SOLUTION TO PROBLEM JP. 059 FROM ROMANIAN MATHEMATICAL MAGAZINE, NUMBER 4, SPRING 2017

MARIN CHIRCIU

JP.059. Let a, b, c be the side lengths of a triangle $\Delta A B C$ with inradius r. Prove that:

$$
\frac{1}{a^{3}} \tan \frac{A}{2}+\frac{1}{b^{3}} \tan \frac{B}{2}+\frac{1}{c^{3}} \tan \frac{C}{2} \leq \frac{R}{48 r^{4}}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Proof.
The triplets $\left(\frac{1}{a^{2}}, \frac{1}{b^{2}}, \frac{1}{c^{2}}\right)$ and $\left(\frac{1}{a} \tan \frac{A}{2}, \frac{1}{b} \tan \frac{B}{2}, \frac{1}{c} \tan \frac{C}{2}\right)$ are reversed ordered. With Cebyshev's inequality we obtain

$$
\begin{gathered}
\sum \frac{1}{a^{3}} \tan \frac{A}{2}=\sum\left(\frac{1}{a^{2}} \cdot \frac{1}{a} \tan \frac{A}{2}\right) \leq \frac{1}{3} \cdot \sum \frac{1}{a^{2}} \cdot \sum \frac{1}{a} \tan \frac{A}{2} \leq \frac{1}{3} \cdot \frac{1}{4 r^{2}} \cdot \frac{p^{2}+(4 R+r)^{2}}{4 R p^{2}}= \\
=\frac{p^{2}+(4 R+r)^{2}}{48 p^{2} R} \leq \frac{R}{48 r^{4}}
\end{gathered}
$$

where the last inequality is equivalent with

$$
r^{2}\left[p^{2}+(4 R+r)^{2}\right] \leq p^{2} R^{2} \Leftrightarrow p^{2}\left(R^{2}-r^{2}\right) \geq r^{2}(4 R+r)^{2}
$$

which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that

$$
\begin{gathered}
\left(16 R r-5 r^{2}\right)\left(R^{2}-r^{2}\right) \geq r^{2}(4 R+r)^{2} \Leftrightarrow \\
\Leftrightarrow 16 R^{3}-21 R^{2} r-24 R r^{2}+4 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(16 R^{2}+11 R r-2 r^{2}\right) \geq 0
\end{gathered}
$$

obviously from Euler's inequality $R \geq 2 r$.
We used the known inequality in triangle $\sum \frac{1}{a^{2}} \leq \frac{1}{4 r^{2}}$.

Remark
The inequality can be strengthen.

1) Prove that in any triangle the following inequality holds:

$$
\frac{1}{a^{3}} \tan \frac{A}{2}+\frac{1}{b^{3}} \tan \frac{B}{2}+\frac{1}{c^{3}} \tan \frac{C}{2} \leq \frac{9 R}{16 S^{2}}
$$

Proof.
The triplets $\left(\frac{1}{a^{2}}, \frac{1}{b^{2}}, \frac{1}{c^{2}}\right)$ and $\left(\frac{1}{a} \tan \frac{A}{2}, \frac{1}{b} \tan \frac{B}{2}, \frac{1}{c} \tan \frac{C}{2}\right)$ are reversed ordered. With Cebyshev's inequality we obtain

$$
\sum \frac{1}{a^{3}} \tan \frac{A}{2}=\sum\left(\frac{1}{a^{2}} \cdot \frac{1}{a} \tan \frac{A}{2}\right) \leq \frac{1}{3} \cdot \sum \frac{1}{a^{2}} \cdot \sum \frac{1}{a} \tan \frac{A}{2} \leq
$$

$$
\leq \frac{1}{3} \cdot \frac{1}{4 r^{2}} \cdot \frac{p^{2}+(4 R+r)^{2}}{4 R p^{2}}=\frac{p^{2}+(4 R+r)^{2}}{48 p^{2} R} \leq \frac{9 R}{16 r^{2} p^{2}}
$$

where the last inequality is equivalent with $p^{2}+(4 R+r)^{2} \leq 27 R^{2}$, which follows from Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.
It remains to prove that

$$
\begin{gathered}
4 R^{2}+4 R r+3 r^{2}+(4 R+r)^{2} \leq 27 R^{2} \Leftrightarrow \\
\Leftrightarrow 7 R^{2}-12 R r-4 r^{2} \geq 0 \Leftrightarrow(R-2 r)(7 R+2 r) \geq 0
\end{gathered}
$$

obviously form Euler's inequality $R \geq 2 r$.
We used the known inequality in triangle $\sum \frac{1}{a^{2}} \leq \frac{1}{4 r^{2}}$.

Remark
Inequality 1) is stronger then inequality JP.059.
Inequality 1) can itself be strengthened.
2) Prove that in any triangle the following inequality holds:

$$
\frac{1}{a^{3}} \tan \frac{A}{2}+\frac{1}{b^{3}} \tan \frac{B}{2}+\frac{1}{c^{3}} \tan \frac{C}{2} \leq \frac{1}{12 R r^{2}}
$$

Marin Chirciu - Romania
Proof.
The triplets $\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$ and $\left(\frac{1}{a^{2}} \tan \frac{A}{2}, \frac{1}{b^{2}} \tan \frac{B}{2}, \frac{1}{c^{2}} \tan \frac{C}{2}\right)$ are reversed ordered. With Cebyshev's inequality we obtain

$$
\sum \frac{1}{a^{3}} \tan \frac{A}{2}=\sum\left(\frac{1}{a} \cdot \frac{1}{a^{2}} \tan \frac{A}{2}\right) \leq \frac{1}{3} \cdot \sum \frac{1}{a^{2}} \tan \frac{A}{2} \leq \frac{1}{3} \cdot \frac{p}{3 R r} \cdot \frac{3}{4 p r}=\frac{1}{12 R r^{2}}
$$

where the last inequality follows from the known inequality in triangle $\sum \frac{1}{a} \leq \frac{p}{3 R r}$ and $\sum \frac{1}{a^{2}} \tan \frac{A}{2} \leq \frac{3}{3 p r}$, true from:

2a) Prove that in any triangle $A B C$ the following inequality holds:

$$
\frac{1}{a^{2}} \tan \frac{A}{2}+\frac{1}{b^{2}} \tan \frac{B}{2}+\frac{1}{c^{2}} \tan \frac{C}{2} \leq \frac{\sqrt{3}}{6 R r}
$$

Proof.
The triplets $\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$ and $\left(\frac{1}{a} \tan \frac{A}{2}, \frac{1}{b} \tan \frac{B}{2}, \frac{1}{c} \tan \frac{C}{2}\right)$ are reversed ordered. With Cebyshev's inequality we obtain

$$
\begin{gathered}
\sum \frac{1}{a^{2}} \tan \frac{A}{2}=\sum\left(\frac{1}{a} \cdot \frac{1}{a} \tan \frac{A}{2}\right) \leq \frac{1}{3} \cdot \sum \frac{1}{a} \cdot \sum \frac{1}{a} \tan \frac{A}{2} \leq \\
\leq \frac{1}{3} \cdot \frac{p}{3 R r} \cdot \frac{p^{2}+(4 R+r)^{2}}{4 R p^{2}}=\frac{p^{2}+(4 R+r)^{2}}{36 p R^{2} r} \leq \frac{\sqrt{3}}{6 R r},
\end{gathered}
$$

where the last inequality is equivalent with $p^{2}+(4 R+r)^{2} \leq 6 R \cdot p \sqrt{3}$, which follows from Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ and Doucet's inequality $4 R+r \geq p \sqrt{3}$.
It remains to prove that

$$
4 R^{2}+4 R r+3 r^{2}+(4 R+r)^{2} \leq 6 R \cdot(4 R+r) \Leftrightarrow
$$

$$
\Leftrightarrow 2 R^{2}-3 R r-2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(2 R+r) \geq 0
$$

obviously from Euler's inequality $R \geq 2 r$.
We used the known inequality in triangle $\sum \frac{1}{a} \leq \frac{p}{3 R r}$.
2b) Prove that in any triangle $A B C$ the following inequalities holds

$$
\frac{1}{a^{2}} \tan \frac{A}{2}+\frac{1}{b^{2}} \tan \frac{B}{2}+\frac{1}{c^{2}} \tan \frac{C}{2} \leq \frac{\sqrt{3}}{6 R r} \leq \frac{3}{4 p r} \leq \frac{\sqrt{3}}{12 r^{2}}
$$

Proof.
We use 2a) and Mitrinovic's inequalities $3 r \sqrt{3} \leq p \leq \frac{3 R \sqrt{3}}{2}$.

Remark.
Inequality 2) is stronger then inequality 1), which in turn is stronger then JP.059.
3) Prove that in any triangle the following inequality holds:

$$
\frac{1}{a^{3}} \tan \frac{A}{2}+\frac{1}{b^{3}} \tan \frac{B}{2}+\frac{1}{c^{3}} \tan \frac{C}{2} \leq \frac{1}{12 R r^{2}} \leq \frac{9 R}{16 S^{2}} \leq \frac{R}{48 r^{2}}
$$

Proof
See 2) and Mitrinovic's inequalities $27 r^{2} \leq p^{2} \leq \frac{27 R^{2}}{4}$.

To each of the above inequalities the equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

