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Abstract

We create and develop an inequality problem of a Vietnamese mathe-
matical textbook.

There are a lot of exploitation of a problem such as finding out many solu-
tions, finding out similar and generalized problems of this one. These make us
interesting. We refer to these things through a nice inequality problem.

Problem 1 (Problem 9, page 110, Vietnamese Advanced Algebraic textbook 10th, (2016))
Prove that, if a ≥ 0 and b ≥ 0 then

a + b
2 × a2 + b2

2 ≤ a3 + b3

2 .

Solution 1

a + b
2 × a2 + b2

2 ≤ a3 + b3

2
⇔ (a + b)(a2 + b2) ≤ 2(a3 + b3)
⇔ a3 + ab2 + a2b + b3 ≤ 2a3 + 2b3

⇔ ab2 + a2b ≤ a3 + b3

⇔ a2(a − b) + b2(b − a) ≥ 0
⇔ (a − b)(a2 − b2) ≥ 0
⇔ (a − b)2(a + b) ≥ 0.

This thing holds true. Hence, we have

a + b
2 × a2 + b2

2 ≤ a3 + b3

2 .

Solution 2
We have the identity

a3 + b3 = (a + b)(a2 − ab + b2)

If a = b = c = 0 then a + b
2 × a2 + b2

2 ≤ a3 + b3

2 .
If a + b > 0 then

1



a + b
2 × a2 + b2

2 ≤ a3 + b3

2

⇔ a + b
2 × a2 + b2

2 ≤ (a + b)(a2 − ab + b2)
2

⇔ a2 + b2

2 ≤ a2 − ab + b2

⇔ a2 − 2ab + b2 ≥ 0
⇔ (a − b)2 ≥ 0.

Clearly, this holds true. We have a + b
2 × a2 + b2

2 ≤ a3 + b3

2 .
Solution 3
Without loss of generality, suppose that a ≤ b. Since a ≥ 0 and b ≥ 0 we
have a2 ≤ b2.
Applying Chebyshev ’s inequality to two increasing sequences a ≤ b and a2 ≤
b2, we have

(a + b)(a2 + b2) ≤ 2(a3 + b3).

Thus,

a + b
2 × a2 + b2

2 ≤ a3 + b3

2 .

From problem 1, we follow the problem

Problem 2 Prove that, if a > b then

a − b
2 × a2 + b2

2 ≤ a3 − b3

2 .

This problem also have many different solutions. Indeed

a − b
2 × a2 + b2

2 ≤ a3 − b3

2
⇔ (a − b)(a2 + b2) ≤ 2(a3 − b3)
⇔ a3 + ab2 − ba2 − b3 ≤ 2a3 − 2b3

⇔ a3 + a2b − b3 − b2a ≥ 0
⇔ a2(a + b) − b2(a + b) ≥ 0
⇔ (a + b)(a2 − b2) ≥ 0
⇔ (a + b)2(a − b) ≥ 0.

Since a ≥ b, we always have (a + b)2(a − b) ≥ 0. Thus,

a − b
2 × a2 + b2

2 ≤ a3 − b3

2 .

Solution 2
Applying the identity a3 − b3 = (a − b)(a2 + ab + b2), we have

If a = b then a − b
2 × a2 + b2

2 ≤ a3 − b3

2 .
If a > b then

a − b
2 × a2 + b2

2 ≤ a3 − b3

2

⇔ a − b
2 × a2 + b2

2 ≤ (a − b)(a2 + ab + b2)
2

⇔ a2 + b2 ≤ 2(a2 + ab + b2)
⇔ (a + b)2 ≥ 0.

2



This is obviously. Thus, a − b
2 × a2 + b2

2 ≤ a3 − b3

2 .
We generalize problem 1 to the following one

Problem 3 Prove that, if a ≥ 0 and b ≥ 0 and m, n ∈ N then

am + bm

2 × an + bn

2 ≤ am+n + bm+n

2 .

This problem is quite interesting. We have the following solution

am + bm

2 × an + bn

2 ≤ am+n + bm+n

2
⇔ (am + bm)(an + bn) ≤ 2(am+n + bm+n)
⇔ am+n + ambn + bman + bm+n ≤ 2am+n + 2bm+n

⇔ am+n − ambn + bm+n − bman ≥ 0
⇔ am(an − bn) + bm(bn − an) ≥ 0
⇔ (am − bm)(an − bn) ≥ 0.

Because the roles of a and b are the same, without loss of the generality suppose
that a ≥ b, we have am ≥ bm and an ≥ bn. Hence,

(am − bm)(an − bn) ≥ 0.

Thus,

am + bm

2 × an + bn

2 ≤ am+n + bm+n

2 .

The similar problem of problem 3 is as follows

Problem 4 Prove that, if a ≥ b ≥ 0 and m, n ∈ N then

am − bm

2 × an + bn

2 ≤ am+n − bm+n

2 .

Indeed, we have

am − bm

2 × an + bn

2 ≤ am+n − bm+n

2
⇔ (am − bm)(an + bn) ≤ 2(am+n − bm+n)
⇔ am+n + ambn − anbm − bm+n ≤ 2am+n − 2bm+n

⇔ am+n − ambn − bm+n + bman ≥ 0
⇔ an(am + bm) − bn(am + bm) ≥ 0
⇔ (an − bn)(am + bm) ≥ 0.

Because a ≥ b ≥ 0, (an − bn)(am + bm) ≥ 0. Thus,

am − bm

2 × an + bn

2 ≤ am+n − bm+n

2 .

We have some generalizations of two real numbers a and b. How about three
real numbers? We have the generalized problem as follows

Problem 5 Prove that, if a ≥ 0, b ≥ 0 and c ≥ 0 then

a + b + c
3 × a2 + b2 + c2

3 ≤ a3 + b3 + c3

3

Applying Chebyshev ’s inequality to two increasing sequences a ≤ b ≤ c and
a2 ≤ b2 ≤ c2, we have
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(a + b + c)(a2 + b2 + c2) ≤ 3(a3 + b3 + c3).

Thus, we always have

a + b + c
3 × a2 + b2 + c2

3 ≤ a3 + b3 + c3

3

We have some discoveries around a nice inequality problem. The different so-
lutions, the similar and generalized problems make us interesting. Do you have
any comments on this paper? Please share with us! The last are some exercises.

Problem 6 Prove that, if a ≥ 0, b ≥ 0, c ≥ 0 and m, n ∈ N then

am + bm + cm

3 × an + bn + cn

3 ≤ am+n + bm+n + cm+n

3 .

Problem 7 Prove that, if a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 then

a + b + c + d
4 × a2 + b2 + c2 + d2

4 ≤ a3 + b3 + c3 + d3

4
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