The creation of a sequential limited problem

Nguyen Ngoc Giang

August 2016

Abstract

We create a sequential limited problem. The limited problem is very important in mathematics. That 's reason why we need more exploitation of this problem.

1 Introduction

There are a lot of different ways of creation mathematics such as finding out many solutions, finding out similar and generalized problems of a problem. These make us interesting. We refer to these things through a nice sequential limited problem of a Vietnamese textbook.

Problem 1 (Problem 58, p. 178, Vietnamese Advanced Algebraic and analytic textbook 11 ${ }^{\text {th }}$, (2016)) Find the limit of the sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{n(n+1)} .
$$

We will go to prove $u_{n}=1-\frac{1}{n+1}$. There are many solutions to prove this thing.

Solution 1

For each of positive integers, we have

$$
\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1} .
$$

From this, we have

$$
u_{n}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\ldots+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1} .
$$

Thus $\lim u_{n}=\lim \left(1-\frac{1}{n+1}\right)=1$.

Solution 2

We will prove that $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=1-\frac{1}{n+1}$ (1).
. With $n=1$, we have $\frac{1}{1 \cdot 2}=1-\frac{1}{2}$. Thus, (1) will hold true when $\mathrm{n}=1$.
. Suppose that (1) holds true from $n=1$ to $n=k$, it means,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{k(k+1)}=1-\frac{1}{k+1}
$$

we will prove that it will hold true when $n=k+1$, it means,

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}=1-\frac{1}{k+2} .
$$

Indeed, since the inductive hypothesis, we have

$$
\begin{aligned}
& \frac{1}{1 \cdot 2}+\frac{1}{2}+\ldots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}=1-\frac{1}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{(k+1)(k+2)-(k+2)+1}{(k+1)(k+2)}=\frac{(k+1)(k+2)-(k+1)}{(k+1)(k+2)}=\frac{k+1}{k+2}=1-\frac{1}{k+2} .
\end{aligned}
$$

Thus, (1) holds true for all of positive integer n's.
Thus, $\lim u_{n}=\lim \left(1-\frac{1}{n+1}\right)=1$.
we extend problem 1 to the problem as follows
Problem 2 Find the limit of the sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots+\frac{1}{n(n+1)(n+2)}
$$

This problem also has many solutions.

Solution 1

$$
\begin{aligned}
& \frac{1}{1 \cdot 2 \cdot 3}=\frac{1}{2}\left(\frac{1}{1 \cdot 2}-\frac{1}{2 \cdot 3}\right), \frac{1}{2 \cdot 3 \cdot 4}=\frac{1}{2}\left(\frac{1}{2 \cdot 3}-\frac{1}{3 \cdot 4}\right), \ldots \\
& \frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right)
\end{aligned}
$$

From this, we have

$$
\begin{aligned}
& u_{n}=\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{1 \cdot 2}-\frac{1}{(n+1)(n+2)}\right) \\
& \quad=\frac{1}{4}-\frac{1}{2(n+1)(n+2)} .
\end{aligned}
$$

Thus, $\lim u_{n}=\lim \left(\frac{1}{4}-\frac{1}{2(n+1)(n+2)}\right)=\frac{1}{4}$.

Solution 2

We will prove

$$
\begin{equation*}
\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{1}{4}-\frac{1}{2(n+1)(n+2)} \tag{2}
\end{equation*}
$$

. With $n=1$, we have

$$
\frac{1}{1 \cdot 2 \cdot 3}=\frac{1}{6}=\frac{1}{4}-\frac{1}{12}=\frac{1}{4}-\frac{1}{2 \cdot(1+1)(1+2)}
$$

Thus, (1) will hold true when $n=1$.
. Suppose that (1) holds true from $n=1$ to $n=k$, it means,

$$
\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots+\frac{1}{k(k+1)(k+2)}=\frac{1}{4}-\frac{1}{2(k+1)(k+2)}
$$

we will prove that it will hold true when $n=k+1$, it means,

$$
\begin{aligned}
& \frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots+\frac{1}{k(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)} \\
& =\frac{1}{4}-\frac{1}{2(k+2)(k+3)}
\end{aligned}
$$

Indeed, since the inductive hypothesis, we have

$$
\begin{aligned}
& \frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\ldots+\frac{1}{k(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)} \\
& =\frac{1}{4}-\frac{1}{2(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)} \\
& =\frac{(k+1)(k+2)(k+3)-2(k+3)+4}{4(k+1)(k+2)(k+3)}=\frac{(k+1)(k+2)(k+3)-2(k+1)}{4(k+1)(k+2)(k+3)} \\
& =\frac{1}{4}-\frac{1}{2(k+2)(k+3)}
\end{aligned}
$$

Thus, (2) will hold true when $n=1$.
Thus, $\lim u_{n}=\lim \left(\frac{1}{4}-\frac{1}{2(n+1)(n+2)}\right)=\frac{1}{4}$.
We now find out the similar problem of problem 1, we have
Problem 3 Find the limit of the sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+\ldots+n}
$$

We will go to prove $S=1+2+\ldots+n=\frac{n(n+1)}{2}$.
Indeed,

$$
\begin{aligned}
& S=1+\quad 2+\ldots+n \\
& S=n+(n-1)+\ldots+1
\end{aligned}
$$

Thus, $2 S=n(n+1)$. It means $1+2+\ldots+n=\frac{n(n+1)}{2}$.
Thus,

$$
u_{n}=\frac{2}{1.2}+\frac{2}{2.3}+\ldots+\frac{2}{n(n+1)} .
$$

By the problem 1, we have

$$
\lim u_{n}=\lim 2 \cdot\left(1-\frac{1}{n+1}\right)=2
$$

We continue to exploit problem 1 by remarking that $n^{2}<n(n+1)<(n+1)^{2}$ so $n<\sqrt{n(n+1)}<$ $n+1$. Hence $[\sqrt{n(n+1)}]=n$. It follows

$$
[\sqrt{1 \cdot 2}]+[\sqrt{2 \cdot 3}]+\ldots+[\sqrt{n \cdot(n+1)}]=1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

We combine algebraic method with arithmetical method to obtain the similar problem
Problem 4 Find the limit of the sequence $\left(u_{n}\right)$ such that

$$
\begin{gathered}
u_{n}=\frac{1}{[\sqrt{1 \cdot 2}]}+\frac{1}{[\sqrt{1 \cdot 2}]+[\sqrt{2 \cdot 3}]}+\frac{1}{[\sqrt{1 \cdot 2}]+[\sqrt{2 \cdot 3}]+[\sqrt{3 \cdot 4}]}+\ldots \\
\quad+\frac{\sqrt{1 \cdot 2}]+[\sqrt{2 \cdot 3}]+\ldots+[\sqrt{n \cdot(n+1)}]}{}
\end{gathered}
$$

Thus, $u_{n}=\frac{2}{1.2}+\frac{2}{2.3}+\ldots+\frac{2}{n(n+1)}$.
Since problem 1, we easily calculus $\lim u_{n}=\lim 2 \cdot\left(1-\frac{1}{n+1}\right)=2$.
We continue to notice that the sum equals to $\frac{n(n+1)}{2}$. We go to the following problem
Problem 5 Find the limit of the sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\frac{1}{\sqrt{1^{3}}}+\frac{1}{\sqrt{1^{3}+2^{3}}}+\frac{1}{\sqrt{1^{3}+2^{3}+3^{3}}}+\ldots+\frac{1}{\sqrt{1^{3}+2^{3}+\ldots+n^{3}}} .
$$

We need to prove

$$
\sqrt{1^{3}+2^{3}+3^{3}+\ldots+n^{3}}=\frac{n(n+1)}{2} .
$$

In order to prove this equality, we need to prove the equivalent formula

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

We first calculus $1^{2}+2^{2}+\ldots+n^{2}$.
Indeed, we have the identity $(n+1)^{3}=n^{3}+3 n^{2}+3 n+1$. It is equivalent to

$$
(n+1)^{3}-n^{3}=3 n^{2}+3 n+1
$$

From this, we have

$$
\begin{gathered}
2^{3}-1^{3}=3 \cdot 1^{2}+3 \cdot 1+1 \\
3^{3}-2^{3}=3 \cdot 2^{2}+3 \cdot 2+1 \\
\cdots \\
(n+1)^{3}-n^{3}=3 \cdot n^{2}+3 \cdot n+1
\end{gathered}
$$

Adding the results termwise, we have

$$
(n+1)^{3}-1=3 \cdot\left(1^{2}+2^{2}+3^{2}+\ldots+n^{2}\right)+3 \cdot \frac{n(n+1)}{2}+n
$$

The result is equivalent to the result

$$
2\left(n^{3}+3 n^{2}+3 n\right)=6 \cdot\left(1^{2}+2^{2}+\ldots+n^{2}\right)+3 \cdot\left(n^{2}+n\right)+2 n .
$$

Thus, $1^{2}+2^{2}+\ldots+n^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}=\frac{n(n+1)(2 n+1)}{6}$.
Next, we calculus the sum $1^{3}+2^{3}+3^{3}+\ldots+n^{3}$.
We have the identity

$$
(n+1)^{4}=n^{4}+4 n^{3}+6 n^{2}+4 n+1
$$

Thus,

$$
(n+1)^{4}-n^{4}=4 n^{3}+6 n^{2}+4 n+1
$$

This equality holds true for all of positive integer $n, n=1,2,3, \ldots$:

$$
\begin{gathered}
2^{4}-1^{4}=4 \cdot 1^{3}+6 \cdot 1^{2}+4 \cdot 1+1 \\
3^{4}-2^{4}=4 \cdot 2^{3}+6 \cdot 2^{2}+4 \cdot 2+1 \\
\cdots \\
(n+1)^{4}-n^{4}=4 \cdot n^{3}+6 \cdot n^{2}+4 \cdot n+1
\end{gathered}
$$

Thus,
$(n+1)^{4}-1=4 \cdot\left(1^{3}+2^{3}+\ldots+n^{3}\right)+6 \cdot\left(1^{2}+2^{2}+\ldots+n^{2}\right)+4 \cdot(1+2+\ldots+n)+n$.
As we known that $1+2+\ldots+n=\frac{n(n+1)}{2}$ and $1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$, we have

$$
\begin{aligned}
4 \cdot\left(1^{3}+2^{3}+\right. & \left.\ldots+n^{3}\right)=(n+1)^{4}-(n+1)-2 n(n+1)-n(n+1)(2 n+1) \\
& =(n+1)\left[n^{3}+3 n^{2}+3 n-2 n-n(2 n+1)\right] \\
& =(n+1) n\left[n^{2}+3 n+1-(2 n+1)\right] .
\end{aligned}
$$

Thus, $1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$. It means that $\sqrt{1^{3}+2^{3}+3^{3}+\ldots+n^{3}}=$ $\frac{n(n+1)}{2}$.
Thus,

$$
u_{n}=\frac{2}{1.2}+\frac{2}{2.3}+\ldots+\frac{2}{n(n+1)} .
$$

Since problem 1, we easily to calculus that $\lim u_{n}=\lim 2 \cdot\left(1-\frac{1}{n+1}\right)=2$.
A different problem is similar to problem 1 as follows
Problem 6 Find the limit of the sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{1+3}}+\ldots+\frac{1}{\sqrt{1}+\sqrt{1+3}+. . \sqrt{1+3+\ldots+(2 n-1)}}
$$

We go to prove that

$$
\sqrt{1}+\sqrt{1+3}+\sqrt{1+3+\ldots+(2 n-1)}=1+2+3+\ldots+n
$$

This equality is equivalent to $1+3+\ldots+(2 n-1)=n^{2}$.
Indeed, we have

$$
\begin{aligned}
& S=1+3+\ldots+(2 n-1) \\
& S=(2 n-1)+(2 n-3)+\ldots+1
\end{aligned}
$$

Thus, $2 S=2 n+2 n++2 n=2 n^{2}$. Thus $S=n^{2}$. Hence $1+3+\ldots+(2 n-1)=n^{2}$.
From this, $\sqrt{1+3+\ldots+(2 n-1)}=n$. It means that

$$
\sqrt{1}+\sqrt{1+3}+\sqrt{1+3+\ldots+(2 n-1)}=1+2+3+\ldots+n
$$

Thus,

$$
u_{n}=\frac{2}{1.2}+\frac{2}{2 \cdot 3}+\ldots+\frac{2}{n(n+1)}
$$

Since problem 1, we have $\lim u_{n}=\lim 2 .\left(1-\frac{1}{n+1}\right)=2$.
We have some exploitation of a problem. All of different solutions, similar problems and generalized problems make us interesting. Do you have any comments on this paper! Please share with us! The last are some exercises

Problem 7 Find the limit of the sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5}+\ldots+\frac{1}{n(n+1)(n+2)(n+3)}
$$

Problem 8 Find the limit of the sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}+\ldots+\frac{1}{n(n+1)(n+2)(n+3)(n+4)}
$$

References

[1] Doan Quynh, Nguyen Huy Doan, Nguyen Xuan Liem, Dang Hung Thang, Tran Van Vuong (2016), Advanced algebra $11^{\text {th }}$, The Vietnam Educational Publishing House.

Nguyen Ngoc Giang, Doctor student of the Vietnam Institute of Educational Sciences, 101 Tran Hung Dao, Hanoi, Vietnam
Email address: nguyenngocgiang.net@gmail.com.

