Another Generalization of the Sawayama's Lemma and Sawayama and Thébault's Theorem

Proposed by Dao Thanh Oai

August 9, 2016

Abstract

In this note we give a generalization of generalization of the Sawayama's Lemma and Sawayama and Thébault's Theorem without proof.

1 A generalization of the Sawayama lemma

Problem 1. Let ABC be a triangle with the incenter I, let (O) be a circle through B, C. Let (O_A) be a circle such that (O_A) tangent to AB, AC, and tangent to (O), such that common point of (O_A) , (O) and A are in the same half plane divides by BC, and A, O_A , I are collinear. Let P be a point outside of (O_A) , let L be a line through P and tangent to (O_A) . Let (O_1) be the circle tangent to BC, and tangent to L, and (O_1) tangent to (O_1) such that:

1-if (O_A) externally tangent to (O), selected (O_1) and (O_A) are not in the same half plane divides by L, (see Figure 1).

2-if (O_A) internally tangent to (O), selected (O_1) and (O_A) are in the same half plane divides by L, (see Figure 2).

Let (O_1) tangent to BC at D, (O_1) tangent to L at E. Then show that D, E, I are collinear.

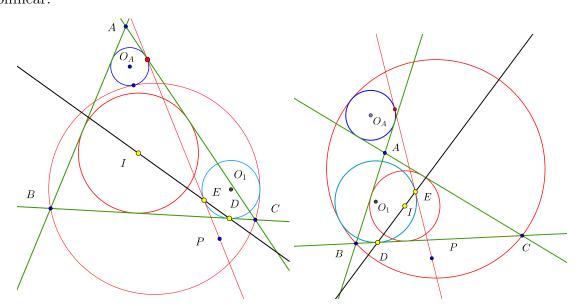


Figure 1: (O_A) externally tangent to (O) Figure 2: (O_A) internally tangent to (O)

2 A generalization of the Sawayama-Thebault theorem

Problem 2. Let ABC be a triangle with the incenter I, let (O) be a circle through B, C. Let (O_A) be a circle such that (O_A) tangent to AB, AC, and (O), such that common point of (O_A) , (O) and A are in the same half plane divides by BC, and A, O_A , I collinear. Let P be a point outside of (O_A) , let L_1 , L_2 be two lines through P and tangent to (O_A) . Let (O_1) , (O_2) be two circles, such that (O_1) tangent to (O), (O_1) tangent to (O_1) tangent to (O_2) tangent to (O_2) tangent to (O_2) tangent to (O_2) tangent to (O_3) .

- 1. If (O_A) externally tangent to (O), selected (O_1) , (O_2) , such that (O_1) and (O_A) are not in the same half plane divides by L_1 , (O_2) and (O_A) are not the same half plane divides by L_2 (Figure 3).
- 2. If (O_A) internally tangent to (O), selected (O_1) , (O_2) such that (O_1) and (O_A) are the same half plane divides by L_1 , (O_2) and (O_A) are the same half plane divides by L_2 (Figure 4).

Then show that the line O_1O_2 through a fixed point when P move on a given line.

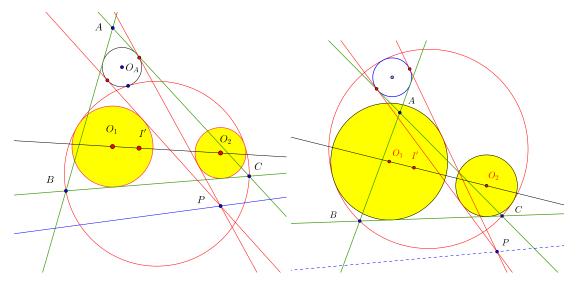


Figure 3: (O_A) externally tangent to (O) Figure 4: (O_A) internally tangent to (O)

3 Variants

There are many variants of problem 1 and problem 2. Example:

Problem 3. Let ABC be a triangle with the incenter I, and excenter E_A , let (O) be a circle through B, C. Let (O_A) be a circle such that (O_A) tangent to AB, AC, and (O_A) internally (or externally) tangent to (O). Let common point of two circles (O_A) , (O) and A are not in the same half plane divides by BC. Let P be a point outside of (O_A) , let C be a line through C and tangent to C and tangent to C and tangent to C are in the same half plane divides by C, and C tangent to C and tangent to C. Let C tangent with C at C tangent with C at C tangent C at C tangent C and tangent to C.

1-D, E, I are collinear if (O_A) internally tangent to (O) (Figure 5).

 $2-D, E, E_A$ are collinear (O_A) externally tangent to (O) (Figure 6).

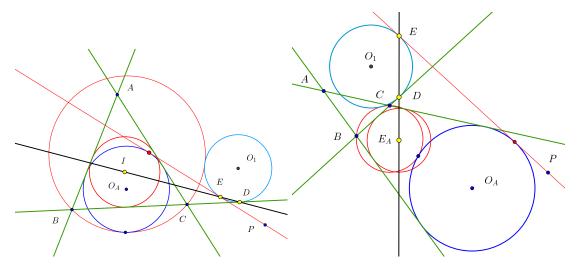


Figure 5: (O_A) externally tangent to (O) Figure 6: (O_A) internally tangent to (O)

References

- [1] Jean-Louis Ayme, Sawayama and Thébault's Theorem, Forum Geometricorum 3 (2003) 225–229.
- [2] Dao Thanh Oai, A Generalization of Sawayama and Thébault's Theorem, International Journal of Computer Discovered Mathematics, Volume 1 Number 3 (September 2016) pp.33-35.

Dao Thanh Oai: Kien Xuong, Thai Binh, Viet Nam

E-mail address: daothanhoai@hotmail.com.