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Abstract

We create a sequential limited problem. The limited problem is very important in mathematics.
That ’s reason why we need more exploitation of this problem.

1 Introduction

There are a lot of different ways of creation mathematics such as finding out many solutions, finding
out similar and generalized problems of a problem. These make us interesting. We refer to these things
through a nice sequential limited problem of a Vietnamese textbook.

Problem 1 (Problem 58, p. 178, Vietnamese Advanced Algebraic and analytic textbook 11th, (2016))
Find the limit of the sequence (un) such that

un = 1
1 . 2 + 1

2 . 3 + ... + 1
n(n + 1) .

We will go to prove un = 1 − 1
n + 1 . There are many solutions to prove this thing.

Solution 1
For each of positive integers, we have

1
k(k + 1) = 1

k −
1

k + 1 .

From this, we have

un = 1
1 . 2 + 1

2 . 3 + ... + 1
n(n + 1) = 1 − 1

2 + 1
2 −

1
3 + ... + 1

n −
1

n + 1 = 1 − 1
n + 1 .

Thus limun = lim(1 − 1
n + 1 ) = 1.

Solution 2
We will prove that 1

1 . 2 + 1
2 . 3 + ... + 1

n(n + 1) = 1 − 1
n + 1 (1).

. With n = 1, we have 1
1 . 2 = 1 − 1

2 . Thus, (1) will hold true when n = 1.
. Suppose that (1) holds true from n = 1 to n = k, it means,

1
1 . 2 + 1

2 . 3 + ... + 1
k(k + 1) = 1 − 1

k + 1

we will prove that it will hold true when n = k + 1, it means,

1
1 . 2 + 1

2 . 3 + ... + 1
k(k + 1) + 1

(k + 1)(k + 2) = 1 − 1
k + 2 .

Indeed, since the inductive hypothesis, we have

1
1 . 2 + 1

2 . 3 + ... + 1
k(k + 1) + 1

(k + 1)(k + 2) = 1 − 1
k + 1 + 1

(k + 1)(k + 2)

= (k + 1)(k + 2) − (k + 2) + 1
(k + 1)(k + 2) = (k + 1)(k + 2) − (k + 1)

(k + 1)(k + 2) = k + 1
k + 2 = 1 − 1

k + 2 .

Thus, (1) holds true for all of positive integer n’s.
Thus, limun = lim(1 − 1

n + 1 ) = 1.
we extend problem 1 to the problem as follows

Problem 2 Find the limit of the sequence (un) such that

un = 1
1 . 2 . 3 + 1

2 . 3 . 4 + ... + 1
n(n + 1)(n + 2) .

This problem also has many solutions.
Solution 1

1
1 . 2 . 3 = 1

2

(
1

1 . 2 −
1

2 . 3

)
, 1

2 . 3 . 4 = 1
2

(
1

2 . 3 −
1

3 . 4

)
, ...,

1
n(n + 1)(n + 2) = 1

2

(
1

n(n + 1) −
1

(n + 1)(n + 2)

)
.
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From this, we have

un = 1
1 . 2 . 3 + 1

2 . 3 . 4 + ... + 1
n(n + 1)(n + 2) = 1

2

(
1

1 . 2 −
1

(n + 1)(n + 2)

)
= 1

4 −
1

2(n + 1)(n + 2) .

Thus, limun = lim
(

1
4 −

1
2(n + 1)(n + 2)

)
= 1

4 .

Solution 2
We will prove

1
1 . 2 . 3 + 1

2 . 3 . 4 + ... + 1
n(n + 1)(n + 2) = 1

4 −
1

2(n + 1)(n + 2) (2)

. With n = 1, we have

1
1 . 2 . 3 = 1

6 = 1
4 −

1
12 = 1

4 −
1

2.(1 + 1)(1 + 2) .

Thus, (1) will hold true when n = 1.
. Suppose that (1) holds true from n = 1 to n = k, it means,

1
1 . 2 . 3 + 1

2 . 3 . 4 + ... + 1
k(k + 1)(k + 2) = 1

4 −
1

2(k + 1)(k + 2) ,

we will prove that it will hold true when n = k + 1, it means,

1
1 . 2 . 3 + 1

2 . 3 . 4 + ... + 1
k(k + 1)(k + 2) + 1

(k + 1)(k + 2)(k + 3)

= 1
4 −

1
2(k + 2)(k + 3)

Indeed, since the inductive hypothesis, we have

1
1 . 2 . 3 + 1

2 . 3 . 4 + ... + 1
k(k + 1)(k + 2) + 1

(k + 1)(k + 2)(k + 3)

= 1
4 −

1
2(k + 1)(k + 2) + 1

(k + 1)(k + 2)(k + 3)

= (k + 1)(k + 2)(k + 3) − 2(k + 3) + 4
4(k + 1)(k + 2)(k + 3) = (k + 1)(k + 2)(k + 3) − 2(k + 1)

4(k + 1)(k + 2)(k + 3)

= 1
4 −

1
2(k + 2)(k + 3) .

Thus, (2) will hold true when n = 1.

Thus, limun = lim
(

1
4 −

1
2(n + 1)(n + 2)

)
= 1

4 .

We now find out the similar problem of problem 1, we have

Problem 3 Find the limit of the sequence (un) such that

un = 1
1 + 1

1 + 2 + 1
1 + 2 + 3 + ... + 1

1 + 2 + ... + n .

We will go to prove S = 1 + 2 + ... + n = n(n + 1)
2 .

Indeed,

S = 1 + 2 + ... + n ;
S = n + (n − 1) + ... + 1.

Thus, 2S = n(n + 1). It means 1 + 2 + ... + n = n(n + 1)
2 .

Thus,

un = 2
1 . 2 + 2

2 . 3 + ... + 2
n(n + 1) .

By the problem 1, we have

limun = lim 2 . (1 − 1
n + 1 ) = 2.

We continue to exploit problem 1 by remarking that n2 < n(n + 1) < (n + 1)2 so n <
√
n(n + 1) <

n + 1. Hence [
√
n(n + 1)] = n. It follows

[
√

1 . 2] + [
√

2 . 3] + ... + [
√
n . (n + 1)] = 1 + 2 + 3 + ... + n = n(n + 1)

2 .

We combine algebraic method with arithmetical method to obtain the similar problem

Problem 4 Find the limit of the sequence (un) such that

un = 1
[
√
1 . 2]

+ 1
[
√
1 . 2] + [

√
2 . 3]

+ 1
[
√
1 . 2] + [

√
2 . 3] + [

√
3 . 4]

+ ...

+ 1

[
√
1 . 2] + [

√
2 . 3] + ... + [

√
n . (n + 1)]

.
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Thus, un = 2
1 . 2 + 2

2 . 3 + ... + 2
n(n + 1) .

Since problem 1, we easily calculus limun = lim 2 . (1 − 1
n + 1 ) = 2.

We continue to notice that the sum equals to n(n + 1)
2 . We go to the following problem

Problem 5 Find the limit of the sequence (un) such that

un = 1√
13

+ 1√
13 + 23

+ 1√
13 + 23 + 33

+ ... + 1√
13 + 23 + ... + n3

.

We need to prove

√
13 + 23 + 33 + ... + n3 = n(n + 1)

2 .

In order to prove this equality, we need to prove the equivalent formula

13 + 23 + 33 + ... + n3 =
(

n(n + 1)
2

)2
.

We first calculus 12 + 22 + ... + n2.
Indeed, we have the identity (n + 1)3 = n3 + 3n2 + 3n + 1. It is equivalent to

(n + 1)3 − n3 = 3n2 + 3n + 1.

From this, we have

23 − 13 = 3 . 12 + 3 . 1 + 1
33 − 23 = 3 . 22 + 3 . 2 + 1
...

(n + 1)3 − n3 = 3 . n2 + 3 . n + 1

Adding the results termwise, we have

(n + 1)3 − 1 = 3 . (12 + 22 + 32 + ... + n2) + 3 . n(n + 1)
2 + n.

The result is equivalent to the result

2(n3 + 3n2 + 3n) = 6 . (12 + 22 + ... + n2) + 3 . (n2 + n) + 2n.

Thus, 12 + 22 + ... + n2 = 2n3 + 3n2 + n
6 = n(n + 1)(2n + 1)

6 .
Next, we calculus the sum 13 + 23 + 33 + ... + n3.
We have the identity

(n + 1)4 = n4 + 4n3 + 6n2 + 4n + 1.

Thus,

(n + 1)4 − n4 = 4n3 + 6n2 + 4n + 1.

This equality holds true for all of positive integer n, n = 1, 2, 3, ... :

24 − 14 = 4 . 13 + 6 . 12 + 4 . 1 + 1
34 − 24 = 4 . 23 + 6 . 22 + 4 . 2 + 1
...

(n + 1)4 − n4 = 4 . n3 + 6 . n2 + 4 . n + 1

Thus,

(n + 1)4 − 1 = 4 . (13 + 23 + ... + n3) + 6 . (12 + 22 + ... + n2) + 4 . (1 + 2 + ... + n) + n.

As we known that 1 + 2 + ... + n = n(n + 1)
2 and 12 + 22 + ... + n2 = n(n + 1)(2n + 1)

6 , we have

4 . (13 + 23 + ... + n3) = (n + 1)4 − (n + 1) − 2n(n + 1) − n(n + 1)(2n + 1)
= (n + 1)[n3 + 3n2 + 3n − 2n − n(2n + 1)]
= (n + 1)n[n2 + 3n + 1 − (2n + 1)].

Thus, 13 + 23 + 33 + ... + n3 =
(

n(n + 1)
2

)2
. It means that

√
13 + 23 + 33 + ... + n3 =

n(n + 1)
2 .

Thus,
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un = 2
1 . 2 + 2

2 . 3 + ... + 2
n(n + 1) .

Since problem 1, we easily to calculus that limun = lim 2 . (1 − 1
n + 1 ) = 2.

A different problem is similar to problem 1 as follows

Problem 6 Find the limit of the sequence (un) such that

un = 1√
1

+ 1√
1 +
√
1 + 3

+ ... + 1√
1 +
√
1 + 3 + ..

√
1 + 3 + ... + (2n − 1)

We go to prove that
√

1 +
√

1 + 3 +
√

1 + 3 + ... + (2n − 1) = 1 + 2 + 3 + ... + n.

This equality is equivalent to 1 + 3 + ... + (2n − 1) = n2.
Indeed, we have

S = 1 + 3 + ... + (2n − 1)
S = (2n − 1) + (2n − 3) + ... + 1

Thus, 2S = 2n + 2n + + 2n = 2n2. Thus S = n2. Hence 1 + 3 + ... + (2n − 1) = n2.
From this,

√
1 + 3 + ... + (2n − 1) = n. It means that

√
1 +

√
1 + 3 +

√
1 + 3 + ... + (2n − 1) = 1 + 2 + 3 + ... + n.

Thus,

un = 2
1 . 2 + 2

2 . 3 + ... + 2
n(n + 1) .

Since problem 1, we have limun = lim 2 . (1 − 1
n + 1 ) = 2.

We have some exploitation of a problem. All of different solutions, similar problems and generalized
problems make us interesting. Do you have any comments on this paper! Please share with us!
The last are some exercises

Problem 7 Find the limit of the sequence (un) such that

un = 1
1 . 2 . 3 . 4 + 1

2 . 3 . 4 . 5 + ... + 1
n(n + 1)(n + 2)(n + 3) .

Problem 8 Find the limit of the sequence (un) such that

un = 1
1 . 2 . 3 . 4 . 5 + 1

2 . 3 . 4 . 5 . 6 + ... + 1
n(n + 1)(n + 2)(n + 3)(n + 4) .
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