - y)^2 \cdot \cos \alpha$, which is true. The equality case is easy to prove.

Back to the proof of Proposition 2:

Case I: $A < \frac{2\pi}{3}, B < \frac{2\pi}{3}, C < \frac{2\pi}{3}$. Then, $\mu\left(\widehat{BTC}\right) = \frac{2\pi}{3}$ and from Lemma 2 we obtain:

$$a^{2} = BT^{2} - 2BT \cdot CT \cdot \cos\frac{2\pi}{3} + CT^{2} \le 2\left(BT^{2} + CT^{2}\right) \cdot \sin^{2}\frac{\pi}{3},$$

and the conclusion follows.

Case II: $A = \frac{2\pi}{3}$. Then T = A, and the inequality reduces to: $3(b^2 + c^2) \ge 2 \cdot a^2$. The last inequality is a consequence of Lemma 2, for x = b, y = c, $\alpha = A$. Case III: $B \ge \frac{2\pi}{3}$ or $C \ge \frac{2\pi}{3}$. Then T = B or T = C and the inequality reduces to: $3 \cdot a^2 \ge 2 \cdot a^2$, which is true.

Remark. The condition $A \leq \frac{2\pi}{3}$ is an essential one. Indeed, let *ABC* be a triangle with $A = \pi - \alpha$, where $\alpha \in (0, \frac{\pi}{3})$, and AB = AC = x > 0. Then T = A, and the inequality to prove turns into:

$$3\left(AB^2 + AC^2\right) \ge 2BC^2 \Leftrightarrow 6x^2 \ge 4x^2 \left(1 + \cos\alpha\right),$$

which is not necessarily true.

(For $\alpha \to 0$ we obtain $6 \ge 8$.)

Problem 1 *Prove that for all* $x, y, z \in (0, \infty)$ *,*

$$\frac{x^2 + xy + y^2}{z} + \frac{y^2 + yz + z^2}{x} + \frac{z^2 + zx + x^2}{y} \ge 3(x + y + z)$$

Proof We will use the following result:

Lemma 3 Let ABC be a triangle with the measures of all its angles smaller than $\frac{2\pi}{3}$ and T, its Torricelli point. Then,

$$AT + BT + CT \le \frac{AB + BC + CA}{\sqrt{3}}$$

Proof of Lemma 3: From the Propozition 1. we obtain: $BT + CT \leq \frac{2}{\sqrt{3}}BC$, $CT + AT \leq \frac{2}{\sqrt{3}}CA$, and $AT + BT \leq \frac{2}{\sqrt{3}}AB$. By summing these three inequalities, the conclusion follows.

Back to the proof of the Problem 1:

We choose A, B, C, T such that AT = x, BT = y, CT = z, and $\mu\left(\widehat{BTC}\right) = \mu\left(\widehat{ATC}\right) = \mu\left(\widehat{ATB}\right) = \frac{2\pi}{3}$. Then T is the Torricelli point of the triangle ABC, $a^2 = y^2 + yz + z^2$, $b^2 = x^2 + xz + z^2$, $c^2 = x^2 + xy + y^2$ and $\frac{x^2 + xy + y^2}{z} + \frac{y^2 + yz + z^2}{x} + \frac{z^2 + zx + x^2}{y} = \frac{c^2}{z} + \frac{a^2}{x} + \frac{b^2}{y} \stackrel{Bergstrom}{\geq}$ $\geq \frac{(a + b + c)^2}{x + y + z} \stackrel{Lemma3}{\geq} \frac{\left(\sqrt{3}\left(x + y + z\right)\right)^2}{x + y + z} = 3\left(x + y + z\right)$

We invite the reader to use this ideas to solve the following:

Problem 2 Prove that for all $x, y, z \in (0, \infty)$,

$$\sum_{cyc.} \sqrt{x^2 + y^2} \ge \frac{\sqrt{6}}{3} \cdot \sum_{cyc.} \sqrt{x^2 + xy + y^2}.$$

References

- L. Nicolescu, V. Boskoff Probleme practice de geometrie, Editura Tehnică, Bucureşti 1990
- [2] Olimpiada pe Şcoală (The School Yard Olympiad), Forum interactiv de matematică, https://www.facebook.com/groups/1593739420880226/?fref=ts

teacher, Colegiul Național "Gheorghe Şincai", Baia Mare, România teacher, Colegiul Național "Iancu de Hunedoara", Hunedoara, România