PROPERTIES OF THE SETS PROVED WITH THE CHARACTERISTIC FUNCTION

DANIEL SITARU

Let be $E \neq \emptyset$ and $A \subseteq E$. We define the characteristic function of the set A by $\varphi_A : E \to \{0, 1\},\$

$$\varphi_A(x) = \begin{cases} 1, x \in A \\ 0, x \neq A \end{cases}$$

We can easily prove (exercise!) the following properties of the characteristic function for $A \subseteq E$ and $B \subseteq E$:

1. $\varphi_{A\cup B} = \varphi_A + \varphi_B - \varphi_A \varphi_B$.

2. $\varphi_{A\cap B} = \varphi_A \varphi_B$.

3.
$$\varphi_{A \setminus B} = \varphi_A - \varphi_A \varphi_B$$

4. $\varphi_{A\Delta B} = \varphi_A + \varphi_B - 2\varphi_A \varphi_B$, where $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

5.
$$\varphi_A^2 = \varphi_A$$
.

6. $\varphi_{\emptyset} = 0, \varphi_E = 1.$

7. $\varphi_{C_E A} = 1 - \varphi_A$.

8. $A = B \Leftrightarrow \varphi_A = \varphi_B$ and, more generally, $A \subseteq B \Leftrightarrow \varphi_A \leq \varphi_B$.

For example, for 1. we notice that, if $x \in E$ and it belongs at least to one of A, B sets, then both members have the value in point x equal with 1, and if $x \in E$ and it does not belong to neither A, B sets, then both members have the value in x point equal to 0.

In the following we will solve some problems from the high school manuals and we will propose some applications.

Problem 0.1. Prove that if A, B, C are three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then B = C.

Proof. From $A \cap B = A \cap C$ it follows $\varphi_{A \cap B} = \varphi_{A \cap C}$, namely $\varphi_A \varphi_B = \varphi_A \varphi_C$. From $A \cup B = A \cup C$ it follows $\varphi_{A \cup B} = \varphi_{A \cup C}$, so

$$\varphi_A + \varphi_B - \varphi_A \varphi_B = \varphi_A + \varphi_C - \varphi_A \varphi_C,$$

wherefrom $\varphi_B = \varphi_C$, namely $B = C$.

Problem 0.2. Prove that if A, B are sets, then the relationships $A \cap B = A$ and $A \cup B = B$ are equivalent.

Proof. Let X be a set that includes the sets A, B. Considering the characteristic functions in rapport with X, the relationship $A \cap B = A$ is equivalent with $\varphi_A \varphi_B = \varphi_A$.

 $A \cup B = B$ is equivalent with $\varphi_A + \varphi_B - \varphi_A \varphi_B = \varphi_B$, namely $\varphi_A = \varphi_A \varphi_B$. So, $A \cap B = A$ and $A \cup B = B$ are equivalent with the same realtionship. \Box

Problem 0.3. Prove that $(A\Delta B)\Delta C = A\Delta(B\Delta C)$

DANIEL SITARU

Proof. $\varphi_{(A\Delta B)\Delta C} = \varphi_{A\Delta B} + \varphi_C - 2\varphi_{A\Delta B\varphi_C} = \varphi_A + \varphi_B + \varphi_C - 2\varphi_A\varphi_B - 2\varphi_A\varphi_C - 2\varphi_B\varphi_C + 4\varphi_A\varphi_B\varphi_C.$

For $\varphi_{A\Delta(B\Delta C)} = \varphi_{(B\Delta C)\Delta A}$ we obtain the same expression, because the preceding result is symmetric in A, B, C. So, $\varphi_{(A\Delta B)\Delta C} = \varphi_{A\Delta(B\Delta C)}$, namely $(A\Delta B)\Delta C = A\Delta(B\Delta C)$.

Problem 0.4. Prove that $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$.

Proof.

$$\varphi_{A\cap(B\Delta C)} = \varphi_A \varphi_{B\Delta C} = \varphi_A (\varphi_B + \varphi_C - 2\varphi_B \varphi_C) =$$

$$= \varphi_A \varphi_B + \varphi_A \varphi_C - 2\varphi_A \varphi_B \varphi_C;$$

$$\varphi(A \cap B) \Delta(A \cap C) = \varphi_{A\cap B} + \varphi_{A\cap C} - 2\varphi_{A\cap B} \varphi_{A\cap C};$$

$$= \varphi_A \varphi_B + \varphi_A \varphi_C - 2\varphi_A \varphi_B \varphi_A \varphi_C =$$

$$= \varphi_A \varphi_B + \varphi_A \varphi_C - 2\varphi_A \varphi_B \varphi_C.$$

From the relationship above we deduce $\varphi_{A\cap(B\Delta C)} = \varphi_{(A\cap B)\Delta(\Delta\cap C)}$, hence the conclusion.

Problem 0.5. Let E be a set and the function that associate to each set included in E its complement: $C_E : \mathcal{P}(E) \to \mathcal{P}(E), C_E(X) = E \setminus X, \hat{A}$ for any $x \in \mathcal{P}(E)$. Prove that the application C_E has the following properies (Morgan's laws): 1. $C_E(X \cup Y) = C_E(X) \cap C_E(Y)$; 2. $C_E(X \cap Y) = C_E(X) \cup C_E(Y)$.

Proof. 1. $\varphi_{C_E(X\cup Y)} = 1 - \varphi_{X\cup Y} = 1 - \varphi_X - \varphi_Y + \varphi_X \varphi_Y$. $\varphi_{C_E(X)\cap C_E(Y)} = \varphi_{C_E(X)} \varphi_{C_E(Y)} = (1 - \varphi_X)(1 - \varphi_Y) =$ $= 1 - \varphi_X - \varphi_Y + \varphi_X \varphi_Y$, which proves the requirement. 2. $\varphi_{C_E(X\cap Y)} = 1 - \varphi_{X\cap Y} = 1 - \varphi_X \varphi_Y$. $\varphi_{C_E(X)\cup C_E(Y)} = \varphi_{C_E(X)} + \varphi_{C_E(Y)} - \varphi_{C_E(X)} \varphi_{C_E(Y)} =$ $= 1 - \varphi_X + 1 - \varphi_Y - (1 - \varphi_X)(1 - \varphi_Y) = 1 - \varphi_X \varphi_Y$, which proves the requirement. \Box

1. Proposed Problems

Problem 1.1. Let A, B, C be the given sets. Solve the equations in X: a. $A\Delta X = B$; b. $A\Delta X\Delta B = C$.

Problem 1.2. Let E be a nonempty set and $A \in \mathcal{P}(E)$ a fixed set. Prove that the function $f : \mathcal{P}(E) \to \mathcal{P}(E), f(X) = A\Delta X$ is bijective.

Problem 1.3. Let $A_n = \{1, 2, 3, ..., n\}, n \in \mathbb{N}^*$, fixed. Prove that $(\mathcal{P}(A_n), \Delta, \cap)$ is a commutative ring with divisors of zero. Find the invertible elements of the ring.

References

- [1] C. Năstăsescu, C. Niță, Gh. Rizescu, Algebra manual for the 9 th grade, EDP Publishing House, Bucharest
- [2] Ion D. Ion, A. Ghioca, N. Nediță, Algebra manual for the 12 th grade EDP Publishing House, Bucharest
- [3] D. Sitaru, Claudia Nănuți, Mathematics for contests ECKO Print Publishing House, Drobeta Turnu-Severin, 2012
- [4] Daniel Sitaru, Math Phenomenon. Paralela 45, Publishing House, Piteşti, Romania, 2016.

 $\mathbf{2}$

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com