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When proving inequality [1], I found a lemma for product of functions. Maybe this
lemma had been discovered and proved by someone before I found it. So, I will call
it by the name: GPF Inequality.

1. Inequalities between f(x1)f(x2) . . . f(xn) and f(x1x2 . . . xn), f( n
√
x1x2 . . . xn)

n

Theorem 1: Let x1, x2, . . . xn be nonnegative real numbers and a positive constant
k. Given a function f(x) defined on [0,∞) satisfied:
f(x) ≥ 0; f ′(x) ≥ 0; f ′′(x)f(x) ≥ f ′(x)2 and kf(x)n ≥ f(xn) with all x ∈ [0,∞)
Then we will have the following true inequality:
kf(x1)f(x2) . . . f(xn) ≥ f(x1x2 . . . xn)

Proof. The inequality is equivalent to:

ln k + ln f(x1) + ln f(x2) + . . . + ln f(xn) ≥ ln f(x1x2 . . . xn)

Define g(x) = ln f(x). These conditions: f ′(x)
f(x) ≥ 0, f ′′(x)f(x) ≥ f ′(x)2 give us:

g′(x) ≥ 0 and g′′(x) ≥ 0.
Rewrite the inequality as:

ln k + g(x1) + g(x2) + . . . + g(xn) ≥ g(x1x2 . . . xn)

Since g′(x) ≥ 0, g′′(x) ≥ 0, applying Jensen’s Inequality and AM-GM, we have:

g(xn
1 ) + g(xn

2 ) + . . . + g(xn
n) ≥ ng

(xn
1 + xn

2 + . . . + xn
n

n

)
≥ ng(x1x2 . . . xn)

We need to prove this:

n ln k + ng(x1) + ng(x2) + . . . + ng(xn) ≥ g(xn
1 ) + g(xn

2 ) + . . . + g(xn
n)

We will prove this one: ln k + ng(xn) ≥ g(xn
n) with all n.

(1) ↔ eln k+ng(xn) ≥ eg(x
n
n) ↔ en ln f(x1) · eln k ≥ eln f(xn

n) or kf(xn)n ≥ f(xn
n)

But it is true because we have 1 from the condition. �

Theorem 2: Let x1, x2, . . . xn ∈ [m1,m2] be real numbers and a positive constant
k. Given a function f(x) defined on [m1,m2] satisfied:

f(x) ≥ 0; f ′(x)
f(x) ≤ 0; kf(m2)n ≥ f(mn

1 ). Then we will have the following true

inequality:
kf(x1)f(x2) . . . f(xn) ≥ f(x1x2 . . . xn).

Proof. The inequality is equivalent to:

(2) ln k + ln f(x1) + ln f(x2) + . . . + ln f(xn) ≥ ln f(x1x2 . . . + xn)

Define g(x) = ln f(x). The condition f ′(x)
f(x) ≤ 0 give us g′(x) ≤ 0.

Hence, we have:

(3) g(x1) + g(x2) + . . . + g(xn) ≥ ng(m2); g(x1x2 . . . + xn) ≤ g(mn
1 )

1
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Rewrite 2 as:

ln k + g(x1) + g(x2) + . . . + g(n) ≥ g(x1x2 . . . xn).

Since 2 and 3 we have to prove: ln k + ng(m2) ≥ g(mn
1 )

↔ eln k+ng(m2) ≥ eg(m
n
1 )

↔ kf(m2)n ≥ f(mn
1 ) which is the condition.

�

Theorem 3: Let f(x) be a function defined on I such that:
f(x) ≥ 0; f ′(x) ≥ 0; f ′′(x) ≥ 0. Given x1, x2, . . . , xn ∈ I. Then we will have the
following true inequality:
f(x1)f(x2) . . . f(xn) ≥ f( n

√
x1x2 . . . xn)n

Proof. Rewrite the inequality as:

g(x1) + g(x2) + . . . + g(xn) ≥ g( n
√
x1x2 . . . xn)n with g(x) = ln f(x)

Applying Jensen’s Inequality and AM-GM, we obtain:

g(x1) + g(x2) + . . . + g(xn) ≥ ng
(x1 + x2 + . . . + xn

n

)
≥ ng( n

√
x1x2 . . . xn)

�

Theorem 4: Let f(x) be defined on I such that: f(x) ≥ 0; f ′(x) ≤ 0; f ′′(x) ≤ 0.
Given x1, x2, . . . , xn ∈ I.
Then we will have the following true inequality: f(x1)f(x2) . . . f(xn) ≤ f( n

√
x1x2 . . . xn)n

Proof. Rewrite the inequality as:

g(x1) + g(x2) + g(x2) + . . . + g(xn) ≤ g( n
√

x1x2 . . . xn)n with g(x) = ln f(x).

Applying Jensen’s Inequality and AM-GM, we obtain:

g(x1) + g(x2) + . . . + g(xn) ≤ ng
(x1 + x2 + . . . + xn

n

)
≤ ng( n

√
x1x2 . . . xn)

You can see that Theorem 4, Theorem 5 are the similar with Theorem 1. �

2. Inequalities between f(x1)f(x2) . . . f(xn) and

f
(
(x1+x2+...+xn

n
)n
)
, f
(

x1+x2+...+xn

n

)
Theorem 5: Let f(x) be a function defined on I such that: f ′′(x) · f(x) ≥ f ′(x)2.
Given x1, x2, . . . xn ∈ I. Then we will have the following true inequality:

f(x1)f(x2) . . . f(xn) ≥ f
(

x1+x2+...+xn

n

)n
Proof. Define g(x) = ln f(x). Rewrite the inequality as:

g(x1) + g(x2) + . . . + g(xn) ≥ ng
(

x1+x2+...+xn

n ) which is true since g′′(x) ≥ 0 and

Jensen’s Inequality.
The inequality we need to prove is rewritten as:

↔ ln f(x1) + ln f(x2) + . . . + ln f(xn) ≥ n ln f
(x1 + x2 + . . . + xn

n

)
.

↔ eln f(x1)+ln f(x2)+...+ln f(xn) ≥ en ln f(
x1+x2+...+xn

n ).

↔ f(x1)f(x2) . . . f(xn) ≥ f
(x1 + x2 + . . . + xn

n

)n
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�

Theorem 6: Let f(x) be a function defined on I such that:
f(x) ≥ 0; f ′(x) ≥ 0; f ′′(x) · f(x) ≥ f ′(x)2.k is a positive real numbers satisfied
kf(xn)n ≥ f(xn). Given x1, x2, . . . , xn ∈ I. Then we will have the following true
inequality:

kf(x1)f(x2) . . . f(xn) ≥ f
(

(x1+x2+...+xn

n )n
)

Proof. Define g(x) = ln f(x). These conditions: f ′(x)
f(x) ≥ 0; f ′′(x)f(x) ≥ f ′(x)2 give

us: g′(x) ≥ 0 and g′′(x) ≥ 0. Applying Jensen’s Inequality and AM-GM, we have:

ln k+g(xn
1 )+g(xn

2 )+. . .+g(xn
n) ≥ ng

(xn
1 + xn

2 + . . . + xn
n

n

)
≥ ng

(
(
x1 + x2 + . . . + xn

n
)n
)

We need to prove this:

n ln k + ng(x1) + ng(x1) + ng(x2) + . . . + ng(xn) ≥ g(xn
1 ) + g(xn

2 ) + . . . + g(xn
n)

We will prove this one: ln k + ng(xn) ≥ g(xn
n) with all n.

(6) ↔ eln k+ng(xn) ≥ eg(x
n
n) ↔ en ln f(x1)·eln k

≥ eln f(xn
n) or kf(xn)n ≥ f(xn

n)

But it is true because we have 1 form the condition.
This proof is similar with the proof of Theorem 1. �

3. Inequalities between f(x1)f(x2) . . . f(xn) and

f
(

xn
1 +xn

2 +...+xn
n

n

)
, f
(

n

√
xn

1 +xn
2 +...+xn

n

n

)n
Theorem 7: Let f(x) be a function defined on I such that: f(x) ≥ 0;
f ′(x) ≤ 0; f ′′(x) · f(x) ≥ f ′(x)2. Given x1, x2, . . . , xn ∈ I. Then we will have the
following true inequality:

Proof. The inequality is equivalent to:

ln f(x1) + ln f(x2) + . . . + ln f(x1) ≥ n ln f
(

n

√
xn
1 + xn

2 + . . . + xn
n

n

)
Define g(x) = ln f(x). Those conditions give us: g′(x) ≤ 0 and g′′(x) ≥ 0.
Rewrite the inequality as:

g(x1) + g(x2) + . . . + g(xn) ≥ ng
(

n

√
xn
1 + xn

2 + . . . + xn
n

n

)
Applying Jensen’s Inequality and AM-GM, we have:

g(x1)+g(x2)+. . .+g(xn) ≥ ng
(x1 + x2 + . . . + xn

n

)
≥ ng

(
n

√
xn
1 + xn

2 + . . . + xn
n

n

)
.

�
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Theorem 8: Let f(x) be a function defined on I such that: f(x) ≥ 0;
f ′′(x) · f(x) ≥ f ′(x)2.k is a positie real numbers satisfied kf(x)n ≥ f(xn).
Given x1, x2, . . . , xn ∈ I. Then we will have the following true inequality:

kf(x1)f(x2) . . . f(xn) ≥ f
(

xn
1 +xn

2 +...+xn
n

n

)
Proof. The inequality is equivalent to:

ln k + ln f(x1) + ln f(x2) + . . . + ln f(xn) ≥ ln f
(xn

1 + xn
2 + . . . + xn

n

n

)
Define g(x) = ln f(x). The conditions give us: g′′(x) ≥ 0.
Rewrite the inequality as:

ln k + g(x1) + g(x2) + . . . + g(xn) ≥ g
(xn

1 + xn
2 + . . . + xn

n

n

)
Applying Jensen’s Inequality and AM-GM, we have:

g(xn
1 ) + g(xn

2 ) + . . . + g(xn
n) ≥ ng

(xn
1 + xn

2 + . . . + xn
n

n

)
.

We need to prove this:

n ln k + ng(x1) + ng(x2) + . . . + ng(xn) ≥ g(xn
1 ) + g(xn

2 ) + . . . + g(xn
n)

We will prove this one: ln k + ng(xn) ≥ g(xn
n)

Or eln k+ng(xn) ≥ eg(x
n
n) or en ln f(x1) · eln k ≥ eln f(xn

n) or kf(xn)n ≥ f(xn
n). �

4. Corollaries

Corollary 1: Let x1, x2, . . . , xn be a positive real numbers such that:
x1x2 . . . xn ≤ 1 and a positive constant k. A function f(x) satisfied:
f ′(x)
f(x) ≥ 0; f ′′(x)f(x) ≥ f ′(x)2; f(x) ≥ 0 and kf(x)n−1 ≥ 1. Then we will have the

following true inequality: kf(x1)f(x2) . . . f(xn) ≥ f(x1x2 . . . xn)

Proof. The inequality is equivalent to:

ln k + ln f(x1) + ln f(x2) + . . . + ln f(xn) ≥ ln f(x1x2 . . . xn).

Define g(x) = ln f(x). These conditions: f ′(x)
f(x) ≥ 0; f ′′(x)f(x) ≥ f ′(x)2 gives us:

g′(x) ≥ 0 and g′′(x) ≥ 0.
Rewrite the inequality as:

ln k + g(x1) + g(x2) + . . . + g(xn) ≥ g(x1x2 . . . xn).

Applying Jensen’s Inequality and AM-GM, since g′(x) ≥ 0 and g′′(x) ≥ 0, we have:

g(x1) + g(x2) + . . . + g(xn) ≥ ng
(x1 + x2 + . . . + xn

n

)
≥ ng( n

√
x1x2 . . . xn)

Since x1x2 . . . xn ≤ 1, we have n
√
x1x2 . . . xn ≥ x1x2 . . . xn. Hence, we have:

g( n
√
x1x2 . . . xn) ≥ (x1x2 . . . xn).

We have to prove this:

n ln k + ng(x2) + ng(x2) + . . . + ng(xn) ≥ g(x1) + g(x2) + . . . + g(xn)
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Or:

n ln k + (n− 1)g(x1) + (n− 1)ng(x2) + . . . + (n− 1)g(xn) ≥ 0.

We will prove this:

ln k + (n− 1)g(xn) ≥ 0 with all n.

↔ eln k+(n−1)g(xn) ≥ 1 ↔ k · f(xn)n−1 ≥ 1 which is true since we considered the
condition.

GPF Inequalities isn’t the best way to prove a product of functions Inequality. It
must be used with another methods or another inequalities. Because it’s only true
in some range of variables. I will show you! We will start from this condition:
f ′′(x)f(x) ≥ f ′(x)2 �

Corollary 2: Let f(x) be a polynomial: f(x) = a1x
n + a2x

n−1 + . . . + anx + an+1

such that a1 > 0, x ≥ 0 and n ≥ 0.
We will have f ′′(x) · f(x) isn’t always bigger than f ′(x)2 with all x ≥ 0

Proof. We have f ′(x)2 = (na1x
n−1+(n−1)a2x

n−2+ . . .+an)2 = n2a21x
2n−2+G(x)

with G(x) is a polynomial after squaring f ′(x).

f ′′(x)·f(x) =
(
n(n−1)a1x

n−2+(n−1)(n−2)a2x
n−3+. . .+2an−1

)
(a1x

n+a2x
n−1+. . .+anx)

with H(x) is a polynomial after expanding f ′′(x) · f(x).
We always have n2 ≥ n(n− 1). So we obtain:

S = f ′′(x) · f(x)− f ′(x)2 = −a21x2n−2 + H(x)−G(x)

Then we can conclude that S isn’t always bigger than zero. �

That is the biggest problem of GPF Inequality. GPF can only help us on some
interval I that satisfied the condition. But GPF is the good way to find the best
estimation for inequality. Next part of this article is the applications of GPF.
(Note: There are also solutions of following example using uvw method or Cauchy
- Schwarz, etc).

5. Applications

As I said, GPF Inequality isn’t always the best way to prove a Inequality with
product of functions. When using this theorem, you have to consider some cases.
In my opinion, GPF Inequality can be only a lemma. It isn’t strong enough to be
a theorem. But I will show you some applications of this inequality. I hope you
enjoy these examples!

1/(Michael Rozenberg)
Let a, b and c be non-negative numbers. Prove that:(

1 +
2√
3

)
(a2 − a + 1)(b2 − b + 1)(c2 − c + 1) ≥ a2b2c2 − abc + 1
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Solution: This inequality can be found in [1]. This is a very hard inequality. The
original one was a problem in USA TST 2006. I will show you the solution for this

case: a, b, c ∈
[
1
2 ; 1+

√
3

2

]
Define f(x) = x2−x+ 1. Since a, b, c ∈

[
1
2 ; 1+

√
3

2

]
, we have x ≥ 1

2 and f ′(x) ≥ 0.

The inequality is equivalent to:
kf(a)f(b)f(c) ≥ f(abc) with k = 1 + 2√

3
.

We have: f ′(x)
f(x) = 2x−1

x2−x+1 ; f ′′(x)f(x) ≥ f ′(x)2.

(1)
(

1 +
2√
3

)
(x2 − x + 1)3 − (x6 − x3 + 1) ≥ 0

1 can be checked by computer.
So we have: kf(x)3g ≥ f(x3).
Applying GPF1 Inequality, we obtain: kf(a)f(b)f(c) ≥ f(abc). �

2/ (Unknown origin)
Let a, b, c be a real numbers. Determine the positive constant k such that the
following inequality is true:

k(a2 + 1)(b2 + 1)(c2 + 1) ≥ a2b2c2 + 1

Solution. For a, b, c ∈ [0, 1]. We have:
f ′(x) = 2x; f ′′(x) = 2. Hence, f ′′(x) · f(x) ≥ f ′(x)2.
k · f(x)3 ≥ f(x3) if and only if (k − 1)x6 + 3kx4 + 3kx2 + (k − 1) ≥ 0.
Applying the first GPF Inequality and we will have k = 1 is the best constant. �

3/ (own)

Let a, b, c be positive real numbers such that: a, b, c ∈
[
1
3 ; 2

3

]
. Prove that:

(a3− 2a2 +a+ 1)(b3− 2b2 + b+ 1)(c3−2c2 + c+ 1) ≤ (abc−2
3
√
a2b2c2 +

3
√
abc+ 1)3

Solution: We have: f(x) = x3 − 2x2 + x + 1 ≥ 0.
f ′(x) = 3x2 − 4x + 1 = (3x− 1)(x− 1) ≤ 0
f ′′(x) = 6x− 4 ≤ 0.

Applying the fourth GPF Inequality, we have: f(a)f(b)f(x) ≤ f( 3
√
abc)3 �

4/ (Holder’s Inequality)
Let x1;x2; . . . ;xn be nonnegative real numbers. Prove that:

(1 + x3
1)(1 + x3

2) . . . (1 + x3
n) ≥

(
1 + n

√
(x1x2 . . . xn)3

)n
Solution: This isn’t a good solution. GPF can only prove Holder’s inequality for
only one cases!!! For Holder’s inequality, GPF is the weakest. This example will
show you the weakness of GPF.
We have the function f(x) = 1 + x3.

f ′(x) = 3x2 ≥ 0; f ′′(x) = 6x ≥ 0; f ′′(x) · f(x)− f ′(x)2 = 6x− 3x4 = 3x(2− x3)

Hence, we have 2 cases:
If x3 ≤ 2.
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We will have f ′′(x) · f(x) ≥ f ′(x)2.
Applying GPF3 Inequality, we will have:

f(x1)f(x2) . . . f(xn) ≥ f( n
√
x1x2 . . . xn).

Actually, the inequality is true for all positive real numbers! As I said, GPF in-
equality isn’t worked in some cases! Maybe you want to use another method! In
addition, GPF inequality is a good choice for a product of functions inequality with
ranges of variables. When the inequality doesn’t have any condition, it’s hard to
find the range of variables that GPF inequality is worked. �

6. Problems for practicing

1. Let a, b, c be positive real numbers such that: a, b, c ≥ 3
√

3. Prove that:

(a3 − 3)(b3 − 3)(c3 − 3) ≤ (abc− 3)3

2. Let a, b, c ∈
[
1
e ; 1
]

be positive real numbers, k = e
3
3 (1−

1
e2

). Prove that:

ka2bbcc ≥ (abc)abc

3. Let a, b, c ∈
[
m; 1

e

]
be positive real numbers with m 6= 1 be the root of the

equation: x = e
1−x2

3x2−1 . Let k = e3m(m2−1) lnm. Prove that:

kaabbcc ≥ (abc)abc

4. Let a, b, c ≥ 1. Prove that:

3

4

(
1 +

1

a

)a(
1 +

1

b

)b(
1 +

1

c

)c
≥
(

1 +
1

abc

)abc
References

[1] http://www.artofproblemsolving.com/community/q1h1270987p6905229.

[2] http://www.artofproblemsolving.com/community/c6h148824.

[3] http://www.artofproblemsolving.com/wiki/index.php?title=Jensen27s Inequality.
[4] http://en.wikipedia.org/wiki/Jensen27s inequality.

[5] http://www.artofproblemsolving.com/community/c6t243f6h1310196 easy or hard right or
wrong.

[6] http://artofproblemsolving.com/community/c6t243f6h1313342 nice one.
[7] http://www.artofproblemsolving.com/community/c6t243f6h1313269 hard one.
[8] http://www.artofproblemsolving.com/community/c6t243f6h1313272 nice one.
[9] AoPS topic about USA TST 2006 http://www.artofproblemsolving.com/community/

c6h148826p841252.
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