Another Generalization of the Sawayama's Lemma and Sawayama and Thébault's Theorem

Proposed by Dao Thanh Oai

August 9, 2016

Abstract

In this note we give a generalization of generalization of the Sawayama's Lemma and Sawayama and Thébault's Theorem without proof.

1 A generalization of the Sawayama lemma

Problem 1. Let $A B C$ be a triangle with the incenter I, let (O) be a circle through B, C. Let $\left(O_{A}\right)$ be a circle such that $\left(O_{A}\right)$ tangent to $A B, A C$, and tangent to (O), such that common point of $\left(O_{A}\right),(O)$ and A are in the same half plane divides by $B C$, and A, O_{A}, I are collinear. Let P be a point outside of $\left(O_{A}\right)$, let L be a line through P and tangent to $\left(O_{A}\right)$. Let $\left(O_{1}\right)$ be the circle tangent to $B C$, and tangent to L, and $\left(O_{1}\right)$ tangent to (O) such that:

1-if $\left(O_{A}\right)$ externally tangent to (O), selected $\left(O_{1}\right)$ and $\left(O_{A}\right)$ are not in the same half plane divides by L, (see Figure 1).

2-if $\left(O_{A}\right)$ internally tangent to (O), selected $\left(O_{1}\right)$ and $\left(O_{A}\right)$ are in the same half plane divides by L, (see Figure 2).

Let $\left(O_{1}\right)$ tangent to $B C$ at $D,\left(O_{1}\right)$ tangent to L at E. Then show that D, E, I are collinear.

Figure 1: $\left(O_{A}\right)$ externally tangent to (O)

Figure 2: $\left(O_{A}\right)$ internally tangent to (O)

2 A generalization of the Sawayama-Thebault theorem

Problem 2. Let $A B C$ be a triangle with the incenter I, let (O) be a circle through B, C. Let $\left(O_{A}\right)$ be a circle such that $\left(O_{A}\right)$ tangent to $A B, A C$, and (O), such that common point of $\left(O_{A}\right),(O)$ and A are in the same half plane divides by $B C$, and A, O_{A}, I collinear. Let P be a point outside of $\left(O_{A}\right)$, let L_{1}, L_{2} be two lines through P and tangent to $\left(O_{A}\right)$. Let $\left(O_{1}\right),\left(O_{2}\right)$ be two circles, such that $\left(O_{1}\right)$ tangent to $(O),\left(O_{1}\right)$ tangent to L_{1} and $\left(O_{1}\right)$ tangent to $B C,\left(O_{2}\right)$ tangent to $(O),\left(O_{2}\right)$ tangent to L_{2} and $\left(O_{2}\right)$ tangent to $B C$.

1. If $\left(O_{A}\right)$ externally tangent to (O), selected $\left(O_{1}\right),\left(O_{2}\right)$, such that $\left(O_{1}\right)$ and $\left(O_{A}\right)$ are not in the same half plane divides by $L_{1},\left(O_{2}\right)$ and $\left(O_{A}\right)$ are not the same half plane divides by L_{2} (Figure 3).
2. If $\left(O_{A}\right)$ internally tangent to (O), selected $\left(O_{1}\right),\left(O_{2}\right)$ such that $\left(O_{1}\right)$ and $\left(O_{A}\right)$ are the same half plane divides by $L_{1},\left(O_{2}\right)$ and $\left(O_{A}\right)$ are the same half plane divides by L_{2} (Figure 4).

Then show that the line $O_{1} O_{2}$ through a fixed point when P move on a given line.

Figure 3: $\left(O_{A}\right)$ externally tangent to (O)

Figure 4: $\left(O_{A}\right)$ internally tangent to (O)

3 Variants

There are many variants of problem 1 and problem 2. Example:
Problem 3. Let $A B C$ be a triangle with the incenter I, and excenter E_{A}, let (O) be a circle through B, C. Let $\left(O_{A}\right)$ be a circle such that $\left(O_{A}\right)$ tangent to $A B, A C$, and $\left(O_{A}\right)$ internally (or externally) tangent to (O). Let common point of two circles $\left(O_{A}\right),(O)$ and A are not in the same half plane divides by $B C$. Let P be a point outside of $\left(O_{A}\right)$, let L be a line through P and tangent to $\left(O_{A}\right)$. Let $\left(O_{1}\right)$ be the circle such that $\left(O_{1}\right)$ and $\left(O_{A}\right)$ are in the same half plane divides by L, and O_{1} tangent to $B C$, and tangent to L. Let $\left(O_{1}\right)$ tangent with $B C$ at $D,\left(O_{1}\right)$ tangent L at E. Then show that

1-D, E, I are collinear if $\left(O_{A}\right)$ internally tangent to (O) (Figure 5).
$2-D, E, E_{A}$ are collinear $\left(O_{A}\right)$ externally tangent to (O) (Figure 6).

Figure 5: $\left(O_{A}\right)$ externally tangent to (O)

Figure 6: $\left(O_{A}\right)$ internally tangent to (O)

References

[1] Jean-Louis Ayme, Sawayama and Thébault's Theorem, Forum Geometricorum 3 (2003) 225-229.
[2] Dao Thanh Oai, A Generalization of Sawayama and Thébault's Theorem, International Journal of Computer Discovered Mathematics, Volume 1 Number 3 (September 2016) pp.33-35.

Dao Thanh Oai: Kien Xuong, Thai Binh, Viet Nam
E-mail address : daothanhoai@hotmail.com.

