PROPERTIES OF THE SETS PROVED WITH THE CHARACTERISTIC FUNCTION

DANIEL SITARU

Let be $E \neq \emptyset$ and $A \subseteq E$. We define the characteristic function of the set A by $\varphi_{A}: E \rightarrow\{0,1\}$,

$$
\varphi_{A}(x)=\left\{\begin{array}{l}
1, x \in A \\
0, x \neq A
\end{array} .\right.
$$

We can easily prove (exercise!) the following properties of the characteristic function for $A \subseteq E$ and $B \subseteq E$:

1. $\varphi_{A \cup B}=\varphi_{A}+\varphi_{B}-\varphi_{A} \varphi_{B}$.
2. $\varphi_{A \cap B}=\varphi_{A} \varphi_{B}$.
3. $\varphi_{A \backslash B}=\varphi_{A}-\varphi_{A} \varphi_{B}$.
4. $\varphi_{A \Delta B}=\varphi_{A}+\varphi_{B}-2 \varphi_{A} \varphi_{B}$, where $A \Delta B=(A \backslash B) \cup(B \backslash A)$.
5. $\varphi_{A}^{2}=\varphi_{A}$.
6. $\varphi_{\emptyset}=0, \varphi_{E}=1$.
7. $\varphi_{C_{E} A}=1-\varphi_{A}$.
8. $A=B \Leftrightarrow \varphi_{A}=\varphi_{B}$ and, more generally, $A \subseteq B \Leftrightarrow \varphi_{A} \leq \varphi_{B}$.

For example, for 1 . we notice that, if $x \in E$ and it belongs at least to one of A, B sets, then both members have the value in point x equal with 1 , and if $x \in E$ and it does not belong to neither A, B sets, then both members have the value in x point equal to 0 .
In the following we will solve some problems from the high school manuals and we will propose some applications.

Problem 0.1. Prove that if A, B, C are three sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$, then $B=C$.

Proof. From $A \cap B=A \cap C$ it follows $\varphi_{A \cap B}=\varphi_{A \cap C}$, namely $\varphi_{A} \varphi_{B}=\varphi_{A} \varphi_{C}$. From $A \cup B=A \cup C$ it follows $\varphi_{A \cup B}=\varphi_{A \cup C}$, so

$$
\varphi_{A}+\varphi_{B}-\varphi_{A} \varphi_{B}=\varphi_{A}+\varphi_{C}-\varphi_{A} \varphi_{C}
$$

wherefrom $\varphi_{B}=\varphi_{C}$, namely $B=C$.
Problem 0.2. Prove that if A, B are sets, then the relationships $A \cap B=A$ and $A \cup B=B$ are equivalent.

Proof. Let X be a set that includes the sets A, B. Considering the characteristic functions in rapport with X, the relationship $A \cap B=A$ is equivalent with $\varphi_{A} \varphi_{B}=\varphi_{A}$.
$A \cup B=B$ is equivalent with $\varphi_{A}+\varphi_{B}-\varphi_{A} \varphi_{B}=\varphi_{B}$, namely $\varphi_{A}=\varphi_{A} \varphi_{B}$. So, $A \cap B=A$ and $A \cup B=B$ are equivalent with the same realtionship.

Problem 0.3. Prove that $(A \Delta B) \Delta C=A \Delta(B \Delta C)$

Proof. $\varphi_{(A \Delta B) \Delta C}=\varphi_{A \Delta B}+\varphi_{C}-2 \varphi_{A \Delta B \varphi_{C}}=\varphi_{A}+\varphi_{B}+\varphi_{C}-2 \varphi_{A} \varphi_{B}-2 \varphi_{A} \varphi_{C}-$ $-2 \varphi_{B} \varphi_{C}+4 \varphi_{A} \varphi_{B} \varphi_{C}$.
For $\varphi_{A \Delta(B \Delta C)}=\varphi_{(B \Delta C) \Delta A}$ we obtain the same expresion, because the preceding result is symmetric in A, B, C. So, $\varphi_{(A \Delta B) \Delta C}=\varphi_{A \Delta(B \Delta C)}$, namely
$(A \Delta B) \Delta C=A \Delta(B \Delta C)$.
Problem 0.4. Prove that $A \cap(B \Delta C)=(A \cap B) \Delta(A \cap C)$.
Proof.

$$
\begin{gathered}
\varphi_{A \cap(B \Delta C)}=\varphi_{A} \varphi_{B \Delta C}=\varphi_{A}\left(\varphi_{B}+\varphi_{C}-2 \varphi_{B} \varphi_{C}\right)= \\
=\varphi_{A} \varphi_{B}+\varphi_{A} \varphi_{C}-2 \varphi_{A} \varphi_{B} \varphi_{C} \\
\varphi(A \cap B) \Delta(A \cap C)=\varphi_{A \cap B}+\varphi_{A \cap C}-2 \varphi_{A \cap B} \varphi_{A \cap C} \\
=\varphi_{A} \varphi_{B}+\varphi_{A} \varphi_{C}-2 \varphi_{A} \varphi_{B} \varphi_{A} \varphi_{C}= \\
=\varphi_{A} \varphi_{B}+\varphi_{A} \varphi_{C}-2 \varphi_{A} \varphi_{B} \varphi_{C}
\end{gathered}
$$

From the relationship above we deduce $\varphi_{A \cap(B \Delta C)}=\varphi_{(A \cap B) \Delta(\Delta \cap C)}$, hence the conclusion.

Problem 0.5. Let E be a set and the function that associate to each set included in E its complement: $C_{E}: \mathcal{P}(E) \rightarrow \mathcal{P}(E), C_{E}(X)=E \backslash X, \hat{A}$ for any $x \in \mathcal{P}(E)$. Prove that the application C_{E} has the following properies (Morgan's laws):

1. $C_{E}(X \cup Y)=C_{E}(X) \cap C_{E}(Y)$;
2. $C_{E}(X \cap Y)=C_{E}(X) \cup C_{E}(Y)$.

Proof. 1. $\varphi_{C_{E}(X \cup Y)}=1-\varphi_{X \cup Y}=1-\varphi_{X}-\varphi_{Y}+\varphi_{X} \varphi_{Y}$.
$\varphi_{C_{E}(X) \cap C_{E}(Y)}=\varphi_{C_{E}(X)} \varphi_{C_{E}(Y)}=\left(1-\varphi_{X}\right)\left(1-\varphi_{Y}\right)=$
$=1-\varphi_{X}-\varphi_{Y}+\varphi_{X} \varphi_{Y}$, which proves the requirement.
2. $\varphi_{C_{E}(X \cap Y)}=1-\varphi_{X \cap Y}=1-\varphi_{X} \varphi_{Y}$.
$\varphi_{C_{E}(X) \cup C_{E}(Y)}=\varphi_{C_{E}(X)}+\varphi_{C_{E}(Y)}-\varphi_{C_{E}(X)} \varphi_{C_{E}(Y)}=$
$=1-\varphi_{X}+1-\varphi_{Y}-\left(1-\varphi_{X}\right)\left(1-\varphi_{Y}\right)=1-\varphi_{X} \varphi_{Y}$, which proves the requirement.

1. Proposed Problems

Problem 1.1. Let A, B, C be the given sets. Solve the equations in X :
a. $A \Delta X=B$;
b. $A \Delta X \Delta B=C$.

Problem 1.2. Let E be a nonempty set and $A \in \mathcal{P}(E)$ a fixed set. Prove that the function $f: \mathcal{P}(E) \rightarrow \mathcal{P}(E), f(X)=A \Delta X$ is bijective.

Problem 1.3. Let $A_{n}=\{1,2,3, \ldots, n\}, n \in \mathbb{N}^{*}$, fixed. Prove that $\left(\mathcal{P}\left(A_{n}\right), \Delta, \cap\right)$ is a commutative ring with divisors of zero. Find the invertible elements of the ring.

References

[1] C. Năstăsescu, C. Niţă, Gh. Rizescu, Algebra manual for the 9 th grade, EDP Publishing House, Bucharest
[2] Ion D. Ion, A. Ghioca, N. Nediţă, Algebra manual for the 12 th grade EDP Publishing House, Bucharest
[3] D. Sitaru, Claudia Nănuţi, Mathematics for contests ECKO - Print Publishing House, Drobeta Turnu-Severin, 2012
[4] Daniel Sitaru, Math Phenomenon. Paralela 45, Publishing House, Piteşti, Romania, 2016.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTi.

E-mail address: dansitaru63@yahoo.com

