APPLICATIONS OF FERMAT'S AND LAGRANGE'S THEOREMS

DANIEL SITARU

Abstract

In the following we will show the way in which we can use Fermat's and Lagrange's theorems to solve problems whose solution, at first sight, does not seems to use these results.

Problem 0.1. Let be $a_{i} \in(0, \infty) \backslash\{1\}, i \in \overline{1, n}$ sucht that, for any $x \in \mathbb{R}$,

$$
a_{1}^{x}+a_{2}^{x}+\ldots+a_{n}^{x} \geq n
$$

Prove that $a_{1} a_{2} \ldots a_{n}=1$.
Proof. Lets consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=a_{1}^{x}+a_{2}^{x}+\ldots+a_{n}^{x} .
$$

The hypothesis says that $f(x) \geq f(0), \forall x \in \mathbb{R}$, so $x=0$ is a point of minimum local for this function. According to Fermat's theorem, it follows that $f^{\prime}(0)=0$. As $f^{\prime}(x)=a_{1}^{x} \ln a_{1}+a_{2}^{x} \ln a_{2}+\ldots+a_{n}^{x} \ln a_{n}$, we obtain $\ln \left(a_{1} a_{2} \ldots a_{n}\right)=0$, namely $a_{1} a_{2} \ldots a_{n}=1$.

Remark 0.1. From means inequality it follows that the reciprocal affirmation from problem 1 is, also, true: if $a_{1}, a_{2}, \ldots, a_{n}>0$ and $a_{1} a_{2} \ldots a_{n}=1$, then

$$
a_{1}^{x}+a_{2}^{x}+\ldots+a_{n}^{x} \geq n \sqrt[n]{a_{1}^{x} a_{2}^{x} \ldots a_{n}^{x}}=n, \forall x \in \mathbb{R}
$$

Problem 0.2. Let be $a_{i}, b_{i} \in(0, \infty) \backslash\{1\}, i \in \overline{1, n}$ such that, for any $x \in \mathbb{R}$,

$$
a_{1} b_{1}^{x}+a_{2} b_{2}^{x}+\ldots+a_{n} b_{n}^{x} \geq a_{1}+a_{2}+\ldots+a_{n}
$$

Prove that $b_{1}^{a_{1}} b_{2}^{a_{2}} \ldots b_{n}^{a_{n}}=1$.
Proof. We define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ through

$$
\begin{equation*}
f(x)=a_{1} b_{1}^{x}+a_{2} b_{2}^{x}+\ldots a_{n} b_{n}^{x} \tag{0.1}
\end{equation*}
$$

We can notice that $f(0)=a_{1}+a_{2}+\ldots+a_{n}$ and that $f(x) \geq f(0), \forall x \in \mathbb{R}$. It follows that $x=0$ is a point of minimum local for f. From Fermat's theorem it follows that $f^{\prime}(0)=0$. Then $f^{\prime}(x)=a_{1} b_{1}^{x} \ln b_{1}+a_{2} b_{2}^{x} \ln b_{2}+\ldots+a_{n} b_{n}^{x} \ln b_{n}$, so $f^{\prime}(0)=a_{1} \ln b_{1}+a_{2} \ln b_{2}+\ldots+a_{n} \ln b_{n}=\ln \left(b_{1}^{a_{1}} b_{2}^{a_{2}} \ldots b_{n}^{a_{n}}\right)$, wherefrom $b_{1}^{a_{1}} b_{2}^{a_{2}} \ldots b_{n}^{a_{n}}=1$.
Remark 0.2. And the reciprocal of the affirmation form problem 2 is true: if $a_{i}, b_{i} \in(0, \infty) \backslash\{1\}, i \in \overline{1, n}$ and $b_{1}^{a_{1}} b_{2}^{a_{2}} \ldots b_{n}^{a_{n}}=1$, then, because the function defined by 0.1 is convex (it has the second derivative positive) and $f^{\prime}(0)=0$ it follows that it is decreasing on $(-\infty, 0]$ and increasing on $[0, \infty)$, so

$$
f(x) \geq f(0)=a_{1}+a_{2}+\ldots+a_{n}, \forall x \in \mathbb{R}
$$

Problem 0.3. Find the numbers $a, b, c \in(0, \infty)$ which have the property $a^{x}+b^{x}+c^{x} \geq x^{a}+x^{b}+x^{c}, \forall x \in(0, \infty)$.
Proof. We consider the function $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=e \ln x-x$. Its derivative is $f^{\prime}(x)=\frac{e}{x}-1$ and it is positive on $(0, e]$ and negative on $[e, \infty)$, so the function have in point $x=e$ a global maximum. It follows $f(x) \leq f(e)=0$, namely $x^{e} \leq e^{x}, \forall x>0$, with equality only if $x=e$.
On the other hand, from hypothesis it follows $a^{e}+b^{e}+c^{e} \geq e^{a}+e^{b}+e^{c}$, which is, according to the ones mention above, it is possible only if $a=b=c=e$.
We notice that these values check the given property.
Problem 0.4. Solve the following equation $3^{x}+6^{x}=4^{x}+5^{x}$.
Proof. We consider x fixed, solution of the equation and the function
$f:(0, \infty) \rightarrow \mathbb{R}, f(t)=t^{x}$, with the derivative $f^{\prime}(t)=x t^{x-1}$. Lagrange's theorem applied to the function on the intervals $[3,4]$ and $[5,6]$ guarantees the existence of some numbers $c_{1} \in(3,4)$ and $c_{2} \in(5,6)$ such that $f(4)-f(3)=x c_{1}^{x-1}$, respectively $f(6)-f(5)=x c_{2}^{x-1}$.
Because the equation is equivalent with $f(4)-f(3)=f(6)-f(5)$, it follows $x=0$ and $c_{1}^{x-1}=c_{2}^{x-1}$, namely $x=1$. We notice that both numbers are solutions of the initial equation.
Remark 0.3. We consider the function $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=6^{x}-5^{x}-4^{x}+3^{x}$. It is continuous and it is canceled only in 0 and 1 , so it has a constant sign on the intervals $(-\infty, 0),(0,1)$ and $(1, \infty)$. From

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} 6^{x}\left(1-\left(\frac{5}{6}\right)^{x}-\left(\frac{4}{6}\right)^{x}+\left(\frac{3}{6}\right)^{x}\right)=+\infty
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 3^{x}\left(\left(\frac{6}{3}\right)^{x}-\left(\frac{5}{3}\right)^{x}-\left(\frac{4}{3}\right)^{x}+1\right)=+\infty
$$

it follows that the function is positive on $(-\infty, 0) \cup(1, \infty)$. Then, because $g^{\prime}(0) \neq 0$, 0 is not a point of extremely local, so the function is negative on $(0,1)$. We deduce:

$$
6^{x}+3^{x}>4^{x}+5^{x}, \forall x \in(-\infty, 0) \cup(1, \infty)
$$

and

$$
6^{x}+3^{x}<4^{x}+5^{x}, \forall x \in(0,1)
$$

References

[1] Gh. Gussi, O. Stănăşilă, T. Stoica, Mathematics. manual for the XI th grade, EDP Publishing House, Bucharest, 1991
[2] M. Ganga, Elements of Mathematical Analysis Math Press Publishing House, Ploieşti, 1991
[3] D. Sitaru, Claudia Nănuţi, Mathematics for contests ECKO - Print Publishing House, Drobeta Turnu-Severin, 2012
[4] Daniel Sitaru, Math Phenomenon. Paralela 45, Publishing House, Piteşti, Romania, 2016.
Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

