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Abstract. In the present work there are pointed and demonstrated some generalizations and
refinements for Bergström and Radon’s inequalities. But not before making some historical re-
maks on the parenthood of these inequalities. We present a new demonstration and a refinement
for Radon’s inequality, which is based on a recently initiated method, using the monotony of a
sequence associated to the inequality. Some applications are also presented.
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It is well-known and very often used lately- Bergström’s inequality ( see [7] , [11] , [14] ) ,
namely ,

1. Proposition (Bergström’s inequality)
If x k ∈ R , ak > 0, k ∈ {1, 2, ..., n} , then the following inequality holds ,

(1)
x2

1

a1
+

x2
2

a2
+ . . . +

x2
n

an
≥ (x1 + x2 + . . . xn)2

a1 + a2 + . . . an
,

with equality for : x1
a1

= x2
a2

= . . . = xn
an

.
It is equivalent with Cauchy-Buniakowski-Schwarz inequality .
For the less simple implication, Bergström inequality ⇒ C-B-S inequality, see [2], [5], [20].
This inequality is often called Titu Andreescu’s inequality (or Andreescu lemma –presented

in [1] , having as base a problem published by the first author in the RMT journal, in 1979 ), or
Engel’s inequality (or Cauchy-Schwarz inequality in Engel form - in Germanofon mathematical
literature , [12] ).

In fact , this inequality , for the case n = 2 was enounced by H. Bergström in 1949 , in
the more general frame of complex number modules , from denominators and in more relaxed
conditions , for nominators (see [7] , [14 ] , [11] ) :

• Let z1, z2 ∈ C and u, v ∈ R such that u 6= 0, v 6= 0, u + v 6= 0 .
Then we have:

(2) i)
|z1|2

u
+
|z2|2

v
≥ |z1 + z2|2

u + v
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1
u

+
1
v

> 0 ;

(3) ii)
|z1|2

u
+
|z2|2

v
≤ |z1 + z2|2

u + v
, if

1
u

+
1
v

< 0 .

The equality holds if and only if z1
u = z2

v .
More than that , the inequality (1) , is a particular case of some of Radon’s inequality,

discovered ever since 1913 , ( see [19] , [9] and rediscovered (?..) in [16] and [6] ) .

2. Proposition (Radon’s inequality)
If ak, xk > 0, p > 0, k ∈ {1, 2, ..., n}, then the following inequality holds,
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(4)
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with equality for : x1
a1

= x2
a2

= . . . = xn
an

.
Clearly , p = 1 - Bergström’s inequality is obtained .
There are known some demonstrations of Radon’s inequality, by using Hölder’s inequality

([9], [16] ) , or by using the mathematical induction, [6] . In what is to follow , we are going
to demonstrate Radon’s inequality through a method recently initiated in [13] , which uses the
monotony of an associated sequence.

Proof
Let the sequence , dn := xp+1

1
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n
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for which we are going to prove that dn ≥ 0 , for any n ≥ 2. For this we are going to
demonstrate something more, namely that (dn)n is an increasing monotonous sequence .

Indeed , we have ,
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For the last inequality , Radon’s inequality has been used , for n = 2 ,

(5)
αp+1

ap
+

βp+1

bp
≥ (α + β)p+1

(a + b)p
,

with : α =
n∑

k=1

xk , β = xn+1 , a =
n∑

k=1

ak , b = an+1.

(For the demonstration of the inequality (5) , see [6] ) .
It results that ,

(6) dn ≥ dn−1 ≥ ... ≥ d2 ≥ d1 = 0.

3. Application If a, b, c ∈ R+ , then ,

(7)
a√

a2 + 8bc
+

b√
b2 + 8ca

+
c√

c2 + 8ab
≥ 1 .

( The 42nd OIM, Washington D.C., 2001, Problem 2 )
We write the left member of the inequality under the form ,

Ms :=
a

3
2

√
a3 + 8abc

+
b

3
2

√
b3 + 8abc

+
c

3
2

√
c3 + 8abc
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and Radon’s inequality is applied for n = 3,

xp+1
1

ap
1

+
xp+1

2

ap
2

+
xp+1

3

ap
3

≥ (x1 + x2 + x3)p+1

(a1 + a2 + a3)p
,

with the substitutions: x1 → a , x2 → b , x3 → c; a1 → a3+8abc , a2 → b3+8abc , a3 → c3+8abc
and p =1/2.

It is obtained,

Ms ≥
(a + b + c)

3
2

(a3 + b3 + c3 + 24abc)
1
2

=

√
(a + b + c)3

a3 + b3 + c3 + 24abc
≥ 1.

The last inequality is reduced – after some simple calculations , to the obvious inequality ,
a(b2 + c2) + a(b2 + c2) + a(b2 + c2) ≥ 6abc.

The demonstration method given previously and in [13], also underlines an interesting method
of refining the inequalities, which we can also be seen in the following theorem,

4. Theorem (for refinement of Radon’s inequality)
For ak, xk > 0, p ≥ 1, k ∈ {1, 2, ..., n}, n ∈ N≥2, the inequality takes place,

(8)
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k

ap
k

≥
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)p+1

(
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i
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)
,

with equality if and only if, x1
a1

= x2
a2

= . . . = xn
an

.
Proof
As in the inequality sequence (6) , d1 = 0, it only remains significant the inequality dn ≥ d2

, (∀)n ∈ N≥2.
But,

d2 =
xp+1

1

ap
1

+
xp+1

2

ap
2

− (x1 + x2)p+1

(a1 + a2)p
,

therefore ,

dn ≥
xp+1

1

ap
1

+
xp+1

2

ap
2

− (x1 + x2)p+1

(a1 + a2)p
, (∀) n ∈ N≥2.

In the end, because of dn ‘s symmetry relatively to a i, and x j variables, i, j ∈ {1, 2, ..., n}, it

results that dn ≥
xp+1

i

ap
i

+
xp+1

j

ap
j
− (xi+xj)

p+1

(ai+aj)p , (∀)n ∈ N≥2 , (∀)i, j ∈ {1, 2, ..., n}, hence the enounced

relation holds. The equality condition x1
a1

= x2
a2

= . . . = xn
an

, is a necessary and sufficient condition
for the equality in (4) as well as for the cancellation of the quantity

max
1≤i<j≤n

(
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i

ap
i

+
xp+1

j

ap
j

− (xi + xj)p+1

(ai + aj)p

)
.

For p =1 , a result proven in [13] is obtained.

5. Corollary (refinement of Bergström’s inequality)
For xk ∈ R, ak > 0, k ∈ {1, 2, ..., n} , n ∈ N≥2 , the inequality holds ,

(9)
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1
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+

x2
2
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+ . . . +

x2
n

an
≥ (x1 + x2 + . . . xn)2

a1 + a2 + . . . an
+ max

1≤i<j≤n

(aixj − ajxi)2

aiaj · (ai + aj)
,
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with equality if and only if , x1
a1

= x2
a2

= . . . = xn
an

.

6. Remark
The result from Theorem 4, Corollary 5 respectively, also forms a generalization of a contest

problem from [18] .
Indeed , for xk = 1 and ak → xk, the enounce is obtained. Being n ≥ 2 a natural number and

x1 , x2 ,...,xn > 0 . Then :

(10)
1
x1

+
1
x2

+ . . . +
1
xn

− n2

x1 + x2 + . . . xn
≥ max

1≤i<j≤n

(xi − xj)2

xixj · (xi + xj)
,

For the demonstration of the next result we need the following,

7. Lemma
For m ∈ R≥1 , n ∈ N∗ and xi > 0 , then ,

(11)
n∑

k=0

xm
k ≥ 1

nm−1
·

(
n∑

k=1

xk

)m

Proof
The inequality comes from the inequality between the power-means ([8], [9], [15]), namely, if

r, s ∈ R , r ≥ s, then the inequality takes place,

(12)
(

xr
1 + xr

2 + . . . + xr
n

n

)1/r

≥
(

xs
1 + xs

2 + . . . + xs
n

n

)1/s

.

For r = m and s =1 , the result is obtained .

8. Theorem (the generalization of Radon’s inequality )
If ak, xk > 0, p > 0, q ≥ 1, k ∈ {1, 2, ..., n}, then the inequality takes place,

(13)
n∑

k=1

xp+q
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≥ 1
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·
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(
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)p ,

with equality for: x1
a1

= x2
a2

= . . . = xn
an

.
Proof
Using Radon’s inequality and the previous lemma, we successively have:
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k

=
n∑

k=1

(
x

p+q
p+1

k
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(11)
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·
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1
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(
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)p

For q = 1 in Theorem 8, Radon’s inequality is obtained, and for p = q = 1, Bergström’s
inequality is obtained .
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9. Corollary (the generalization of Radon’s inequality - a variant) If ak, xk > 0, , k ∈
{1, 2, ..., n}, p > 0, r ≥ p + 1, then the inequality holds,

(14)
n∑

k=1

xr
k

ap
k

≥ 1
nr−p−1

·

(
n∑

k=1

xk

)r

(
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k=1
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)p ,

with equality for : x1
a1

= x2
a2

= . . . = xn
an

.
Proof
Noting r := p + q in Theorem 8, r ≥ p+1 results , and q − 1 = r− p− 1, hence the enounce .
A similar result to the one in relation (14) is obtained in [17], using Jensen’s inequality.

10. Application
If a, b, c are the sides of a triangle and r ≥ 2 , then ,

(15)
ar

b + c− a
+

br

c + a− b
+

cr

a + b− c
≥ (a + b + c)r−1

3r−2
,

or with the triangle known notations, we have ,

(16)
ar

p− a
+

br

p− b
+

cr

p− c
≥ 2r−1

3r−2
· pr−1 .

Using the above inequality extensions, numberless other inequalities , such as those in : [1] , [2]
, [3] , [16] , [17] – can be proved or generalized .

New ones can also be obtained .
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[4] Beckenbach E.F. & Bellman R., Inequalities, Springer–Verlag, Berlin-Heidelberg-New York, 1961 .
[5] Bencze M., A New Proof of the Cauchy-Bunjakovski-Schwarz Inequality, OCTOGON Mathematical Magazine,

Vol. 10, No. 2, pp.841- 842, October, 2002
[6] Bencze M., Inequalities Connected to the Cauchy-Schwarz Inequality, OCTOGON Mathematical Magazine,

Vol. 15, No. 1, pp.58- 62, April, 2007 .
[7] Bergström H., A triangle - inequality for matrices, in: Den Elfte Skandinaviske Matematikerkongress,

CityTrondheim,1949, Johan Grundt Tanums Forlag , pp.115-118, CityplaceOslo,1952 .
[8] Bullen P. S.& Mitrinovi D. S. & Vasi P. M., Means and Their Inequalities, D. Reidel Publidshing Company,

Dordrecht/Boston, 1988 .
[9] Bullen P. S., Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dor-

drecht/Boston/London, 2003 .
[10] Dragomir S. S., A Survey on Cauchy-Buniakowsky-Schwartz Type Discrete Inequalities, january 10, Mel-

bourne, 2003 .
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