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Abstract

We use Torricelli point to prove inequalities.

There is an important point in geometry which is the Torricelli point. This
point is applied in solving a lot of real problems. In this paper, we refer to an
another aspect of the Torricelli point which is applying it to prove inequality
problems.

Problem 1 Given real numbers x, y, z. Prove that

x2 + y2 + z2 ≥ xy + yz + zx.

Denote by [Oα), [Oβ), [Oγ) three rays having the same origin O such that
the angle between two arbitrary rays equals 1200. Let A, B, C be points on
[Oα), [Oβ), [Oγ), respectively, such that

OA = |x| , OB = |y| , OC = |z| .

Figure 1: The method 1 of using Torricelli point

Then O is the Torricelli point of triangle ABC. We have(
|x|−→i + |y|−→j + |z|−→k

)2
≥ 0 ⇔ x2 + y2 + z2 − |xy| − |yz| − |zx| ≥ 0.
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Thus, x2 + y2 + z2 ≥ |xy| + |yz| + |zx| (1)
On the other hand, we also have

|xy| + | yz| + |zx| ≥ xy + yz + zx (2)

Since (1) and (2), we have

x2 + y2 + z2 ≥ xy + yz + zx.

We now use the Torricelli point to solve a different problem as follows:

Problem 2 (Murray S. Klamkin ’s inequality) Given positive real num-
bers x, y, z. Prove that√

x2 + xy + y2 +
√
y2 + yz + z2 +

√
z2 + zx + x2 ≥

3
√
xy + yz + zx.

This problem can be proved by using intermediate inequalities as follows:

√
x2 + xy + y2 ≥

√
3
2 (x + y),√

3(x + y + z) ≥ 3
√
xy + yz + zx.

Here is the proof of using the Torricelli point.

Figure 2: The method 2 of using Torricelli point

Denote by [Oα), [Oβ), [Oγ) three rays having the same origin O such that
the angle between two arbitrary rays equals 1200. Let A, B, C be points on
[Oα), [Oβ), [Oγ), respectively, such that

OA = x, OB = y, OC = z.

Then O is the Torricelli point of triangle ABC.
Let S be the area of triangle ABC.
Applying Cosine rule formula
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a2 = b2 + c2 − 2bc cosA;
b2 = c2 + a2 − 2ca cosB;
c2 = a2 + b2 − 2ab cosC

to triangles OAB,OBC,OCA, we obtain:

a = BC =
√
y2 + yz + z2; b = CA =

√
z2 + zx + x2; c = AB =√

x2 + xy + y2.

We have

√
3

4
(xy + yz + zx) =

1

2
(xy sin 1200 + yz sin 1200 + zx sin 1200) = S.

Thus, the required inequality is equivalent to:

a + b + c ≥ 3
√

4S√
3
⇔ p2 ≥ 3

√
3S (p = a + b + c

2 ) (3)

We have

p = (p − a) + (p − b) + (p − c) ≥ 3 3
√

(p − a)(p − b)(p − c)
⇔ p3 ≥ 27(p − a)(p − b)(p − c)

⇔ p4 ≥ 27S2 ⇔ p2 ≥ 3
√

3S.

Thus, (3) holds true. We have Q. E. D.
We continue to discover a different method of using the Torricelli point as fol-
lows:

Problem 3 Find the minimum of the following expression:

S =

√
(x − 1)

2
+ (y + 1)

2
+

√
(x + 1)

2
+ (y − 1)

2
+√

(x + 2)
2

+ (y + 2)
2
.

Letting A(−1; 1), B(−2; −2), C(1; −1) and M(x; y), we have:

MA =

√
(x + 1)

2
+ (y − 1)

2
; MB =

√
(x + 2)

2
+ (y + 2)

2
;

MC =

√
(x − 1)

2
+ (y + 1)

2
.

We also have AC =
√

8, BA = BC =
√

10. Applying Cosine rule formula

a2 = b2 + c2 − 2bc cosA;
b2 = c2 + a2 − 2ca cosB;
c2 = a2 + b2 − 2ab cosC,

we easily prove triangle ABC is acute and isosceles.
Problem 3 becomes to the following geometric problem
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Problem 4 Given an acute triangle ABC with three sides AC =
√

8, BC =
BA =

√
10. Find the point M lying on the plane containing the triangle ABC

such that the sum of MA + MB + MC is minimum.

According to the well-known result of geometry, point M is Torricelli point. Be-
cause triangle ABC is acute and isosceles, M lies on the median BO of triangle
ABC and ÂMB = B̂MC = ĈMA = 1200.

Figure 3: The method 3 of using Torricelli point

Then, triangle AMB is isosceles satisfying the relation ÂMO = 600.
We have:

AO
MO =

√
2

MO = tan 600 =
√

3 ⇒ MO =
√

2
3 .

Through point M draw lines MH,MK perpendicular to axes Ox,Oy that meet
Ox,Oy at H and K, respectively. we have

OH
MO = OH

√
3
2 = sin 450 = 1√

2
= OK

MO .

Thus, OH = OK = 1√
3
.

Back to problem 3, we see that the minimum value of S happens if x = y =
− 1√

3
.

Then, we have

S = 2

√(
−1√
3
− 1

)2
+
(
−1√
3

+ 1
)2

+

√
2
(
−1√
3

+ 2
)2

S = 2
√

1
3 + 1 + 2√

3
+ 1

3 + 1 − 2√
3

+
(

2 − 1√
3

)√
2

S = 4
√

2
3 + 2

√
2 −

√
2
3

S =
√

2(2 +
√

3).

Clearly, The solution is very nice.
We have some discoveries around the Torricelli point. The methods of solving
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three problems are different ones on using the Torricelli point to prove inequal-
ities. Do you have any comments on this paper? Please share with us!
The last are some exercises of using the Torricelli point.

Problem 5 Given positive real numbers x, y, z. Prove that

√
x2 + xy + y2 .

√
y2 + yz + z2 +

√
y2 + yz + z2 .

√
z2 + zx + x2

+
√
z2 + zx + x2 .

√
x2 + xy + y2 ≥ (x + y + z)2.

Problem 6 Given positive real numbers x, y, z such that x+ y + z = 1. Prove
that

√
x2 + xy + y2 .

√
y2 + yz + z2 +

√
y2 + yz + z2 .

√
z2 + zx + x2

+
√
z2 + zx + x2 .

√
x2 + xy + y2 ≥ 1.
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