The creation of a sequential limited problem

Nguyen Ngoc Giang

August 2016

Abstract

We create a sequential limited problem. The limited problem is very important in mathematics. That 's reason why we need more exploitation of this problem.

1 Introduction

There are a lot of different ways of creation mathematics such as finding out many solutions, finding out similar and generalized problems of a problem. These make us interesting. We refer to these things through a nice sequential limited problem of a Vietnamese textbook.

Problem 1 (Problem 58, p. 178, Vietnamese Advanced Algebraic and analytic textbook 11th, (2016)) Find the limit of the sequence (u_n) such that

$$u_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)}.$$

We will go to prove $u_n = 1 - \frac{1}{n+1}$. There are many solutions to prove this thing. Solution 1

For each of positive integers, we have

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}.$$

From this, we have

$$u_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

Thus $\lim_{n \to \infty} u_n = \lim_{n \to \infty} (1 - \frac{1}{n+1}) = 1.$ Solution 2

We will prove that $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$ (1). . With n = 1, we have $\frac{1}{1 \cdot 2} = 1 - \frac{1}{2}$. Thus, (1) will hold true when n = 1.

. Suppose that (1) holds true from n = 1 to n = k, it means,

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{k(k+1)} = 1 - \frac{1}{k+1}$$

we will prove that it will hold true when n = k + 1, it means,

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = 1 - \frac{1}{k+2}.$$

Indeed, since the inductive hypothesis, we have

$$\frac{\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = 1 - \frac{1}{k+1} + \frac{1}{(k+1)(k+2)}}{\frac{(k+1)(k+2) - (k+1)}{(k+1)(k+2)}} = \frac{(k+1)(k+2) - (k+1)}{(k+1)(k+2)} = \frac{k+1}{k+2} = 1 - \frac{1}{k+2}.$$

Thus, (1) holds true for all of positive integer n's. Thus, $\lim u_n = \lim(1 - \frac{1}{n+1}) = 1$. we extend problem 1 to the problem as follows

Problem 2 Find the limit of the sequence (u_n) such that

$$u_n = \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n(n+1)(n+2)}$$

This problem also has many solutions. Solution 1

$$\frac{1}{1\cdot 2\cdot 3} = \frac{1}{2} \left(\frac{1}{1\cdot 2} - \frac{1}{2\cdot 3} \right), \quad \frac{1}{2\cdot 3\cdot 4} = \frac{1}{2} \left(\frac{1}{2\cdot 3} - \frac{1}{3\cdot 4} \right), \quad \dots,$$
$$\frac{1}{n(n+1)(n+2)} = \frac{1}{2} \left(\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right).$$

From this, we have

$$\begin{aligned} u_n &= \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{1}{2} \left(\frac{1}{1 \cdot 2} - \frac{1}{(n+1)(n+2)} \right) \\ &= \frac{1}{4} - \frac{1}{2(n+1)(n+2)}. \end{aligned}$$

Thus, $\lim u_n = \lim \left(\frac{1}{4} - \frac{1}{2(n+1)(n+2)}\right) = \frac{1}{4}$. Solution 2 We will prove

$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{1}{4} - \frac{1}{2(n+1)(n+2)}$$
(2)

. With n = 1, we have

$$\frac{1}{1 \cdot 2 \cdot 3} = \frac{1}{6} = \frac{1}{4} - \frac{1}{12} = \frac{1}{4} - \frac{1}{2 \cdot (1+1)(1+2)}$$

Thus, (1) will hold true when n = 1.

. Suppose that (1) holds true from n = 1 to n = k, it means,

$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{k(k+1)(k+2)} = \frac{1}{4} - \frac{1}{2(k+1)(k+2)},$$

we will prove that it will hold true when n = k + 1, it means,

$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{k(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)}$$
$$= \frac{1}{4} - \frac{1}{2(k+2)(k+3)}$$

Indeed, since the inductive hypothesis, we have

$$\begin{aligned} \frac{1}{1\cdot 2\cdot 3} &+ \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{k(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)} \\ &= \frac{1}{4} - \frac{1}{2(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)} \\ &= \frac{(k+1)(k+2)(k+3) - 2(k+3) + 4}{4(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3) - 2(k+1)}{4(k+1)(k+2)(k+3)} \\ &= \frac{1}{4} - \frac{4(k+1)(k+2)(k+3)}{2(k+2)(k+3)}. \end{aligned}$$

Thus, (2) will hold true when n = 1.

Thus, $\lim u_n = \lim \left(\frac{1}{4} - \frac{1}{2(n+1)(n+2)}\right) = \frac{1}{4}$. We now find out the similar problem of problem 1, we have

Problem 3 Find the limit of the sequence (u_n) such that

$$u_n = \frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+\dots+n}$$

We will go to prove $S = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$. Indeed,

Thus, 2S = n(n+1). It means $1 + 2 + \dots + n = \frac{n(n+1)}{2}$. Thus,

$$u_n = \frac{2}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \dots + \frac{2}{n(n+1)}.$$

By the problem 1, we have

$$\lim u_n = \lim 2 \cdot (1 - \frac{1}{n+1}) = 2$$

We continue to exploit problem 1 by remarking that $n^2 < n(n+1) < (n+1)^2$ so $n < \sqrt{n(n+1)} < n + 1$. Hence $[\sqrt{n(n+1)}] = n$. It follows

$$[\sqrt{1 \cdot 2}] + [\sqrt{2 \cdot 3}] + \dots + [\sqrt{n \cdot (n+1)}] = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

We combine algebraic method with arithmetical method to obtain the similar problem

Problem 4 Find the limit of the sequence (u_n) such that

$$u_n = \frac{1}{[\sqrt{1\cdot 2}]} + \frac{1}{[\sqrt{1\cdot 2}] + [\sqrt{2\cdot 3}]} + \frac{1}{[\sqrt{1\cdot 2}] + [\sqrt{2\cdot 3}] + [\sqrt{3\cdot 4}]} + \dots + \frac{1}{[\sqrt{1\cdot 2}] + [\sqrt{2\cdot 3}] + [\sqrt{2\cdot 3}] + \dots + [\sqrt{n\cdot (n+1)}]}.$$

Thus, $u_n = \frac{2}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \dots + \frac{2}{n(n+1)}$. Since problem 1, we easily calculus $\lim u_n = \lim 2 \cdot (1 - \frac{1}{n+1}) = 2$. We continue to notice that the sum equals to $\frac{n(n+1)}{2}$. We go to the following problem

Problem 5 Find the limit of the sequence (u_n) such that

$$u_n = \frac{1}{\sqrt{1^3}} + \frac{1}{\sqrt{1^3 + 2^3}} + \frac{1}{\sqrt{1^3 + 2^3 + 3^3}} + \dots + \frac{1}{\sqrt{1^3 + 2^3 + \dots + n^3}}$$

We need to prove

$$\sqrt{1^3 + 2^3 + 3^3 + \dots + n^3} = \frac{n(n+1)}{2}$$

In order to prove this equality, we need to prove the equivalent formula

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

We first calculus $1^2 + 2^2 + \dots + n^2$. Indeed, we have the identity $(n + 1)^3 = n^3 + 3n^2 + 3n + 1$. It is equivalent to

$$(n + 1)^3 - n^3 = 3n^2 + 3n + 1.$$

From this, we have

$$2^{3} - 1^{3} = 3 \cdot 1^{2} + 3 \cdot 1 + 1$$

$$3^{3} - 2^{3} = 3 \cdot 2^{2} + 3 \cdot 2 + 1$$

...

$$n + 1)^{3} - n^{3} = 3 \cdot n^{2} + 3 \cdot n + 1$$

Adding the results termwise, we have

$$(n + 1)^3 - 1 = 3 \cdot (1^2 + 2^2 + 3^2 + \dots + n^2) + 3 \cdot \frac{n(n+1)}{2} + n$$

The result is equivalent to the result

$$2(n^3 + 3n^2 + 3n) = 6 \cdot (1^2 + 2^2 + \dots + n^2) + 3 \cdot (n^2 + n) + 2n$$

Thus, $1^2 + 2^2 + \dots + n^2 = \frac{2n^3 + 3n^2 + n}{6} = \frac{n(n+1)(2n+1)}{6}$. Next, we calculus the sum $1^3 + 2^3 + 3^3 + \dots + n^3$. We have the identity

$$(n + 1)^4 = n^4 + 4n^3 + 6n^2 + 4n + 1.$$

Thus,

$$(n + 1)^4 - n^4 = 4n^3 + 6n^2 + 4n + 1$$

This equality holds true for all of positive integer n, n = 1, 2, 3, ...:

$$2^{4} - 1^{4} = 4 \cdot 1^{3} + 6 \cdot 1^{2} + 4 \cdot 1 + 1$$

$$3^{4} - 2^{4} = 4 \cdot 2^{3} + 6 \cdot 2^{2} + 4 \cdot 2 + 1$$

...

$$(n + 1)^{4} - n^{4} = 4 \cdot n^{3} + 6 \cdot n^{2} + 4 \cdot n + 1$$

Thus,

 $(n + 1)^4 - 1 = 4 \cdot (1^3 + 2^3 + \dots + n^3) + 6 \cdot (1^2 + 2^2 + \dots + n^2) + 4 \cdot (1 + 2 + \dots + n) + n.$ As we known that $1 + 2 + \dots + n = \frac{n(n+1)}{2}$ and $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$, we have

$$4 \cdot (1^{3} + 2^{3} + \dots + n^{3}) = (n + 1)^{4} - (n + 1) - 2n(n + 1) - n(n + 1)(2n + 1)$$

= $(n + 1)[n^{3} + 3n^{2} + 3n - 2n - n(2n + 1)]$
= $(n + 1)n[n^{2} + 3n + 1 - (2n + 1)].$

Thus, $1^3 + 2^3 + 3^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$. It means that $\sqrt{1^3 + 2^3 + 3^3 + \ldots + n^3} = \frac{n(n+1)}{2}$. Thus,

$$u_n = \frac{2}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \dots + \frac{2}{n(n+1)}.$$

Since problem 1, we easily to calculus that $\lim u_n = \lim 2 \cdot (1 - \frac{1}{n+1}) = 2$. A different problem is similar to problem 1 as follows

Problem 6 Find the limit of the sequence (u_n) such that

$$u_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1} + \sqrt{1+3}} + \dots + \frac{1}{\sqrt{1} + \sqrt{1+3} + \dots + (2n-1)}$$

We go to prove that

$$\sqrt{1} + \sqrt{1+3} + \sqrt{1+3+\ldots+(2n-1)} = 1 + 2 + 3 + \ldots + n.$$

This equality is equivalent to $1 + 3 + \dots + (2n - 1) = n^2$. Indeed, we have

$$S = 1 + 3 + \dots + (2n - 1)$$

$$S = (2n - 1) + (2n - 3) + \dots + 1$$

Thus, $2S = 2n + 2n + 2n = 2n^2$. Thus $S = n^2$. Hence $1 + 3 + \dots + (2n - 1) = n^2$. From this, $\sqrt{1 + 3 + \dots + (2n - 1)} = n$. It means that

$$\sqrt{1} + \sqrt{1+3} + \sqrt{1+3+\ldots+(2n-1)} = 1 + 2 + 3 + \ldots + n.$$

Thus,

$$u_n = \frac{2}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \dots + \frac{2}{n(n+1)}$$

Since problem 1, we have $\lim u_n = \lim 2 \cdot (1 - \frac{1}{n+1}) = 2$. We have some exploitation of a problem. All of different solutions, similar problems and generalized

We have some exploitation of a problem. All of different solutions, similar problems and generalized problems make us interesting. Do you have any comments on this paper! Please share with us! The last are some exercises

Problem 7 Find the limit of the sequence (u_n) such that

$$u_n = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1}{2 \cdot 3 \cdot 4 \cdot 5} + \dots + \frac{1}{n(n+1)(n+2)(n+3)}.$$

Problem 8 Find the limit of the sequence (u_n) such that

$$u_n = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} + \frac{1}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \dots + \frac{1}{n(n+1)(n+2)(n+3)(n+4)}.$$

References

 Doan Quynh, Nguyen Huy Doan, Nguyen Xuan Liem, Dang Hung Thang, Tran Van Vuong (2016), Advanced algebra 11th, The Vietnam Educational Publishing House.

Nguyen Ngoc Giang, Doctor student of the Vietnam Institute of Educational Sciences, 101 Tran Hung Dao, Hanoi, Vietnam

Email address: nguyenngocgiang.net@gmail.com.