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JP.059. Let a, b, c be the side lengths of a triangle ∆ABC with
inradius r. Prove that:
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Proof.

The triplets
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=
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where the last inequality is equivalent with

r2
[
p2 + (4R+ r)2

]
≤ p2R2 ⇔ p2(R2 − r2) ≥ r2(4R+ r)2,

which follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2. It remains to prove
that

(16Rr − 5r2)(R2 − r2) ≥ r2(4R+ r)2 ⇔
⇔ 16R3 − 21R2r − 24Rr2 + 4r3 ≥ 0⇔ (R− 2r)(16R2 + 11Rr − 2r2) ≥ 0,

obviously from Euler’s inequality R ≥ 2r.
We used the known inequality in triangle

∑
1
a2 ≤ 1

4r2 .
�

Remark
The inequality can be strengthen.

1) Prove that in any triangle the following inequality holds:
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≤ 1

3
· 1

4r2
· p

2 + (4R+ r)2

4Rp2
=

p2 + (4R+ r)2

48p2R
≤ 9R

16r2p2
,

where the last inequality is equivalent with p2 + (4R + r)2 ≤ 27R2, which follows
from Gerretsen’s inequality p2 ≤ 4R2 + 4Rr + 3r2.
It remains to prove that

4R2 + 4Rr + 3r2 + (4R+ r)2 ≤ 27R2 ⇔

⇔ 7R2 − 12Rr − 4r2 ≥ 0⇔ (R− 2r)(7R+ 2r) ≥ 0,

obviously form Euler’s inequality R ≥ 2r.
We used the known inequality in triangle

∑
1
a2 ≤ 1

4r2 .
�

Remark
Inequality 1) is stronger then inequality JP.059.
Inequality 1) can itself be strengthened.

2) Prove that in any triangle the following inequality holds:
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Proof.

The triplets
(
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B
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)
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where the last inequality follows from the known inequality in triangle
∑

1
a ≤

p
3Rr

and
∑

1
a2 tan

A
2 ≤

3
3pr , true from: �

2a) Prove that in any triangle ABC the following inequality holds:
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Proof.

The triplets
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where the last inequality is equivalent with p2 + (4R + r)2 ≤ 6R · p
√
3, which

follows from Gerretsen’s inequality p2 ≤ 4R2 + 4Rr + 3r2 and Doucet’s inequality
4R+ r ≥ p

√
3.

It remains to prove that

4R2 + 4Rr + 3r2 + (4R+ r)2 ≤ 6R · (4R+ r)⇔
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⇔ 2R2 − 3Rr − 2r2 ≥ 0⇔ (R− 2r)(2R+ r) ≥ 0,

obviously from Euler’s inequality R ≥ 2r.
We used the known inequality in triangle

∑
1
a ≤

p
3Rr . �

2b) Prove that in any triangle ABC the following inequalities holds
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Proof.

We use 2a) and Mitrinovic’s inequalities 3r
√
3 ≤ p ≤ 3R

√
3

2 .
�

Remark.
Inequality 2) is stronger then inequality 1), which in turn is stronger then JP.059.

3) Prove that in any triangle the following inequality holds:
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Proof.

See 2) and Mitrinovic’s inequalities 27r2 ≤ p2 ≤ 27R2

4 .

�

To each of the above inequalities the equality holds if and only if the triangle is
equilateral.
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