Math Adventures orn Ctuthokrnot Math 51-100

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor DANIEL SITARU

 www.ssmrmh.ro
MATH ADVENTURES
 ON
 CutTheKnotMath

51-100
By Alexander Bogomolny and Daniel Sitaru

http://www.cut-the-knot.org http://www.ssmrmh.ro

Proposed by

Daniel Sitaru - Romania
Leonard Giugiuc - Romania Miguel Ochoa Sanchez - Peru
Lorian Nelu Saceanu - Romania

Solutions by

Alexander Bogomolny - USA
Nassim Nicholas Taleb - USA
Gary Davis - USA
Daniel Sitaru - Romania
Leonard Giugiuc - Romania
Soumava Chakraborty - Kolkata - India, Lam Phan - Vietnam
Kevin Soto Palacios - Huarmey - Peru, Pham Quy - Vietnam
Soumitra Mandal - Chandar Nagore - India, Rory Tarnow - Mordi
Chris Kyriazis - Greece, Ngyuyen Minh Triet - Vietnam Anas Adlany - Morocco, Dung Thanh Tung - Vietnam Emil Stoyanov, Gregoire Nicollier, Imad Zak - Lebanon Abdallah El Farissi - Algerie, Hector Manuel Garduno Castaneda Kunihiko Chikaya - Tokyo - Japan, Pradyumna Agashe Myagmarsuren Yadamsuren - Mongolia, Seyran Ibrahimov - Azerbaidian
Saptak Bhattacharya - India, Amit Itagi, Athina Kalampoka - Greece Mihalcea Andrei Ştefan - Romania, Şerban George Florin-Romania Ravi Prakash - New Delhi - India

51. An Inequality from RMM with a Generic $\mathbf{5}$

Prove that, for $a, b, c>0$,

$$
\sqrt[3]{(2 a+5)(2 b+5)(2 c+5)} \geq \frac{6 a b c}{a b+b c+c a}+5
$$

Proposed by Daniel Sitaru - Romania
Proof:
By Hölder's inequality,

$$
\begin{aligned}
2 \sqrt[3]{a b c}+5= & \sqrt[3]{8 a b c}+\sqrt[3]{125} \leq \sqrt[3]{2 a+5} \sqrt[5]{2 b+5} \sqrt[5]{2 c+5} \\
& =\sqrt[3]{(2 a+5)(2 b+5)(2 c+5)}
\end{aligned}
$$

On the other hand, $2 \sqrt[3]{a b c} \geq \frac{6 a b c}{a b+b c+c a}$. Indeed, by the $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{G M}$ inequality, the latter is equivalent to

$$
2 \sqrt[3]{a b c}(a b+b c+c a) \geq 2 \sqrt[3]{a b c}\left(3 \sqrt[3]{(a b c)^{2}}\right)=6 a b c
$$

Acknowledgment (by Alexander Bogomolny - USA)

Daniel Sitaru has kindly posted the above problem from the Romanian
Mathematical Magazine, with two practically identical proofs - one by Kevin Soto Palacios (Peru), the other Pham Quy (Vietnam), at the CutTheKnotMath page.

> 52. An Inequality from RMM with Powers of 2
> Prove that, for $x, y, z>0$
> $2^{x}+2^{y}+2^{z}+2^{x+y+z}>\sqrt[x+y]{16^{x y}}+\sqrt[y+z]{16^{y z}}+\sqrt[z+x]{16^{z x}}+1$
> Proposed by Daniel Sitaru - Romanian

Proof (by Ravi Prakash - India):

Note that

$$
\begin{gathered}
2^{x}+2^{y}+2^{z}+2^{x+y+z}-2^{x+y}-2^{y+z}-2^{z+x}-1 \\
=\left(2^{x}-1\right)\left(2^{y}-1\right)\left(2^{z}-1\right)>0
\end{gathered}
$$

implying that

$$
2^{x}+2^{y}+2^{z}+2^{x+y+z}>2^{x+y}+2^{y+z}+2^{z+x}+1
$$

But

$$
2^{x+y}=4^{\frac{x+y}{2}} \geq 4^{\frac{2 x y}{x+y}}=\sqrt[x+y]{16^{x y}}
$$

The required inequality follows from the above by cycling through the pairs (y, z) and (z, x) then adding.

Acknowledgment (by Alexander Bogomolny - USA)
Daniel Sitaru has kindly posted the above problem from the Romanian Mathematical Magazine, with a proof by Ravi Prakash (India), at the CutTheKnotMath page.
53. An Inequality in Acute Triangle, Courtesy of Ceva's Theorema Let, in $\triangle A B C, a, b, c, A A^{\prime}, B B^{\prime}, C C^{\prime}$ be the altitudes; $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}$ the angle bisectors, and $A A^{\prime \prime \prime}, B B^{\prime \prime \prime}, C C^{\prime \prime}$ the symmedians.
Then

$$
A B^{\prime} \cdot B C^{\prime} \cdot C A^{\prime}+A B^{\prime \prime} \cdot B C^{\prime \prime} \cdot C A^{\prime \prime}+A B^{\prime \prime \prime} \cdot B C^{\prime \prime \prime} \cdot C A^{\prime \prime \prime} \leq \frac{3}{8} a b c
$$

Proposed by Daniel Sitaru - Romania
Proof (by Daniel Sitaru - Romania):

Lemma:

Assume that in an acute $\triangle A B C, A A_{0}, B B_{0}, C C_{0}$ are concurrent cevians. Then

$$
8 \cdot B A_{0} \cdot C B_{0} \cdot A C_{0} \leq a b c
$$

For convenience, denote $B A_{0}=x_{1}, A_{0} C=y_{1}, C B_{0}=x_{2}, B_{0} A=y_{2}, A C_{0}=x_{3}$, $C_{0} B=y_{3}$. Then by Ceva's theorem,

$$
\frac{x_{1}}{y_{1}} \cdot \frac{x_{2}}{y_{2}} \cdot \frac{x_{3}}{y_{3}}=1 .
$$

We have to prove that $8 x_{1} x_{2} x_{3} \leq\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right)$. In other words, we need to show that
or,

$$
\frac{x_{1}+y_{1}}{x_{1}} \cdot \frac{x_{2}+y_{2}}{x_{2}} \cdot \frac{x_{3}+y_{3}}{x_{3}} \geq 8
$$

$$
\left(1+\frac{y_{1}}{x_{1}}\right) \cdot\left(1+\frac{y_{2}}{x_{2}}\right) \cdot\left(1+\frac{y_{3}}{x_{3}}\right) \geq 8
$$

Multiplying out, this is reduced to

$$
1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}+\frac{y_{3}}{x_{3}}+\frac{y_{1} y_{2}}{x_{1} x_{2}}+\frac{y_{2} y_{3}}{x_{2} x_{3}}+\frac{y_{3} y_{1}}{x_{3} x_{1}}+\frac{y_{1} y_{2} y_{3}}{x_{1} x_{2} x_{3}} \geq 8
$$

Making multiple uses of Ceva's theorem, this is equivalent to

$$
1+\frac{y_{1}}{x_{1}}+\frac{y_{2}}{x_{2}}+\frac{y_{3}}{x_{3}}+\frac{x_{3}}{y_{3}}+\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}+1 \geq 8
$$

and, in turn, to

$$
\left(\frac{y_{1}}{x_{1}}+\frac{x_{1}}{y_{1}}\right)+\left(\frac{y_{2}}{x_{2}}+\frac{x_{2}}{y_{2}}\right)+\left(\frac{y_{3}}{x_{3}}+\frac{x_{3}}{y_{3}}\right) \geq 6
$$

which is true by the $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{G M}$ inequality applied thrice.
Since the triples of angle bisectors, altitudes, and symmedians are all concurrent cevians, we may apply the lemma to each triple:

$$
\begin{gathered}
8 \cdot A B^{\prime} \cdot B C^{\prime} \cdot C A^{\prime} \leq a b c \\
8 \cdot A B^{\prime \prime} \cdot B C^{\prime \prime} \cdot C A^{\prime \prime} \leq a b c \\
8 \cdot A B^{\prime \prime \prime} \cdot B C^{\prime \prime \prime} \cdot C A^{\prime \prime \prime} \leq a b c
\end{gathered}
$$

Adding up give the desired result.

Aknowledgment (by Alexander Bogomolny - USA)

The inequality with the solution has been posted by Daniel Sitaru at the
CutTheKnotMath page.

54. Power and Fractions Inequality

Prove that, for $a, b, c>0$,

$$
\sum_{\text {cycl }} \frac{a^{3} b^{3}}{c^{5}} \geq \sum_{\text {cycl }} \frac{a b}{c}
$$

Proposed by Daniel Sitaru - Romania
Proof 1 (by Ravi Prakash - India):
By the $\boldsymbol{A} \boldsymbol{M}$ - $\boldsymbol{G M}$ inequality,

$$
\frac{a^{3} c^{3}}{b^{5}}+\frac{b a}{c}+\frac{c b}{a} \geq\left(\frac{a^{3} c^{3}}{b^{5}} \cdot \frac{b a}{c} \cdot \frac{c b}{a}\right)^{\frac{1}{3}}=\frac{3 a c}{b} .
$$

Similarly, $\frac{b^{3} a^{3}}{c^{5}}+\frac{a c}{b}+\frac{c b}{a} \geq \frac{3 b a}{c}$ and $\frac{c^{3} b^{3}}{a^{5}}+\frac{a c}{b}+\frac{b a}{c} \geq \frac{3 c b}{a}$. Adding up,

$$
\sum_{c y c l} \frac{a^{3} c^{3}}{b^{5}}+2 \sum_{c y c l} \frac{b a}{c} \geq 3 \sum_{c y c l} \frac{b a}{c}
$$

which directly proves the required inequality.

Proof 2 (by Lâm Phan - Vietnam).

By the $\boldsymbol{A} \boldsymbol{M}$ - $\boldsymbol{G M}$ inequality,

$$
\begin{gathered}
2 \sum_{c y c l} \frac{a^{3} c^{3}}{b^{5}}=\left(\frac{a^{3} c^{3}}{b^{5}}+\frac{b^{3} a^{3}}{c^{5}}\right)+\left(\frac{b^{3} a^{3}}{c^{5}}+\frac{c^{3} b^{3}}{a^{5}}\right)+\left(\frac{c^{3} b^{3}}{a^{5}}+\frac{a^{3} c^{3}}{b^{5}}\right) \\
\geq 2 \frac{a^{3}}{b c}+2 \frac{b^{3}}{c a}+2 \frac{c^{3}}{a b}= \\
=\left(\frac{a^{3}}{b c}+\frac{b^{3}}{c a}\right)+\left(\frac{b^{3}}{c a}+\frac{c^{3}}{a b}\right)+\left(\frac{c^{3}}{a b}+\frac{a^{3}}{b c}\right) \geq 2 \frac{a b}{c}+2 \frac{b c}{a}+2 \frac{c a}{2}=2 \sum_{c y c l} \frac{a c}{b}
\end{gathered}
$$

Proof 3 (by Soumava Chakraborty - India).

The given inequality is equivalent to

$$
\sum_{c y c l} a^{8} b^{8} \geq a^{4} b^{4} c^{4} \sum_{c y c l} a^{2} b^{2}
$$

Let $a^{2} b^{2}=x, b^{2} c^{2}=y, c^{2} a^{2}=z, x, y, z>0$. We need to prove that

$$
\begin{equation*}
x^{4}+y^{4}+z^{4} \geq x y z(x+y+z) \tag{1}
\end{equation*}
$$

Schur's inequality for $t=2$ gives
(a) $x^{4}+y^{4}+z^{4}+x y z(x+y+z) \geq x y\left(x^{2}+y^{2}\right)+y z\left(y^{2}+z^{2}\right)+z x\left(z^{2}+x^{2}\right)$

Now, $x^{2}+y^{2} \geq 2 x y$, etc., so that

$$
\begin{equation*}
x y\left(x^{2}+y^{2}\right)+y z\left(y^{2}+z^{2}\right)+z x\left(z^{2}+x^{2}\right) \geq 2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \tag{2}
\end{equation*}
$$

Further,

$$
\begin{aligned}
& 2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)-2 x y z(x+y+z)= \\
& =(x y-y z)^{2}+(y z-z x)^{2}+(z x-x y)^{2} \geq 0
\end{aligned}
$$

implying

$$
\begin{equation*}
2\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \geq 2 x y z(x+y+z) \tag{3}
\end{equation*}
$$

(2) and (3) give
(b)

$$
x y\left(x^{2}+y^{2}\right)+y z\left(y^{2}+z^{2}\right)+z x\left(z^{2}+x^{2}\right) \geq 2 x y z(x+y+z)
$$

(a) and (b) add up to the required (1)

Proof 4 (by Rory Tarnow - Mordi).

$$
\begin{aligned}
& 4 \sum_{c y c l} \frac{a^{3} b^{3}}{c^{5}}=\sum_{c y c l}\left(2 \frac{a^{3} b^{3}}{c^{5}}+\frac{b^{3} c^{3}}{a^{5}}+\frac{c^{3} a^{3}}{b^{5}}\right) \geq \\
\geq & \sum_{c y c l} 4\left(\frac{a^{3} b^{3}}{c^{5}} \cdot \frac{a^{3} b^{3}}{c^{5}} \cdot \frac{b^{3} c^{3}}{a^{5}} \cdot \frac{c^{3} a^{3}}{b^{5}}\right)^{\frac{1}{4}}=4 \sum_{c y c l} \frac{a b}{c} .
\end{aligned}
$$

Proof 5 (by Alexander Bogomolny - USA).
As in Proof 3, the required inequality is reduced to

$$
\sum_{c y c l} a^{8} b^{8} \geq a^{4} b^{4} c^{4} \sum_{c y c l} a^{2} b^{2}
$$

By Chebysev's inequality,

$$
3 \sum_{c y c l} a^{8} b^{8} \geq \sum_{c y c l} a^{6} b^{6} \sum_{c y c l} a^{2} b^{2} .
$$

But, by the $\boldsymbol{A} \boldsymbol{M}$ - $\boldsymbol{G M}$ inequality,

$$
\sum_{c y c l} a^{6} b^{6} \geq 3\left(a^{12} b^{12} c^{12}\right)^{\frac{1}{3}}=3 a^{4} b^{4} c^{4}
$$

Acknowledgment (by Alexander Bogomolny - USA):
Daniel Sitaru has kindly posted the above problem at the CutTheKnotMath page, along with several solutions. The problems comes from his book Math Accent.
55. An Inequality for the Cevians through Spieker Point via Brocard Angle
Let $A A^{\prime}, B B^{\prime}, C C^{\prime}$ be the cevians through the Spieker point in $\triangle A B C$.

Then
$a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} \geq 2 s\left(A C^{\prime} \cdot B A^{\prime} \cdot C B^{\prime}+A B^{\prime} \cdot B C^{\prime} \cdot C A^{\prime}\right)$
where s is the semiperimeter of $\triangle A B C$ and a, b, c are its side lengths.
Proposed by Daniel Sitaru - Romania

Proof (by Alexander Bogomolny - USA).
The Spieker point can be characterised in several ways. One of these is a point where the three triangle's cleavers intersect. Thus, in particular,

$$
A B+B A^{\prime}=A C+C A^{\prime}=\frac{a+b+c}{2}=s
$$

i.e., $B A^{\prime}=\frac{a+b-c}{2}$ and $A^{\prime} C=\frac{a-b+c}{2}$.

Similarly we can calculate the remaining four segments. To sum up,

$$
\begin{aligned}
& A^{\prime} B=B^{\prime} A=\frac{a+b-c}{2} \\
& A^{\prime} C=C^{\prime} A=\frac{a-b+c}{2} \\
& B^{\prime} C=C^{\prime} B=\frac{-a+b+c}{2}
\end{aligned}
$$

There is a well known expression involving the Brocard angle ω of $\triangle A B C$:

$$
\sin ^{2} \omega=\frac{(-a+b+c)(a-b+c)(a+b-c)(a+b+c)}{4\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)}
$$

Using that and $1>\sin ^{2} \omega$, we obtain

$$
\begin{gathered}
1>\frac{2 B^{\prime} C \cdot 2 C^{\prime} A \cdot 2 A^{\prime} B \cdot 2 s}{4\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)}=\frac{4 s \cdot B^{\prime} C \cdot C^{\prime} A \cdot A^{\prime} B}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}} \\
1>\frac{4 s \cdot A^{\prime} C \cdot C^{\prime} B \cdot B^{\prime} A}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}
\end{gathered}
$$

Summing up leads to the desired result.
56. Sanchez's Areas in Bottema's Configuration
$A B Q P$ and $C B N L$ are two squares sharing a vertex. M is the midpoint of $A C$.

Prove that $[\triangle M P N]=[\Delta M L Q]$, where $[F]$ denotes the area of shape F.
Proposed by Miguel Ochoa Sanchez - Peru

Proof (by Leonard Giugiuc - Romania).
Note that $\triangle M P N=\triangle B P N \cup \Delta M B P \cup \Delta M B N$ and

$$
\Delta M L Q=\Delta B L Q \cup \Delta M B L \cup \Delta M B Q:
$$

Let's set $B C=c, A B=a$. Observe that $\angle P B N=Q B N+45^{\circ}=\angle Q B L$. Denote this angle as ω. Then

$$
[\Delta B P N]=\frac{1}{2}(a \sqrt{2}) \cdot c \cdot \sin \omega=\frac{1}{2} a \cdot(c \sqrt{2}) \cdot \sin \omega=[\Delta B L Q]
$$

Introduce angles α and γ as shown:

Then, since $[\Delta A B M]=[\Delta C B M]$,

$$
a \sin \alpha=c \sin \gamma
$$

Using that,

$$
\begin{gathered}
2([\Delta M B P]+[\Delta M B N])=B M \cdot(B P \cdot \sin \angle M B P+B N \cdot \sin \angle M B N) \\
=B M \cdot\left(a \sqrt{2} \sin \left(\alpha+45^{\circ}\right)+c \cdot \sin \left(\gamma+90^{\circ}\right)\right) \\
=B M \cdot(a \sin \alpha+a \cos \alpha+c \cos \gamma)=B M \cdot(c \sin \gamma+a \cos \alpha+c \cos \gamma) \\
=B M \cdot(\cos \alpha+c \sin \gamma+c \cos \gamma)=B M \cdot\left(a \sin \left(\alpha+90^{\circ}\right)+c \sqrt{2} \sin \left(\gamma+45^{\circ}\right)\right) \\
=B M \cdot(B Q \cdot \sin \angle M B Q+B L \cdot \sin \angle M B L)=2([\Delta M B Q]+[\Delta M B L]),
\end{gathered}
$$

which proves the require $[\triangle M P N]=[\Delta M L Q]$.

57. Non square Matrix as a Tool for Proving an Inequality

Let a, b, c be non-negative. Prove that

$$
2(a+b+c)(a+3 b+3 c) \geq(\sqrt{b(a+b)}+2 \sqrt{c(b+c)}+\sqrt{a(c+a)})^{2}
$$

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Proof (by Daniel Sitaru, Leonard Giugiuc - Romania).
Define matrix

$$
A=\left(\begin{array}{cccc}
\sqrt{a+b} & \sqrt{b+c} & \sqrt{a} & \sqrt{c} \\
\sqrt{b} & \sqrt{c} & \sqrt{a+c} & \sqrt{b+c}
\end{array}\right) . \text { We have } A \in M_{4,2}(\mathbb{R})
$$

Further

$$
A A^{t}=\left(\begin{array}{cc}
a+b+b+c+a+c & \sqrt{a(a+b)}+2 \sqrt{c(b+c)}+\sqrt{a(a+c)} \\
\sqrt{a(a+b)}+2 \sqrt{c(b+c)}+\sqrt{a(a+c)} & a+b+b+c+a+c
\end{array}\right)
$$

$A A^{t} \in M_{2}(\mathbb{R})$. By the Cauchy - Binet theorem, $\operatorname{det}\left(A A^{t}\right) \geq 0$. More explicitly,

$$
A A^{t}=\left(\begin{array}{cc}
2 a+2 b+2 c & \sqrt{a(a+b)}+2 \sqrt{c(b+c)}+\sqrt{a(a+c)} \\
\sqrt{a(a+b)}+2 \sqrt{c(b+c)}+\sqrt{a(a+c)} & 2 a+2 b+2 c
\end{array}\right)
$$

whereas,

$$
\begin{gathered}
\operatorname{det}\left(A A^{t}\right)=(2 a+2 b+2 c)(a+2 b+3 c)-(\sqrt{b(a+b)}+2 \sqrt{c(b+c)}+\sqrt{a(c+a)})^{2} \\
\text { Or, else, } \\
\operatorname{det}\left(A A^{t}\right)=2(a+b+c)((a+2 b+3 c)-(\sqrt{b(a+b)}+2 \sqrt{c(b+c)}+\sqrt{a(c+a)}))^{2} \geq 0
\end{gathered}
$$

58. An Inequality with Determinants \mathbf{V}

With a, b, c the sides and s the semiperimeter of $\triangle A B C$, prove that

$$
\Delta=\left|\begin{array}{cccc}
s & \frac{a^{2} b}{a^{3}+b} & \frac{b^{2} c}{b^{3}+c} & \frac{c^{2} a}{c^{3}+a} \\
\frac{a^{2} b}{a^{3} b} & s & \frac{c^{2} a}{c^{3}+a} & \frac{b^{2} c}{b^{3}+c} \\
\frac{b^{2} c}{b^{3}+c} & \frac{c^{2} a}{c^{3}+a} & s & \frac{a^{2} b}{a^{3}+b} \\
\frac{c^{2} a}{c^{3}+a} & \frac{b^{2} c}{b^{3}+c} & \frac{a^{2} b}{a^{3}+b} & s
\end{array}\right| \geq 0
$$

Equality is only achieved for $a=b=c=1$.
Proposed by Daniel Sitaru - Romania

Lemma:

For $x, y, z, t \in \mathbb{R}$,

$$
\begin{gathered}
\Delta^{\prime}=\left|\begin{array}{cccc}
x & y & z & t \\
y & x & t & z \\
z & t & x & y \\
t & z & y & x
\end{array}\right| \\
=(x+y+z+t)(x-y+z-t)(x+y-z-t)(x-y-z+t)
\end{gathered}
$$

Proof 1 of Lemma (by Leonard Giugiuc - Romania).
We shall compute the determinant first using row and/or column operations, describing each step symbolically next to the determinant the operation applied to:

$$
\begin{aligned}
& \Delta^{\prime}=\left|\begin{array}{llll}
x & y & z & t \\
y & x & t & z \\
z & t & x & y \\
t & z & y & x
\end{array}\right| \\
& =(x+y+z+t)\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
y & x & t & z \\
z & t & x & y \\
t & z & y & z
\end{array}\right| \\
& =(x+y+z+t)(x-y+z-t)\left|\begin{array}{cccc}
1 \\
\left.c_{4}=: c_{4}-r_{2}+r_{3}+r_{4}\right) \\
y & 1 & 1 & 0 \\
y & x & 1 \\
z & t & x & -1 \\
t & z & y & 1
\end{array}\right| \\
& =(x+y+z+t)(x-y+z-t)\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
y & x-y & t-y & 1 \\
z & t-z & x-z & -1 \\
t & z-t & y-t & 1
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
&=(x+y+z+t)(x-y+z-t)\left|\begin{array}{ccc}
x-y & t-y & 1 \\
t-z & x-z & -1 \\
z-t & y-t & 1
\end{array}\right| \\
&=(x+y+z+t)(x-y+z-t)\left|\begin{array}{cc}
\left(r_{1}=: r_{1}+r_{2}, r_{3}=: r_{3}+r_{2}\right) \\
x-y+t-z & x-y+t-z \\
t-z & x-z
\end{array} \begin{array}{cc}
-1 \\
0 & x+y-z-t \\
0
\end{array}\right| \\
&=(x+y+z+t)(x-y+z-t)\left|\begin{array}{cc}
x-y+t-z & x-y+t-z \\
0 & x+y-z-t
\end{array}\right| \\
&=(x+y+z+t)(x-y+z-t)(x-y+t-z)(x+y-z-t)
\end{aligned}
$$

Proof 2 of Lemma (by Alexander Bogomolny - USA).
Note that the matrix in the lemma is defined block-wise, say

$$
S=\left(\begin{array}{llll}
x & z & z & t \\
y & x & t & z \\
z & t & x & y \\
t & z & y & x
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right)
$$

where $A=\left(\begin{array}{ll}x & y \\ y & x\end{array}\right)$ and $B=\left(\begin{array}{ll}t & z \\ z & t\end{array}\right)$. It is easily verifiable that the matrices commute: $A B=B A$, which allows for an application of Silvester's theorem, concerning the determinants of block - matrices. In our case,

$$
\begin{aligned}
& \operatorname{det}(S)=\operatorname{det}\left(A^{2}-B^{2}\right)=\left(x^{2}+y^{2}-t^{2}-z^{2}\right)^{2}-[2(x y-t z)]^{2} \\
& =\left(x^{2}+y^{2}-t^{2}-2 x y+2 t z\right)\left(x^{2}+y^{2}-t^{2}-z^{2}+2 x y-2 t z\right) \\
& =\left((x-y)^{2}-(t-z)^{2}\right)\left((x+y)^{2}-(t+z)^{2}\right)
\end{aligned}
$$

which is exactly the same expression as above.

Reference:

1. John R. Silvester, Determinants of Block Matrices, The Mathematical Gazzete, Vol. 84, No. 501 (Nov, 2000), pp. 460-467

Proof (by Daniel Sitaru, Leonard Giugiuc - Romania):

In the problem, let $x=s, y=\frac{a^{2} b}{a^{3}+b}, z=\frac{b^{2} c}{b^{3}+c}, t=\frac{c^{2} a}{c^{3}+a}$. We have, for example, by the $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{G M}$ inequality,

$$
\frac{a^{2} b}{a^{3}+b} \leq \frac{a^{2} b}{2 a \sqrt{a b}}=\frac{a b}{2 \sqrt{a b}}=\frac{\sqrt{a b}}{2} \leq \frac{a+b}{4}
$$

For equality, we need $a^{3}=b$ and also $a=b$, with the only feasible solution $a=b=1$.
Similarly to the above, $\frac{b^{2} c}{b^{3}+c} \leq \frac{b+c}{4}$ and $\frac{c^{2} a}{c^{3}+a} \leq \frac{c+a}{4}$. From these we conclude that $y+z+t \leq x$ which guarantees that all four factors in Lemma are nonnegative, making $\Delta^{\prime} \geq 0$ and also $\Delta \geq 0$. The equality in $y+z+t \leq x$ is achieved when $a=b=c=1$. Otherwise, $\Delta>0$.

Acknowledgment (by Alexander Bogomolny - USA)

The inequality from the Romanian Mathematical Magazine has been shared at the CutTheKnotMath page by Daniel Sitaru. The problem and the solution
above are due to Daniel Sitaru and Leo Giugiuc. I reproduce that part here because of a lemma of a general character, interesting in its own right.

$$
\begin{aligned}
& \text { 59. An Inequality with Determinants VI } \\
& \Delta_{1}=\left|\begin{array}{lll}
1 & a & a^{3} \\
1 & b & b^{3} \\
1 & c & c^{3}
\end{array}\right|, \Delta_{2}=\left|\begin{array}{ccc}
a^{2} & b^{2} & c^{2} \\
b^{2}+c^{2} & c^{2}+a^{2} & a^{2}+b^{2} \\
b c & c a & a b
\end{array}\right| \\
& \quad \begin{array}{c}
\text { Prove that } \\
(b-a)(a-c)(b-c)
\end{array} 12 \sqrt[6]{(a b c)^{5}} .
\end{aligned}
$$

Proposed by Daniel Sitaru - Romania
Proof (by Ravi Prakash - India):

$$
\begin{aligned}
& \left.\Delta_{1}=\left|\begin{array}{lll}
1 & a & a^{3} \\
1 & b & b^{3} \\
1 & c & c^{3}
\end{array}\right| \begin{array}{ccc}
r_{1}: r_{1}-r_{2}, r_{2}=r_{2}-r_{3} \\
0 & a-b & a^{3}-b^{3} \\
0 & b-c & b^{3}-c^{3} \\
1 & c & c^{3}
\end{array} \right\rvert\, \\
& =(a-b)(b-c)\left|\begin{array}{ll}
1 & a^{2}+a b+b^{2} \\
1 & b^{2}+b c+c^{2}
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c) \text {. } \\
& \Delta_{2}=\left|\begin{array}{ccc}
a^{2} & b^{2} & c^{2} \\
b^{2}+c^{2} & c^{2}+a^{2} & a^{2}+b^{2} \\
b c & c a & a b
\end{array}\right|^{r_{2}:=r_{1}+r_{2}}=\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
a^{2} & b^{2} & c^{2} \\
1 & 1 & 1 \\
b c & c a & a b
\end{array}\right| \\
& =\frac{a^{2}+b^{2}+c^{2}}{a b c}\left|\begin{array}{ccc}
a^{3} & b^{3} & c^{3} \\
a & b & c \\
a b c & a b c & a b c
\end{array}\right|=\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
a^{3} & b^{3} & c^{3} \\
a & b & c \\
1 & 1 & 1
\end{array}\right|= \\
& =\left(a^{2}+b^{2}+c^{2}\right) \Delta_{1}
\end{aligned}
$$

Thus, we have

$$
\begin{gathered}
\frac{\Delta_{1}-\Delta_{2}}{(a-b)(b-c)(c-a)}=(a+b+c)+(a+b+c)\left(a^{2}+b^{2}+c^{2}\right) \\
3(a b c)^{\frac{1}{3}}+3(a b c)^{\frac{1}{3}}\left(a^{2}+b^{2}+c^{2}\right) \geq 3(a b c)^{\frac{1}{3}} \cdot 4\left(a^{2} b^{2} c^{2}\right)^{\frac{1}{4}}=12(a b c)^{\frac{5}{6}}
\end{gathered}
$$

Acknowledgment (by Alexander Bogomolny - USA)

The inequality from his book "Ice Math" (Problem 026) has been kindly shared at the CutTheKnotMath page by Daniel Sitaru, along with a solution by Ravi Prakash.

60. Inequality in Quadrilateral

In a quadrilateral $A B C D$, with sides $A B=a, B C=b, C D=c, D A=d$, the

$$
\begin{gathered}
\text { following inequality holds } \\
\sum_{\text {cycl }} \sqrt{a^{2}+b^{2}+c^{2}}>2 \sqrt{3 \cdot A C \cdot B D} .
\end{gathered}
$$

Proposed by Daniel Sitaru - Romania

Proof (by Alexander Bogomolny- USA).
The Arithmetic Mean - Quadratic Mean inequality gives:

$$
\sqrt{\frac{a^{2}+b^{2}+c^{2}}{3}} \geq \frac{a+b+c}{3}
$$

implying $\sqrt{a^{2}+b^{2}+c^{2}} \geq \frac{a+b+c}{\sqrt{3}}$ and similarly, for other triples of the sides, such that, on adding up, we obtain

$$
\sum_{c y c l} \sqrt{a^{2}+b^{2}+c^{2}} \geq \frac{3(a+b+c+d)}{\sqrt{3}}=\sqrt{3}(a+b+c+d)
$$

By the $\boldsymbol{A} \boldsymbol{M}$ - $\boldsymbol{G M}$ inequality, $a+c \geq 2 \sqrt{a c}$ and $b+d \geq 2 \sqrt{b d}$. Now, by the Ptolemy's inequality,

$$
(\sqrt{a c}+\sqrt{b c})^{2}>a c+b d \geq A C \cdot B D
$$

so that $\sqrt{a c}+\sqrt{b d}>\sqrt{A C \cdot B D}$. Putting everything together shows that

$$
\sum_{c y c l} \sqrt{a^{2}+b^{2}+c^{2}} \geq \sqrt{3}(a+b+c+d) \geq 2 \sqrt{3}(\sqrt{a c}+\sqrt{b d})>2 \sqrt{3} \sqrt{A C \cdot B D}
$$

Acknowledgment (by Alexander Bogomolny - USA)

The problem, due to Daniel Sitaru, has been published in the Romanian Mathematical Magazine where more solutions can be found.

61. Cyclic Inequality with Logarithms

Let $a, b, c>1$. Prove that

$$
\ln \left(a^{b} \cdot b^{c} \cdot c^{a}\right)+6 \sum_{c y c l} \frac{b(1+2 a)}{1+4 a+a^{2}} \geq 3(a+b+c)
$$

Proposed by Daniel Sitaru - Romania

Solution 1 (by Leonard Giugiuc - Romania).

First we prove
Lemma

$$
\begin{gathered}
\text { For } a, b \geq 1, \\
b \ln a+\frac{6 b(1+2 a)}{a^{2}+4 a+1} \geq 3 b .
\end{gathered}
$$

Indeed, set $f(b)=b \ln a+\frac{6 b(1+2 a)}{a^{2}+4 a+1}-3 b$ on $[1, \infty)$.

$$
f^{\prime}(b)=\ln a+\frac{6(1+2 a)}{a^{2}+4 a+1}-3 .
$$

Now let $g(a)=\left(a^{2}+4 a+1\right) f^{\prime}(b)=\left(a^{2}+4 a+1\right) \ln a-3 a^{2}+3$, on $[1, \infty)$. We have

$$
\begin{gathered}
g^{\prime}(a)=2(a+2) \ln a-5 a+4+\frac{1}{a} \\
g^{\prime \prime}(a)=2 \ln a-3+\frac{4}{a}-\frac{1}{a^{2}} \\
g^{\prime \prime \prime}(a)=\frac{2(a-1)^{2}}{a^{3}} \geq 0, a \geq 1
\end{gathered}
$$

We deduce that $g^{\prime \prime}(a), g^{\prime}(a), g(a)$ are all increasing for $a \geq 1$, implying that so is f and since $f(1)=\frac{g(a)}{a^{2}+4 a+1} \geq 0$, the conclusion follows.
The other two inequalities are treated in a similar manner and then added to obtain the required inequality.

$$
\begin{gathered}
f^{\prime}(x)<0, \text { for } x<1, \text { and } f^{\prime}(x)>0, \text { for } x>1 \\
\text { Since } f(1)=0, f(x) \geq 0, \text { for } x>0
\end{gathered}
$$

Solution 2 (by Leonard Giugiuc -Romania).

First we prove
Lemma

$$
\text { Function } f(x)=\ln x+\frac{6(1+2 x)}{x^{2}+4 x+1} \text { is strictly increasing on }[0, \infty)
$$

Indeed, $f^{\prime}(x)=\frac{1}{x}-\frac{12\left(x^{2}+x+1\right)}{\left(x^{2}+4 x+1\right)^{2}}$. Further,

$$
f^{\prime}(x) \geq 0 \Leftrightarrow\left[\left(x^{2}+x+1\right)+3 x\right]^{2} \geq 12 x\left(x^{2}+x+1\right)
$$

which is true by the $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{G M}$ inequality for $u=x^{2}+x+1$ and $v=3 x$. Back to the problem: by the lemma, $f(x) \geq f(1)=3, x \geq 1$.
Thus, $b f(a)+c f(b)+a f(c) \geq 3(a+b+c)$, implying the required inequality.

Acknowledgment (by Alexander Bogomolny - USA)

The problem above has been posted on the CutTheKnotMath page by Daniel Sitaru. Leonard Giugiuc submitted two solutions (Solution 1 and Solution 2); Soumitra Mandal submitted a solution, practically the same as Solution 2.

62. Beatty Sequences II

Assume r and s are two (strictly) irrational numbers that satisfy $\frac{1}{r}+\frac{1}{s}=1$. Then the sequences $\left\{a_{n}\right\}=\{\lfloor n r\rfloor: n \in \mathbb{N}\}$ and $\left\{b_{n}\right\}=\{\lfloor n s\rfloor: n \in \mathbb{R}\}$ are complementary. In other words,

$$
\left\{a_{n}\right\} \cup\left\{b_{n}\right\}=\mathbb{N} \text { and }\left\{a_{n}\right\} \cap\left\{b_{n}\right\}=\emptyset
$$

where $\mathbb{N}=\{1,2,3, \ldots\}$.
This statement of Beatty's theorem (1926) one proof of which was published in 1927 and has been reproduced elsewhere at this site.

Below is a slight modification of the proof posted by Daniel Sitaru at the CutTheKnotMath page.

Proof (by Alexander Bogomolny - USA).
Assume to the contrary that there are integers n, m, q such that

$$
\begin{aligned}
& q<m r<q+1 \\
& q<n s<q+1
\end{aligned}
$$

which is the same as

$$
\frac{m}{q+1}<\frac{1}{r}<\frac{m}{q}
$$

$$
\frac{n}{q+1}<\frac{1}{s}<\frac{n}{q}
$$

Adding up we obtain $\frac{m+n}{q+1}<\frac{1}{r}+\frac{1}{s}<\frac{m+n}{q}$, or

$$
\frac{m+n}{q+1}<1<\frac{m+n}{q}
$$

so that $q<m+n<q+1$, which is impossible since both $m+n$ and q have been assumed to be integers. This immediately implies that $\left\{a_{n}\right\} \cap\left\{b_{n}\right\}=\emptyset$.
Below any integer N the two sequence have between them $\left\lfloor\frac{N}{r}\right\rfloor+\left\lfloor\frac{N}{s}\right\rfloor$ terms.
Let's denote the two numbers as, say $a(N)$ and $b(N)$. We have
$a(N)<\frac{N}{r}<a(N)+1$ and $b(N)<\frac{N}{s}<b(N)+1$
so that

$$
\begin{aligned}
& \frac{a(N)}{N}<\frac{1}{r}<\frac{a(N)+1}{N} \\
& \frac{b(N)}{N}<\frac{1}{s}<\frac{b(N)+1}{N}
\end{aligned}
$$

Adding up gives $\frac{a(N)+b(N)}{N}<1<\frac{a(N)+b(N)+2}{N}$, or
$a(N)+b(N)<N<a(N)+b(N)+2$. Since all the quantities involved are integers, it follows that, it follows that $N=a(N)+b(N)+1$, or $a(N)+b(N)=N-1$, the exact number of integer intervals up to and including N. Thus every interval of with successive integer endpoints, say $[u, u+1]$, contains exactly one term of the union $\left\{a_{n}\right\} \cup\left\{b_{n}\right\}$ so that, indeed, $\left\{a_{n}\right\} \operatorname{cup}\left\{b_{n}\right\}=\mathbb{N}$.

63. An Inequality in Cyclic Quadrilateral IV

Prove that in quadrilateral $A B C D$, with sides $A B=a, B C=b, C D=c$,
$D A=d$, and the area $=[A B C D]$, the following inequality holds

$$
a^{2}-b^{2}-c^{2}+d^{2}+4 S \leq 2 \sqrt{2}(a d+b c)
$$

Proposed by Daniel Sitaru - Romania
Proof (by Daniel Sitaru - Romania).
In $\triangle A B D: B D^{2}=a^{2}+d^{2}-2 a d \cos A$,
In $\triangle B C D: B D^{2}=b^{2}+c^{2}-2 b c \cos (\pi-A)$.
It follows that $a^{2}+d^{2}-2 a d \cos A=b^{2}+c^{2}+2 b c \cos A$, or,
$S=\frac{1}{2} a d \sin A+\frac{1}{2} b c \sin A$, or, $\sin A=\frac{2 S}{a d+b c}$.
Let $f:(0,2 \pi) \rightarrow \mathbb{R}, f(x)=\sin x+\cos x=\sqrt{2} \cos \left(x+\frac{\pi}{4}\right)$.
Thus max $f(x)=\sqrt{2}$. We now have $\sin x+\cos x \leq \sqrt{2}$, i.e.
$\frac{a^{2}-b^{2}-c^{2}+d^{2}}{2(a d+b c)}+\frac{2 S}{a d+b c} \leq \sqrt{2}$, which is $a^{2}-b^{2}-c^{2}+d^{2}+4 S \leq 2 \sqrt{2}(a d+b c)$.
Acknowledgment (by Alexander Bogomolny - USA)
The problem from his book Math Accent has been posted at CutTheKnotMath page by Daniel Sitaru, with his solution.
64. Algebraic - Geometric Inequality

$$
\begin{gathered}
\text { Let } x, y, z>0 . \text { Prove that } \\
\sqrt{x^{2}-\sqrt{3} x y+y^{2}}+\sqrt{y^{2}-\sqrt{2} y z+z^{2}} \geq \sqrt{z^{2}-z x+x^{2}}
\end{gathered}
$$

Proposed by Daniel Sitaru - Romania
Proof 1 (by Leonard Giugiuc - Romania).
In complex numbers, let $u=e^{\frac{i \pi}{6}}, v=e^{\frac{i \pi}{4}}$, and $w=e^{\frac{5 i \pi}{12}}$. We have

$$
\sqrt{x^{2}-\sqrt{3} x y+y^{2}}=|x-y u|, \sqrt{y^{2}-\sqrt{2} y z+z^{2}}=|y-z v|=|u||y-z w|=
$$

$=|y u-z w|$. It follows that

$$
\begin{aligned}
& \sqrt{x^{2}-\sqrt{3} x y+y^{2}}+\sqrt{y^{2}-\sqrt{2} y z+z^{2}}=|x-y u|+|y u-z w| \\
& \geq|x-y u+y u-z w|=|x-z w|=\sqrt{x^{2}-x z\left(\frac{\sqrt{6}-\sqrt{2}}{2}\right)+z^{2}} \\
& \geq \sqrt{x^{2}-x z+z^{2}}
\end{aligned}
$$

Proof 2.
Consider triangles $A B C$ and $A C D$ such that $A B=x, A C=y, A D=z$, $\angle B A C=\frac{\pi}{6}, \angle C A D=\frac{\pi}{4}$. Then $B C=\sqrt{x^{2}-\sqrt{3} x y+y^{2}}$ and $C D=\sqrt{y^{2}-\sqrt{2}+z^{2}}$. Also, $\angle B A D=75^{\circ}, B D=\sqrt{z^{2}-z x \cos 75^{\circ}+x^{2}}$.

Since $\cos 75^{\circ}<\cos 60^{\circ}=\frac{1}{2}, z^{2}-z x \cos 75^{\circ}+x^{2}>z^{2}-z x+x^{2}$. Now,

$$
B C+C D \geq B D>\sqrt{z^{2}-z x+x^{2}}
$$

which proves the required inequality.
Proof 3.

$$
\begin{gathered}
\sqrt{x^{2}-\sqrt{3} x y+y^{2}}+\sqrt{y^{2}-\sqrt{2} y z+z^{2}} \\
=\sqrt{\left(\frac{\sqrt{3}}{2} x-y\right)^{2}+\left(\frac{x}{2}\right)^{2}}+\sqrt{\left(y-\frac{z}{\sqrt{2}}\right)^{2}+\left(\frac{z}{\sqrt{2}}\right)^{2}}
\end{gathered}
$$

$$
\geq \sqrt{\left(\frac{\sqrt{3}}{2} x-\frac{z}{\sqrt{2}}\right)^{2}+\left(\frac{x}{2}+\frac{z}{\sqrt{2}}\right)^{2}}=\sqrt{x^{2}+z^{2}-\frac{\sqrt{3}-1}{\sqrt{2}} z x}>\sqrt{z^{2}-x z+x^{2}}
$$

since $\sqrt{2}+1>\sqrt{3}$. This completes the proof.

Acknowledgment (by Alexander Bogomolny - USA)
Daniel Sitaru has kindly posted the above problem (from his book "Math Accent") at the CutTheKnotMath page. Solution 1 is by Leo Giugiuc; Solution 2 is by Ravi Prakash and, independently, by Chris Kyriazis; Solution 3 is by Nguyen Minh Triet and, independently, by Soumitra Mandal.

65. For Equality Choose Angle Bisector

What Might This Be About?

Source:

Propuesto Por : Miguel Ochoa

- Si FB=EC

Demuestre que:
 $$
m \measuredangle \theta=m \measuredangle \phi
$$

We'll prove a little more: the condition $B F=C E$ is not sufficient for $\theta=\varphi$, it is also necessary:
Given $\triangle A B C$ and point D, on neither $A B$ or $A C$. From circles $(A B D)$ and $(A C D)$ intersect $A C$ in $E ;(A C D)$ intersect $A B$ in F :

Let $\angle B A D=\theta, \angle C A D=\varphi$. Prove that $\theta=\varphi$ if $B F=C E$.
Proposed by Miguel Ochoa Sanchez - USA
Solution 1 (by Alexander Bogomolny - USA).
Angles θ and φ are subtended by the chords $B D, D E$ in circle $(A B D)$ and by the chords $D F, C D$ in circle $(A C D)$, implying $\frac{D F}{C D}=\frac{B D}{D E}$. In addition,
$\angle B D F=\angle B D E-\angle F D E$, whereas $\angle C D E=\angle C D F-\angle F D E$. Both angles $B D E$ and $C D F$ are supplementary to $\angle B A C$ and are thus equal. It follows that $\angle B D F=\angle C D E$, and, consequently, triangles $B D F$ and $C D E$ are similar. They are equal when, say, the two chords $B D$ and $D E$ in circle $(A B D)$ are equal. This
only happens when $\theta=\varphi$. Thus $\triangle B D F=\triangle C D E$ and then also $B F=C E$ if $A D$ bisects $\angle B A C$.

Solution 2 (by Leonard Giugiuc - Romania).
Here we establish only the sufficiency of the condition $B F=C E$ for $\theta=\varphi$. Introduce M, N, P and x as below.

Denote circle $(A B E)$ as w and circle $(A C F)$ as q. By the power of B relative to $q, B M \cdot B C=B F \cdot A B$, i.e., $a \cdot B M=x c$. Similarly, by the power of C with respect to $w, a \cdot C N=x \cdot b$. From here, $\frac{B M}{C N}=\frac{c}{b}$.
P belongs to the radical axis w and q, hence, it has the same power relative to both w and q. It follows that $P B \cdot P N=P C \cdot P M$, or $P B(P C-C N)=P C(P B-B M)$, which is equivalent to $P B \cdot C N=P C \cdot B M$, implying $\frac{P B}{P C}=\frac{B M}{C N}=\frac{c}{b}$. By the inverse of the Internal Bisector theorem, $A P$ is the angle bisector of $\angle B A C$.

Acknowledgment (by Alexander Bogomolny - USA)

The problem that is due to Miguel Ochoa Sanchez has been posted by Leonard Giugiuc at the CutTheKnotMath page along with a solution (Solution 2).

$$
\begin{aligned}
& \text { 66. A Cyclic Inequality in Three Variables XX } \\
& \text { Prove that, for } a, b, c>0 \text {, with } a+b+c=1 \text {. } \\
& 5 \sum_{c y c l} \sqrt{a b} \leq \sum_{c y c l} \sqrt[4]{(a+4 b)(2 a+3 b)(3 b+2 a)(4 a+b)} \leq 5
\end{aligned}
$$

Proposed by Daniel Sitaru - Romania
Proof 1.
By the $\boldsymbol{A} \boldsymbol{M}$ - $\boldsymbol{G M}$ inequality,

$$
\begin{aligned}
& \sum_{c y c l} \sqrt[4]{(a+4 b)(2 a+3 b)(3 b+2 a)(4 a+b)} \\
& \leq \sum_{c y c l} \frac{(a+4 b)(2 a+3 b)(3 b+2 a)(4 a+b)}{4}
\end{aligned}
$$

Again, by the AM - GM inequality,

$$
\sum_{c y c l} \sqrt[4]{(a+4 b)(2 a+3 b)(3 b+2 a)(4 a+b)} \leq
$$

$$
\geq \sum_{c y c l} \sqrt[4]{\sqrt[5]{a b^{4} \cdot a^{2} b^{3} \cdot a^{3} b^{2} \cdot a^{4} b}}=5 \sum_{c y c l} \sqrt{a b}
$$

This completes the proof.
Proof 2.

$$
\begin{gathered}
\sqrt[4]{(a+4 b)(2 a+3 b)(3 b+2 a)(4 a+b)} \\
=\sqrt[4]{\left(4 a^{2}+4 b^{2}+17 a b\right)\left(6 a^{2}+6 b^{2}+13 a b\right)} \geq \sqrt[4]{(25 a b)(25 a b)}=5 \sqrt{a b}
\end{gathered}
$$

Further

$$
\begin{gathered}
\sqrt[4]{(a+4 b)(2 a+3 b)(3 b+2 a)(4 a+b)} \\
\leq \sum_{c y c l} \sqrt[4]{\frac{(a+4 b)(2 a+3 b)(3 b+2 a)(4 a+b)}{4}}=\frac{10}{2} a+b+c=5 .
\end{gathered}
$$

Acknowledgment (by Alexander Bogomolny - USA)

This is a problem from the Romanian Mathematical Magazine, posted by Daniel Sitaru at the CutTheKnotMath page. Solution 1 is by Anas Adlany and independently by Diego Alvariz and also by Dang Thanh Tùng; Solution 2 is by Kevin Soto Palacios and independently by Soumava Chakraborty.

67. An Inequality from Gazeta Matematica, March 2016 III

Several inequalities with solution by Daniel Sitaru and Leonard Giugiuc have been just published in Gazeta Matematica (March 2016). Here is one with two of its applications and a proof (Proof 1) from the article. Along the way several additional proofs have been added. Proof 2 is by Imad Zak; Proof 3 is by Emil Stoyanov; Proof 4 is by Grégoire Nicollier.

Let a, b, c be real numbers. Prove that:

$$
a^{2}+b^{2}+1 \geq a+a b+b
$$

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Proof 1 (by Daniel Sitaru, Leonard Giugiuc - Romania).

Define $A=\left(\begin{array}{lll}1 & a & b \\ a & b & 1\end{array}\right)$. By the Binet - Cauchy theorem, $\operatorname{det}\left(A A^{T}\right) \geq 0$. But

$$
\operatorname{det}\left(A A^{T}\right)=\left(a^{2}+b^{2}+1\right)^{2}-(a+a b+b)^{2}
$$

proving the inequality at hand.
Proof 2 (by Imad Zak - Lebanon).
Let $S=a+b$ and $P=a b$, by the $\boldsymbol{A} \boldsymbol{M}$ - $\boldsymbol{G M}$ inequality, we have $P \leq \frac{S^{2}}{4}$ and the required inequality is equivalent to $S^{2}-S+1 \geq 3 P$, so suffice it to prove that $S^{2}-S+1 \geq \frac{3 S^{2}}{4}$ which is equivalent to $\frac{S^{2}}{4}-S+1 \geq 0$, or $\left(\frac{S}{2}-1\right)^{2} \geq 0$ which is clearly true. The equality holds when $S=2$ and $P=1$, i.e., when $a=b=1$.

Proof 3 (by Emil Stoyanov).
The required inequality is equivalent to $a^{2}-(b+1) a+\left(b^{2}-b+1\right) \geq 0$. Consider the quadric function $f(x)=x^{2}-(b+1) x+\left(b^{2}-b+1\right) \geq 0$. Its discriminant $D=(b+1)^{2}-4 b^{2}+4 b-4=-3(b-1)^{2}$ is never positive, implying that function f is never negative.
Proof 4 (by Grégoire Nicollier).
The inequality reduces to $(a-1)^{2}+(b-1)^{2} \geq(a-1)(b-1)$ which could be strengthened to $(a-1)^{2}+(b-1)^{2} \geq 2(a-1)(b-1)$.

Proof 5 (by Alexander Bogomolny - USA).
By the $\boldsymbol{A} \boldsymbol{M}$ - QM inequality,

$$
a^{2}+b^{2}+1 \geq \frac{1}{2}(a+b)^{2}+1
$$

Suffice it to prove that

$$
(a+b)^{2}+2 \geq 2 a+2 a b+2 b
$$

But this is equivalent to $(a-1)^{2}+(b-1)^{2} \geq 0$, which is obvious.

Application 1 (by Daniel Sitaru)

$$
\prod_{1 \leq i \leq j \leq n}\left(i^{2}+j^{2}+1\right) \geq n!\prod_{1 \leq i \leq j \leq n}(2+\sqrt{i j})
$$

Observe that $a^{2}+b^{2}+1 \geq a+b+a b \geq a b+2 \sqrt{a b}=\sqrt{a b}(2+\sqrt{a b})$.
Using this,

$$
\begin{aligned}
& \quad \prod_{1 \leq i \leq j \leq n}\left(i^{2}+j^{2}+1\right) \geq \prod_{1 \leq i<j<n} \sqrt{i j}(2+\sqrt{i j})= \\
& =\prod_{1 \leq i \leq j \leq n} \sqrt{i j} \prod_{1 \leq i \leq j \leq n}(2+\sqrt{i j})=n!\prod_{1 \leq i \leq j \leq n}(2+\sqrt{i j}) .
\end{aligned}
$$

Obviously, the inequality can be strengthened.

Application 2 (by Daniel Sitaru)

Prove that

$$
\int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x+\sin x \cos x+\cos x} d x \geq \frac{\pi}{4} .
$$

Set $a=\sin x$ and $b=\cos x$.
Then $2 \geq 1+\sin ^{2} x+\cos ^{2} x \geq \sin x+\sin x \cos x+\cos x$, implying

$$
\int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x+\sin x \cos x+\cos x} d x \geq \frac{1}{2} \int_{0}^{\frac{\pi}{2}} d x \geq \frac{\pi}{4}
$$

Note that, according to wolframalpha,

$$
\int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x+\sin x \cos x+\cos x} d x \approx 1.02245
$$

68. An Inequality form Gazeta Matematica, March 2016 IV

Several inequalities with solution by Dan Sitaru and Leo Giugiuc have been just published in Gazeta Matematica (March 2016). Here is one of two exercises that lets you check your understanding of the technique. I have.

For real a, b, c such that $a^{2}+b^{2}+c^{2}=1$, prove the inequality

$$
a+a c+b \leq 2
$$

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania
Proof (by Alexander Bogomolny - USA).
Define $A=\left(\begin{array}{lll}a & b & c \\ 1 & 1 & a\end{array}\right)$. By the Binet - Cauchy theorem, $\operatorname{det}\left(A A^{T}\right) \geq 0$. But

$$
\operatorname{det}\left(A A^{T}\right)=\left(a^{2}+b^{2}+c^{2}\right)\left(2+a^{2}\right)-(a+a c+b)^{2} \geq 0
$$

which is $2+a^{2} \geq\left(a+a c+b^{2}\right)$. Given that $a^{2} \leq a^{2}+b^{2}+c^{2}=1$, we conclude that

$$
3 \geq 2+a^{2} \geq(a+a c+b)^{2}
$$

i.e., $a+a c+b \leq \sqrt{3}-a$ somewhat stronger inequality than is required.

With the constraint $a^{2}+b^{2}+c^{2}=2$, we are led to $4 \geq 2+a^{2} \geq(a+a c+b)^{2}$, and $a+a c+b \leq 2$. Ought to be a typo.

Illustration (by Nassim Nicholas Taleb - USA)
Nassim Nicholas Taleb has kindly produced the following graphics:

What graphics tells us is that 1.5535 is closer to the smallest bound for $a+a c+b$ than $\sqrt{3}$.

Using Lagrange's multiplier to find $\max (a+a c+b)$ subject to $a^{2}+b^{2}+c^{2}=1$ produced an approximation, 1.576881.

Pradyumna Agashe found this estimate: $a+a c+b \leq \frac{19}{12}=1.58 \overline{3}$. The proof stems from an equivalent inequality

$$
\left(\frac{a}{2}-c\right)^{2}+\left(b-\frac{1}{2}\right)^{2}+\left(\frac{a \sqrt{3}}{2}-\frac{1}{\sqrt{3}}\right)^{2} \geq 0
$$

69. Inequality with Roots, Squares and the Area

Let P be an interior point in $\triangle A B C$. Prove that:

$$
\sqrt{2}(P A+P B+P C) \geq \sqrt{a^{2}+b^{2}+c^{2}+4 \sqrt{3} S}
$$

where $S=[\triangle A B C]$, the area of $\triangle A B C, a, b, c$ its side lengths. Equality is achieved when P is the Fermat - Torricelli point in $\triangle A B C$.

Proposed by Daniel Sitaru - Romania

Proof 1 (by Alexander Bogomolny - USA).
Rotate $\triangle C B P$ around B and away from A through 60° into position $C^{\prime} B P^{\prime}$. Observe that this creates equilateral triangles $B C C^{\prime}$ and $B P P^{\prime}$.

This gives us $P B=P P^{\prime}$, and $P C=P^{\prime} C^{\prime}$ so that

$$
\begin{equation*}
P A+P B+P C=A P+P P^{\prime}+P^{\prime} C^{\prime} \geq A C^{\prime} \tag{1}
\end{equation*}
$$

The Law of Cosines in $\triangle A B C^{\prime}$ gives (with $\angle A B C=\beta$)

$$
\begin{gathered}
A C^{\prime 2}=A B^{2}+B C^{\prime 2}-2 \cdot A B \cdot B C^{\prime} \cos \angle A B C^{\prime}=c^{2}+a^{2}-2 a c \cos \left(\beta+60^{\circ}\right) \\
=c^{2}+a^{2}-2 a c\left(\cos 60^{\circ} \cos \beta-\sin 60^{\circ} \sin \beta\right)=c^{2}+a^{2}-2 a c\left(\frac{1}{2} \cos \beta-\frac{\sqrt{3}}{2} \sin \beta\right) \\
=c^{2}+a^{2}-(a c \cos \beta+\sqrt{3} a c \sin \beta)=c^{2}+a^{2}-\frac{a^{2}+c^{2}-b^{2}}{2}+\sqrt{3} \cdot 2 S \\
=\frac{2 a^{2}+2 c^{2}-a^{2}-c^{2}+b^{2}}{2}+2 \sqrt{3} S=\frac{a^{2}+c^{2}+b^{2}}{2}+2 \sqrt{3} S
\end{gathered}
$$

Thus $A C^{\prime}=\sqrt{\frac{a^{2}+b^{2}+c^{2}}{2}+2 \sqrt{3} S}$. With (1), this implies

$$
P A+P B+P C \geq \sqrt{\frac{a^{2}+b^{2}+c^{2}}{2}+2 \sqrt{3} S}
$$

which is the same as the required

$$
\sqrt{2}(P A+P B+P C) \geq \sqrt{a^{2}+b^{2}+c^{2}+4 \sqrt{3} S}
$$

For equality, we need $P, P^{\prime} \in A C^{\prime}$.

In such a case, $\angle B P^{\prime} C^{\prime}=120^{\circ}$, for, it's complementary to $\angle B P^{\prime} P$. This makes $\angle B P C=120^{\circ}$. Also, $\angle B P A=120^{\circ}$, as complementary to $\angle B P P^{\prime}$. Thus, $\angle A B C=120^{\circ}$ also, which makes P the Fermat - Torricelli point in $\triangle A B C$. Naturally, this argument does not work when $\angle A B C>120^{\circ}$.

Solution 2 (by Leonard Giugiuc - Romania).

We'll consider the case in which $A, B, C<120^{\circ}$. Let T be the Fermat - Torricelli point. Denote $T A=x, T B=y$ and $T C=z$. Choose $T=0, A=x, B=y u$ and $C=z u^{2}, u=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. We have:

$$
\begin{aligned}
a^{2} & =y^{2}+y z+z^{2}, \\
b^{2} & =z^{2}+z x+x^{2}, \\
a^{2} & =x^{2}+x y+y^{2}, \\
4 S \sqrt{3} & =3(x y+y z+z x),
\end{aligned}
$$

so that $a^{2}+b^{2}+c^{2}+4 S \sqrt{3}=2(x+y+z)^{2}$. Thus, our inequality reduces to $P A+P B+P C \geq T A+T B+T C$, which is known. Let's prove it, though.

Let $P=w$. We need to show that

$$
|w-x|+|w-y u|+\left|w-z u^{2}\right| \geq x+y+z
$$

which is equivalent to

$$
|w-x|+\left|u^{2} \| w-y u\right|+|u|\left|w-z u^{2}\right| \geq x+y+z
$$

But

$$
\begin{gathered}
|w-x|+\left|u^{2}\right||w-y u|+|u|\left|w-z u^{2}\right| \geq\left|w\left(1+u^{2}+u\right)-(x+y+z)\right| \\
=x+y+z
\end{gathered}
$$

Naturally, equality holds iff $w=0$, i.e., when $P=T$.

70. Romano Norwegian Inequality

Here is a sample inequality from a recent book 300 Romanian Mathematical Challenges by Professor Radu Gologan, Daniel Sitaru and Leonard Giugiuc. The problem is an invention of Lorian Nelu Saceanu, Norway - Romania. Solution below is by Leonard Giugiuc.

Let $A B C$ be a triangle with no obtuse angles.
Prove that $\sqrt{\cot A}+\sqrt{\cot B}+\sqrt{\cot C} \geq 2$.

Proposed by Lorian Nelu Saceanu - Romania

Proof (by Leonard Giugiuc - Romania).
Denote $x=\cot A, y=\cot B, z=\cot C$. Then $x, y, z \geq 0$ and $x y+y z+z x=1$. We need to prove $\sqrt{x}+\sqrt{y}+\sqrt{z} \geq 2$.
$\boldsymbol{W L O G}$, let's assume that $y z=\max \{x y, y z, x z\}$. As a consequences, $\frac{1}{3} \leq y z \leq 1$. Define $y+z=2 s$ and $y z=p$; then, by the $\boldsymbol{A} \boldsymbol{M}$ - $\boldsymbol{G M}$ inequality, $s \geq p$ and also $\frac{1}{\sqrt{3}} \leq p \leq 1$. On the other hand, $x=\frac{1-x y}{x+y}=\frac{1-p^{2}}{2 s}$. Further
$\sqrt{y}+\sqrt{z}=\sqrt{y+z+2 \sqrt{y z}}=\sqrt{2 s+2 p}$. For any fixed $p \in\left[\frac{1}{\sqrt{3}}, 1\right]$ we consider the function $f_{p}:[p, \infty) \rightarrow \mathbb{R}$, defined by $f_{p}(t)=\sqrt{\frac{1-p^{2}}{2 t}}+\sqrt{2 t+2 p}$.
First off, $f_{p}^{\prime}(t)=-\frac{\sqrt{1-p^{2}}}{(2 t)^{\frac{3}{2}}}+\frac{1}{\sqrt{2 t+2 p}}$. We'll prove that $f_{p}^{\prime}(t) \geq 0$. This is equivalent to showing that $8 t^{3} \geq\left(1-p^{2}\right)(2 t+2 p)$, i.e., $4 t^{3}-\left(1-p^{2}\right) t-\left(1-p^{2}\right) p \geq 0$, for $t \geq p$.
Define function $g_{p}(t):[p, \infty) \rightarrow \mathbb{R}$, by $g_{p}(t)=4 t^{3}-\left(1-p^{2}\right) t-\left(1-p^{2}\right) p$.
The only critical point of $g_{p}(t)$ in $[0, \infty)$ is $t=\sqrt{\frac{1-p^{2}}{12}}$, which is clearly less than p, implying $g_{p}(t) \geq g_{p}(p)=2 p\left(3 p^{2}-1\right) \geq 0$, for $t \geq p$, so that $f_{p}(t) \geq f_{p}(p)=\sqrt{\frac{1-p^{2}}{2 p}}+2 \sqrt{p}$ for $t \geq p, s$, in particular.
Thus, suffice it to show that, for $p \in\left[\frac{1}{\sqrt{3}}\right], \sqrt{\frac{1-p^{2}}{2 p}}+2 \sqrt{p} \geq 2$. This is equivalent to $\sqrt{\frac{(1-p)(1+p)}{2 p}} \geq \frac{2(1-p)}{2+\sqrt{p}}$. Since $1-p \geq 0$, we just need to prove $\sqrt{\frac{1+p}{2 p}} \geq \frac{2 \sqrt{1-p}}{1+\sqrt{p}}$. Set $\sqrt{p}=u$. Then $u \in\left[\frac{1}{\sqrt[4]{3}}, 1\right]$ and we'll show that $\frac{1+u^{2}}{2 u^{2}} \geq \frac{4\left(1-u^{2}\right)}{\left(1+u^{2}\right)}$ which is $9 u^{4}+2 u^{3}-6 u^{2}+2 u \geq 0$, or $\left(3 u^{2}-1\right)^{2}+2 u^{3}+2 u \geq 0$. The latter is obviously true for $u \in\left[\frac{1}{\sqrt[4]{3}}, 1\right]$. The proof is complete.

71. Radon's Inequality and Applications

Radon's Inequality (by Alexander Bogomolny - USA)
The content of the present page has been borrowed (at least in its initial form) from an article by Dorin Marghidanu Generalisations and Refinements for Bergström and Radon's Inequalities.

If $x_{k}, a_{k}>0, k \in\{1,2, \ldots, n\}, p>0$, then:

$$
\frac{x_{1}^{p+1}}{a_{1}^{p}}+\frac{x_{2}^{p+1}}{a_{2}^{p}}+\ldots+\frac{x_{n}^{p+1}}{a_{n}^{p}} \geq \frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{p+1}}{\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{p}}
$$

The equality is only attained for

$$
\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\ldots=\frac{x_{n}}{a_{n}}
$$

Clearly, for $p=1$ the inequality becomes that of Bergström.

Proof of Radon's Inequality.

As a first step, we prove the inequality for $n=2$, deriving it from the well-known Hölder's inequality:

$$
\sum_{i=1}^{n} u_{i} v_{i} \leq\left(\sum_{i=1}^{n} u_{i}^{s}\right)^{\frac{1}{s}}\left(\sum_{i=1}^{n} v_{i}^{t}\right)^{\frac{1}{t}}
$$

where $\frac{1}{s}+\frac{1}{t}=1, s, t,>1$, and all u_{i} and v_{i} are assumed positive. This is obviously a generalisation of the Cauchy - Schwarz inequality. The same method will also work for larger n but I prefer to use Dorin Marghidanu's original derivation that depends on the case of $n=2$.

Thus, we want to prove that, say,

$$
\frac{x^{p+1}}{a^{p}}+\frac{y^{p+1}}{b^{p}} \geq \frac{(x+y)^{p+1}}{(a+b)^{p}}
$$

Setting $s=\frac{p+1}{p}$ and $t=p+1$, we start with

$$
\begin{aligned}
x+y=a^{\frac{1}{s}} & \left(\frac{x}{a^{\frac{1}{s}}}\right)+b^{\frac{1}{s}}\left(\frac{y}{b^{\frac{1}{s}}}\right) \leq\left(a^{\frac{s}{s}}+b^{\frac{s}{s}}\right)^{\frac{1}{s}}\left(\frac{x^{t}}{a^{\frac{t}{s}}}+\frac{y^{t}}{b^{\frac{t}{s}}}\right)^{\frac{1}{t}} \\
& =\left[(a+b)^{p}\left(\frac{x^{p+1}}{a^{p}}+\frac{y^{p+1}}{b^{p}}\right)\right]^{\frac{1}{(p+1)}}
\end{aligned}
$$

This is equivalent to the required inequality. Now for the rest of n. Define

$$
d_{n}=\frac{x_{1}^{p+1}}{a_{1}^{p}}+\frac{x_{2}^{p+1}}{x_{2}^{p}}+\ldots+\frac{x_{n}^{p+1}}{x_{n}^{p}}-\frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{p+1}}{a_{1}+a_{2}+\ldots+a_{n}} .
$$

Our task is to prove that $d_{n} \geq 0$, for $n \geq 2$. We are going to show more, viz., that the sequence $\left\{d_{n}\right\}$ monotone increasing and, since $d_{1}=0$, this will solve the entire problem of proving Radon's inequality.

To this end,

$$
\begin{gathered}
d_{n+1}-d_{n}=\sum_{k=1}^{n+1} \frac{x_{k}^{p+1}}{a_{k}^{p}}-\frac{\left(\sum_{k=1}^{n+1}\right)^{p+1}}{\left(\sum_{k=1}^{n+1} a_{k}\right)^{p}}-\sum_{k=1}^{n} \frac{x_{k}^{p+1}}{a_{k}^{p}}+\frac{\left(\sum_{k=1}^{n} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}} \\
=\left[\frac{\left(\sum_{k=1}^{n} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}+\frac{x_{n+1}^{p+1}}{a_{n+1}^{p}}}\right]-\frac{\left(\sum_{k=1}^{n+1} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n+1} a_{k}\right)^{p}} \geq \frac{\left(\sum_{k=1}^{n+1}\right)^{p+1}}{\left(\sum_{k=1}^{n+1} a_{k}\right)^{p}}-\frac{\left(\sum_{k=1}^{n+1} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n+1} a_{k}\right)^{p}}=0,
\end{gathered}
$$

where in the penultimate step we used the earlier case of $n=2$.
Obviously, this proof can be regarded as a proof by induction.

Reverse Radon's Inequality

Daniel Sitaru has kindly alert me to the validity of what's known as the reverse Radon's inequality:

If $x_{k}, a_{k}>0, k \in\{1,2, \ldots, n\}, 0 \leq p \leq 1$, then

$$
\frac{x_{1}^{p}}{a_{1}^{p-1}}+\frac{x_{2}^{p}}{a_{2}^{p-1}}+\ldots+\frac{x_{n}^{p}}{a_{n}^{p-1}} \leq \frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{p}}{\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{p-1}}
$$

Applications:

1. A Problem in Four Variables

Daniel Sitaru has posted the following problem from the Romanian Mathematical Magazine:

If $a, b, c, d \in(0, \infty)$, and $a b c d=1$ then

$$
\frac{(a+b+c)^{5}}{(b+c+d)^{4}}+\frac{(b+c+d)^{5}}{(c+d+a)^{4}}+\frac{(c+d+a)^{5}}{(d+a+b)^{4}}+\frac{(d+a+b)^{5}}{(a+b+c)^{4}} \geq 12
$$

Proposed by Daniel Sitaru - Romania
Proof (by Alexander Bogomolny - USA).
The inequality is solved by an application of Radon's inequality, followed by the AM - GM inequality:

$$
\begin{aligned}
& \frac{(a+b+c)^{5}}{(b+c+d)^{4}}+\frac{(b+c+d)^{5}}{(c+d+a)^{4}}+\frac{(c+d+a)^{5}}{(d+a+b)^{4}}+\frac{(d+a+b)^{5}}{(a+b+c)^{4}} \geq \\
& \geq \frac{[3(a+b+c+d)]^{5}}{[3(a+b+c+d)]^{4}}=3(a+b+c+d) \geq 3 \cdot 4(a b c d)^{\frac{1}{4}} \geq 12
\end{aligned}
$$

2. 42 IMO, Problem 2

Prove that, for all positive a, b, c,

$$
\frac{a}{a^{2}+8 b c}+\frac{b}{b^{2}+8 c a}+\frac{c}{c^{2}+8 a b} \geq 1
$$

Proof (by Alexander Bogomolny - USA).
The left-land side can be rewritten as

$$
M=\frac{a^{\frac{3}{2}}}{a^{3}+8 a b c}+\frac{b^{\frac{3}{2}}}{b^{3}+8 a b c}+\frac{c^{\frac{3}{2}}}{c^{3}+8 a b s}
$$

which suggests using Radon's inequality with $p=\frac{1}{2}$ and $n=3$:

$$
M \geq \frac{(a+b+c)^{\frac{3}{2}}}{\left(a^{2}+b^{3}+c^{3}+24 a b c\right)^{\frac{1}{2}}}=\sqrt{\frac{(a+b+c)^{3}}{a^{3}+b^{3}+c^{3}+24 a b c}}
$$

Thus suffice it to prove that $\frac{(a+b+c)^{3}}{a^{3}+b^{3}+c^{3}+24 a b c} \geq 1$. This inequality reduces to

$$
a b^{2}+a^{2} b+b c^{2}+b^{2} c+c a^{2}+c^{2} a \geq 6 a b c
$$

which is an immediate consequence of the $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{G M}$ inequality.

72. An Inequality in Triangle, IX

In an acute $\triangle A B C, A^{\prime}, A^{\prime \prime} \in B C ; B^{\prime}, B^{\prime \prime} \in A C ; C^{\prime}, C^{\prime \prime} \in A B \cdot A A^{\prime}, B B^{\prime}, C C^{\prime}$ are angle bisectors that intersect at the incenter $I ; A A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are the altitudes that intersect at the orthocenter H. Prove that

$$
27 \prod_{c y c l} I A^{\prime} \cdot H A^{\prime \prime} \leq \frac{1}{27} \prod_{c y c l} l_{a} h_{a}
$$

where l_{a}, l_{b}, l_{c}, are the lengths of the bisector and h_{a}, h_{b}, h_{c} the lengths of the altitudes in $\triangle A B C$.

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).

Let M be a point in the interior of $\triangle A B C$, and $A A_{0}, B B_{0}, C C_{0}$ the cevians through M. Then by Gergonne's Theorem, and, applying the AM - GM inequality,

$$
1=\frac{M A_{0}}{A A_{0}}+\frac{M B_{0}}{B B_{0}}+\frac{M C_{0}}{C C_{0}} \geq \sqrt[3]{\frac{M A_{0}}{A A_{0}} \cdot \frac{M B_{0}}{B B_{0}} \cdot \frac{M C_{0}}{C C_{0}}}
$$

In particular, $1 \geq 27 \frac{I A^{\prime}}{l_{a}} \cdot \frac{I B^{\prime}}{l_{b}} \cdot \frac{I C^{\prime}}{l_{c}}$ and $1 \geq 27 \frac{H A^{\prime \prime}}{h_{a}} \cdot \frac{H B^{\prime \prime}}{h_{b}} \cdot \frac{H C^{\prime \prime}}{h_{c}}$ whose product gives the required result.

Acknowledgment (by Alexander Bogomolny - USA)

The inequality and the solution have been kindly communicated to me by Daniel Sitaru.

73. An Inequality in Triangle, X

In any $\triangle A B C$,

$$
\frac{1}{r^{2}} \sum_{c y c l} a^{3} \cos B \cos C \geq 16\left(\sum_{c y c l} \sin A\right)\left(\sum_{c y c l} \cos ^{2} A\right)
$$

where r is the inradius of $\triangle A B C$.
Proposed by Daniel Sitaru - Romania
Proof (by Daniel Sitaru).
Since, by the Law of Sines, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$, where R is the circumradius of $\triangle A B C$,

$$
\begin{gathered}
\Delta=\left|\begin{array}{lll}
a & b \cos C & c \cos B \\
b & c \cos A & a \cos C \\
c & a \cos B & b \cos A
\end{array}\right|=8 R^{3}\left|\begin{array}{lll}
\sin A & \sin B \cos C & \sin C \cos B \\
\sin B & \sin C \cos A & \sin A \cos C \\
\sin C & \sin A \cos B & \sin B \cos A
\end{array}\right| \\
=8 R^{3}\left|\begin{array}{llll}
\sin A & \sin (B+C) & \sin C \cos B \\
\sin B & \sin (A+C) & \sin A \cos C \\
\sin C & \sin (A+B) & \sin B \cos A
\end{array}\right|=8 R^{3}\left|\begin{array}{lll}
\sin A & \sin (\pi-A) & \sin C \cos B \\
\sin B & \sin (\pi-B) & \sin A \cos C \\
\sin C & \sin (\pi-C) & \sin B \cos A
\end{array}\right|
\end{gathered}
$$

$$
=8 R^{3}\left|\begin{array}{lll}
\sin A & \sin A & \sin C \cos B \\
\sin B & \sin B & \sin A \cos C \\
\sin C & \sin C & \sin B \cos A
\end{array}\right|=0
$$

On the other hand,

$$
\begin{gathered}
0=\Delta=\left|\begin{array}{ccc}
a & b \cos C & c \cos B \\
b & c \cos A & a \cos C \\
c & a \cos B & b \cos A
\end{array}\right| \\
=a b c \cos ^{2} A+a b c \cos ^{2} C+a b c \cos ^{2} A- \\
-c^{3} \cos A \cos B-a^{3} \cos B \cos C-b^{3} \cos A \cos C \\
=a b c \sum_{c y c l} \cos ^{2} A-\sum_{c y c l} a^{3} \cos B \cos C \\
=4 R S \sum_{c y c l} \cos ^{2} A-\sum_{c y c l} a^{3} \cos B \cos C
\end{gathered}
$$

where $S=[\triangle A B C]$ is the area of $\triangle A B C$. (As is well known, abc=4RS.) Further,

$$
\begin{gathered}
\sum_{c y c l} a^{3} \cos B \cos C=4 R S \sum_{c y c l} \cos ^{2} A \\
=4 R r p \sum_{c y c l} \cos ^{2} A \\
=4 R r \cdot \frac{a+b+c}{2} \sum_{c y c l} \cos ^{2} A
\end{gathered}
$$

so that

$$
\frac{\sum_{c y c l} a^{3} \cos B \cos C}{\sum_{c y c l} \cos ^{2} A}=2 R r(a+b+c)=2 R r \cdot 2 R \cdot \sum_{c y c l} \sin A=4 R^{2} r \sum_{c y c l} \sin A
$$

Now using Euler's inequality $R>2 r$,

$$
\frac{\sum_{c y c l} a^{3} \cos B \cos C}{\left(\sum_{c y c l} \sin A\right)\left(\sum_{c y c l} \cos ^{2} A\right)}=4 R^{2} r \geq 16 r^{3}
$$

which is the same as the required inequality.

Acknowledgment (by Alexander Bogomolny - USA)

The inequality and the solution have been kindly communicated to me by Dan Sitaru. It was published at the Romanian Mathematical Magazine.

74. An Inequality with Cycling Sums

Acknowledgment (by Alexander Bogomolny - USA)

The following problem and its solution have been communicated to me by Daniel Sitaru along with Proof 1. Proof 2 has been added by Imad Zak.

Prove that, for all positive numbers $x, y, z, x y z=1$, the following inequality holds:

$$
\sum_{c y c l}\left(x^{4}+y^{3}+z\right) \geq \sum_{c y c l} \frac{x^{2}+y^{2}}{z}+3
$$

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru).
We use the two special cases of Schur's inequality:

$$
\left\{\begin{array}{l}
t=1: \sum_{c y c l} x^{3}+3 x y z \geq \sum_{c y c l} x y(x+y), \\
t=2: \sum_{c y c l} x^{4}+x y z \sum_{c y c l} x \geq \sum_{c y c l} x y\left(x^{2}+y^{2}\right)
\end{array}\right.
$$

The two inequalities are simplified by nothing that $x y z=1$. Add the two:

$$
\begin{gathered}
\sum_{c y c l}\left(x^{4}+x^{3}+x\right)+3 \geq \sum_{c y c l} \frac{x^{2}+y^{2}}{z}+\sum_{c y c l}\left(\frac{x}{z}+\frac{y}{z}\right) \\
=\sum_{c y c l} \frac{x^{2}+y^{2}}{z}+\sum_{c y c l}\left(\frac{x}{z}+\frac{z}{x}\right) \\
\geq \sum_{c y c l} \frac{x^{2}+y^{2}}{z}+6
\end{gathered}
$$

which prove the required inequality.
Proof 2 (by Imad Zak - Lebanon).
First note that by the $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{G M}$ inequality,

$$
\sum_{c y c l} y^{3} \geq 3 x y z=3
$$

Thus (where we also use Schur's inequality with $t=2$),

$$
\begin{gathered}
\sum_{c y c l}\left(x^{4}+y^{3}+z\right)=\sum_{c y c l} x^{4}+\sum_{c y c l} x^{4}+\sum_{c y c l} y^{3}+\sum_{c y c l} z \\
\geq \sum_{c y c l x^{4}}+\sum_{c y c l} z+3=\sum_{c y c l} x^{4}+x y z \sum_{c y c l} x+3 \\
\geq \sum_{c y c l} x y\left(x^{2}+y^{2}\right)+3=\sum_{c y c l} \frac{1}{z}\left(x^{2}+y^{2}\right)+3
\end{gathered}
$$

Equality holds when $x=y=z=1$.

75. An Inequality with Determinants

Let $a, b, c, d>0$. Then

$$
\left|\begin{array}{cccc}
a & -b & 0 & 0 \\
0 & b & -c & 0 \\
0 & 0 & c & -d \\
1 & 1 & 1 & 1+d
\end{array}\right| \geq 3 \sqrt[4]{4}(a b c d)^{\frac{5}{6}}
$$

Determine when the equality holds.

Proposed by Daniel Sitaru - Romania

Proof (by Ravi Prakash - India).
It could be seen that the determinant Δ in the left-hand side of the required inequality equals $\Delta=a b c d+a c d+a b d+a b c+b c d$ which is evaluated via $\boldsymbol{A} \boldsymbol{M} \boldsymbol{-} \boldsymbol{G} \boldsymbol{M}$ inequality:

$$
\Delta=a b c d+a c d+a b d+a b c+b c d
$$

$$
\begin{gathered}
=\frac{1}{2} a b c d+\frac{1}{2} a b c d+a c d+a b d+a b c+b c d \\
\geq 6\left[\frac{1}{4}(a b c d)^{2}(a c d)(a b d)(a b c)(b c d)\right]^{\frac{1}{6}}=6\left(\frac{1}{4}\right)^{\frac{1}{6}}(a b c d)^{\frac{5}{6}} \\
=3 \cdot 4^{\frac{1}{3}}(a b c d)^{\frac{5}{6}}
\end{gathered}
$$

The equality holds when $\frac{1}{2} a b c d=a b c=b c d=\cdots$, i.e., when $a=b=c=d=2$.

Acknowledgment (by Alexander Bogomolny - USA)

The inequality from the book Math Accent has been posted at the CutTheKnotMath page by Dan Sitaru along with a solution by Ravi Prakash.

76. An Inequality with Determinants II

Let $0<a, b, c, d<1$. Then

$$
\Delta=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
a & b & c & d \\
a^{2} & b^{2} & c^{2} & d^{2} \\
\frac{1}{a^{2}} & \frac{1}{b^{2}} & \frac{1}{c^{2}} & \frac{1}{d^{2}}
\end{array}\right|<\frac{1}{a b c d}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)
$$

Proposed by Daniel Sitaru - Romania

Proof 1 (by Leonard Giugiuc).

Start with subtracting the first column from the other three:

$$
\begin{gathered}
\Delta=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
a & b-a & c-a & d-a \\
a^{2} & (b-a)(b+a) & (c-a)(c+a) & (d-a)(d+a) \\
\frac{1}{a^{2}} & \frac{(b-a)(b+a)}{a^{2} b^{2}} & \frac{(c-a)(c+a)}{a^{2} c^{2}} & \frac{(d-a)(d+a)}{a^{2} d^{2}}
\end{array}\right| \\
=\frac{(b-a)(c-a)(d-a)}{a^{2}}\left|\begin{array}{ccc}
1 & 1 & 1 \\
b+a & c+a & d+a \\
\frac{b+a}{b^{2}} & \frac{c+a}{c^{2}} & \frac{d+a}{d^{2}}
\end{array}\right| \\
=\frac{(b-a)(c-a)(d-a)}{a^{2} b^{2} c^{2} d^{2}}\left|\begin{array}{ccc}
1 & 1 & 1 \\
b+a & c+a & d+a \\
c^{2} d^{2}(b+a) & b^{2} d^{2}(c+a) & b^{2} c^{2}(d+a)
\end{array}\right| \\
=\frac{(b-a)(c-a)(d-a)}{a^{2} b^{2} c^{2} d^{2}} \cdot \Delta^{\prime} ;
\end{gathered}
$$

where Δ^{\prime} is being evaluated furher:

$$
\Delta^{\prime}=\left|\begin{array}{ccc}
1 & 0 & 0 \\
b+a & c-b & d-b \\
c^{2} d^{2}(b+a) & d^{2}(c-b)(a b+a c+b c) & c^{2}(d-b)(a b+a d+b d)
\end{array}\right|
$$

It follows that

$$
\begin{aligned}
& \qquad|\Delta|=\frac{|(b-a)(c-a)(d-a)(c-b)(d-b)(d-c)|(a b c+a b d+a c d+b c d)}{a^{2} b^{2} c^{2} d^{2}} \\
& <\frac{a b c+a b d+a c d+b c d}{a^{2} b^{2} c^{2} d^{2}}=\frac{1}{a b c d}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right) \\
& \text { because }|(b-a)(c-a)(d-a)(c-b)(d-c)|<1 .
\end{aligned}
$$

Proof 2 (by Hector Manuel Garduno Castaneda).
First of all, the required inequality is equivalent to

$$
\begin{aligned}
\mathbb{D} & =\left|\begin{array}{cccc}
a^{2} & b^{2} & c^{2} & d^{2} \\
a^{3} & b^{3} & c^{3} & d^{3} \\
a^{4} & b^{4} & c^{4} & d^{4} \\
1 & 1 & 1 & 1
\end{array}\right|<a b c d\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right) \\
\text { Note that } \mathbb{D} & =-\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
a^{2} & b^{2} & c^{2} & d^{2} \\
a^{3} & b^{3} & c^{3} & d^{3} \\
a^{4} & b^{4} & c^{4} & d^{4}
\end{array}\right| . \operatorname{Set} P(x)=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x^{2} & b^{2} & c^{2} & d^{2} \\
x^{3} & b^{3} & c^{3} & d^{3} \\
x^{4} & b^{4} & c^{4} & d^{4}
\end{array}\right| .
\end{aligned}
$$

$P(x)$ is a polynomial of degree 4 and $P(b)=P(c)=P(d)=0$. Thus

$$
P(x)=q(b, c, d)(x-b)(x-c)(\alpha x+\beta)
$$

Indeed, $P(a)=q(b, c, d)(a-b)(a-c)(a-d)(\alpha a+\beta)$. Now, since \mathbb{D} is symmetric in all four variables, it is easy to show that $q(b, c, d)=(b-c)(b-d)(c-d)$ so that

$$
\begin{equation*}
P(x)=(b-c)(b-d)(c-d)(x-b)(x-c)(x-d)(\alpha x+\beta) \tag{1}
\end{equation*}
$$

On the other hand, in the determinant representation of $P(x)$ we get

$$
P(0)=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & b^{2} & c^{2} & d^{2} \\
0 & b^{3} & c^{3} & d^{3} \\
0 & b^{4} & c^{4} & d^{4}
\end{array}\right|=b^{2} c^{2} d^{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
b & c & d \\
b^{2} & c^{2} & d^{2}
\end{array}\right|
$$

Comparing this to (1) gives $\beta=b c d$. Thus,

$$
P(x)=(b-c)(b-d)(c-d)(x-b)(x-c)(x-d)(a x+b c d)
$$

Using the symmetry of \mathbb{D} again, we obtain $\alpha=b c+b d+c d$, and, therefore,

$$
\mathbb{D}=-P(a)=(b-c)(d-b)(d-c)(b-a)(c-a)(d-a)(a b c+a b d+a c d+b c d)
$$

and the required inequality follows.

Acknowledgment (by Alexander Bogomolny - USA)

The inequality from the book Math Power has been posted at the CutTheKnotMath page by Dan Sitaru. Solution 1 is by Leo Giugiuc; Solution 2 is by Hector Manuel Garduno Castaneda.

77. An Inequality with Determinants III

If $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$, then

$$
\left|\begin{array}{ccccc}
0 & x^{2} & y^{2} & z^{2} & 1 \\
x^{2} & 0 & x^{2}+y^{2} & x^{2}+z^{2} & 1 \\
y^{2} & x^{2}+y^{2} & 0 & y^{2}+z^{2} & 1 \\
z^{2} & x^{2}+z^{2} & y^{2}+z^{2} & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right| \leq\left|\begin{array}{ccccc}
0 & a^{2} & b^{2} & c^{2} & 1 \\
a^{2} & 0 & a^{2}+b^{2} & a^{2}+c^{2} & 1 \\
b^{2} & a^{2}+b^{2} & 0 & b^{2}+c^{2} & 1 \\
c^{2} & a^{2}+c^{2} & b^{2}+c^{2} & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right|
$$

Proof 1 (by Daniel Sitaru - Romania).
Following the notations in the diagram below:

$O A=a ; O B=b ; O C=c ; A C^{2}=a^{2}+c^{2} ; B C^{2}=b^{2}+c^{2} ; A B^{2}=a^{2}+b^{2}$ and
$O M=x ; O N=y ; O P=z ; M P^{2}=x^{2}+z^{2} ; N P^{2}=y^{2}+z^{2} ; M N^{2}=x^{2}+y^{2}$.
One may recollect that

$$
V[O A B C]=\frac{1}{288} \cdot\left|\begin{array}{ccccc}
O & O A^{2} & O B^{2} & O C^{2} & 1 \\
O A^{2} & 0 & O A^{2}+O B^{2} & O A^{2}+O C^{2} & \\
O B^{2} & O A^{2}+O B^{2} & 0 & O B^{2}+O C^{2} & 1 \\
O C^{2} & O C^{2}+O A^{2} & O C^{2}+O B^{2} & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right|
$$

In other words,

$$
V[O A B C]=\frac{1}{288}\left|\begin{array}{ccccc}
0 & a^{2} & b^{2} & c^{2} & 1 \\
a^{2} & 0 & a^{2}+b^{2} & a^{2}+c^{2} & 1 \\
b^{2} & a^{2}+b^{2} & 0 & b^{2}+c^{2} & 1 \\
c^{2} & a^{2}+c^{2} & b^{2}+c^{2} & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right|
$$

Similarly,

$$
V[O M N P]=\frac{1}{288}\left|\begin{array}{ccccc}
0 & x^{2} & y^{2} & z^{2} & 1 \\
x^{2} & 0 & x^{2}+y^{2} & x^{2}+z^{2} & 1 \\
y^{2} & x^{2}+y^{2} & 0 & y^{2}+z^{2} & 1 \\
z^{2} & x^{2}+z^{2} & y^{2}+z^{2} & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right|
$$

and the fact that, obviously, $V(O M N P) \leq V(O A B C)$, proves the required inquality.

Solution 2 (by Alexander Bogomonly - USA).
We'll use column and row transformations:

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
0 & x^{2} & y^{2} & z^{2} & 1 \\
x^{2} & 0 & x^{2}+y^{2} & x^{2}+z^{2} & 1 \\
y^{2} & x^{2}+y^{2} & 0 & y^{2}+z^{2} & 1 \\
z^{2} & x^{2}+z^{2} & y^{2}+z^{2} & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right|=\left|\begin{array}{ccccc}
0 & x^{2} & y^{2} & z^{2} & 1 \\
x^{2} & -x^{2} & y^{2} & z^{2} & 1 \\
y^{2} & x^{2} & -y^{2} & z^{2} & 1 \\
z^{2} & x^{2} & y^{2} & -z^{2} & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right| \\
& \quad=\left|\begin{array}{cccc}
x^{2} & y^{2} & z^{2} & 1 \\
-x^{2} & y^{2} & z^{2} & 1 \\
x^{2} & -y^{2} & z^{2} & 1 \\
x^{2} & y^{2} & -z^{2} & 1
\end{array}\right|=x^{2} y^{2} z^{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 1 \\
1 \\
1 & -1 & 1 \\
1 & 1 & -1 \\
1
\end{array}\right|= \\
& =x^{2} y^{2} z^{2}\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-2 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0
\end{array}\right|=-x^{2} y^{2} z^{2}\left|\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right|=8 x^{2} y^{2} z^{2}
\end{aligned}
$$

Similarly, the determinant in the right-hand side of the required inequality equals $8 a^{2} b^{2} c^{2}$, making the inequality obvious.

Acknowledgment (by Alexander Bogomolny - USA)

The inequality from his book Math Accent has been posted at the CutTheKnotMath page by Dan Sitaru. Dan has later communicated privately a solution (Solution 1) and placed a link to this page at the Romanian Mathematical Magazine.

78. An Inequality with Integrals and Rearrangement

Acknowledgment (by Alexander Bogomolny - USA)

Leo Giugiuc has kindly communicated to me the following problem, along with a solution. The problem is from Dan Sitaru's book Math Accent. If $a, b, c \in(0, \pi)$ then:

$$
\sum b^{2} c^{3} \int_{0}^{a}(\cot x)\left(\tan ^{-1} x\right) d x<a b c\left(a^{3}+b^{3}+c^{3}\right)
$$

Proposed by Daniel Sitaru - Romania

Proof (by Leonard Giugiuc - Romania).

First off, $\lim _{x \rightarrow 0^{+}}(\cot x \cdot \arctan x)=\lim _{x \rightarrow 0^{+}}\left(\cos x \cdot \frac{\arctan x}{\sin x}\right)=1$, implying that the function $f:[0, \pi) \rightarrow \mathbb{R}$, defined by

$$
f(x)=\left\{\begin{array}{l}
\cot x \cdot \arctan x, x \in(0, \pi) \\
1, x=0
\end{array}\right.
$$

is continuos.
Now, for $x \in\left(0, \frac{\pi}{2}\right)$, $\arctan x<x<\tan x$, implying that
$\cot x \cdot \arctan x<\cot x \cdot \tan x=1$. It follows that on $\left[0, \frac{\pi}{2}\right], f(x)<1$ so that $\int_{0}^{a} f(x) d x<\int_{0}^{a} 1 d x<a$, if $a \in\left(0, \frac{\pi}{2}\right]$.

Illustration by Alexander Bogomolny - USA:

If $a \in\left(\frac{\pi}{2}, \pi\right)$ then

$$
\int_{0}^{a} f(x) d x=\int_{0}^{\frac{\pi}{2}} f(x) d x+\int_{\frac{\pi}{2}}^{a} f(x) d x<\int_{0}^{\frac{\pi}{2}} f(x) d x<\frac{\pi}{2}<a
$$

Thus, for $a \in(0, \pi), \int_{0}^{a} f(x) d x<a$ and similarly $\int_{0}^{b} f(x) d x<b$ and $\int_{0}^{c} f(x) d x<c$.
Thus, $\sum_{c y c l} b^{2} c^{3} \int_{a}^{a} f(x) d x<\sum_{c y c l} a b^{2} c^{3}$. But $\sum_{c y c l} a b^{2} c^{3}=a b c \sum_{c y c l} b c^{2}$ and, by the rearrangement inequality, $\sum_{c y c l} b c^{2} \leq a^{3}+b^{3}+c^{3}$

79. An Inequality with Just Two Variables

Prove that, for positive a, b,

$$
\left(\frac{2 a b}{a+b}+\sqrt{\frac{a^{2}+b^{2}}{2}}\right)\left(\frac{a+b}{2 a b}+\sqrt{\frac{2}{a^{2}+b^{2}}}\right) \leq \frac{(a+b)^{2}}{a b} .
$$

Proposed by Danile Sitaru - Romania

Proof 1 (by Kevin Soto Palacios - Huarmey - Peru).

The required inequality is equivalent to

$$
1+1+\left(\frac{a+b}{2 a b}\right)\left(\sqrt{\frac{a^{2}+b^{2}}{2}}\right)+\left(\frac{2 a b}{a+b}\right)\left(\sqrt{\frac{2}{a^{2}+b^{2}}}\right) \leq 2+\frac{a}{b}+\frac{b}{a}
$$

or,

$$
\left(\frac{a+b}{2 a b}\right)\left(\sqrt{\frac{a^{2}+b^{2}}{2}}\right)+\left(\frac{2 a b}{a+b}\right)\left(\sqrt{\frac{2}{a^{2}+b^{2}}}\right) \leq \frac{a}{b}+\frac{b}{a}
$$

Focusing on the left - hand side:

$$
\begin{gathered}
\left(\frac{a+b}{2 a b}\right)\left(\sqrt{\frac{a^{2}+b^{2}}{2}}\right)+\left(\frac{2 a b}{a+b}\right)\left(\sqrt{\frac{2}{a^{2}+b^{2}}}\right) \\
=\frac{1}{\sqrt{2\left(a^{2}+b^{2}\right)}}\left(\frac{a+b}{2 a b}\left(a^{2}+b^{2}\right)+\frac{4 a b}{a+b}\right) \\
\leq \frac{1}{\sqrt{2\left(a^{2}+b^{2}\right)}}\left(\frac{a+b}{2 a b}\left(a^{2}+b^{2}\right)+(a+b)\right) \leq \frac{1}{a+b}\left(\frac{a+b}{2 a b}\left(a^{2}+b^{2}\right)+(a+b)\right) \\
=\frac{a^{2}+b^{2}}{2 a b}+1 \leq \frac{1}{2}\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{1}{2}\left(\frac{a}{b}+\frac{b}{a}\right)=\frac{a}{b}+\frac{b}{a},
\end{gathered}
$$

$$
\text { where we applied the } \boldsymbol{A} \boldsymbol{M}-\boldsymbol{G M} \text { inequality. }
$$

Proof 2 (by Soumava Chakraborty - Kolkata - India).

We know that

Harmonic mean \leq Arithmetic mean \leq Quadratic mean, implying

$$
\frac{2 a b}{a+b}=\frac{2}{\frac{1}{a}+\frac{1}{b}} \leq \frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}
$$

such that

$$
\begin{equation*}
\frac{2 a b}{a+b}+\sqrt{\frac{a^{2}+b^{2}}{2}} \leq 2 \sqrt{\frac{a^{2}+b^{2}}{2}} \tag{1}
\end{equation*}
$$

Also,

$$
\frac{a+b}{2}\left(\frac{1}{a b}\right) \leq \sqrt{\frac{a^{2}+b^{2}}{2}}\left(\frac{1}{a b}\right)
$$

such that

$$
\begin{equation*}
\frac{a+b}{2 a b}+\sqrt{\frac{2}{a^{2}+b^{2}}} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}\left(\frac{1}{a b}\right)+\sqrt{\frac{2}{a^{2}+b^{2}}} \tag{2}
\end{equation*}
$$

Multiplying (1) and (2) we get

$$
\begin{gathered}
\left(\frac{2 a b}{a+b}+\sqrt{\frac{a^{2}+b^{2}}{2}}\right)\left(\frac{a+b}{2 a b}+\sqrt{\frac{2}{a^{2}+b^{2}}}\right) \\
\leq 2 \sqrt{\frac{a^{2}+b^{2}}{2}}\left(\sqrt{\frac{a^{2}+b^{2}}{2}}\left(\frac{1}{a b}\right)+\sqrt{\frac{2}{a^{2}+b^{2}}}\right)=\frac{a^{2}+b^{2}}{a b}+2=\frac{(a+b)^{2}}{a b} .
\end{gathered}
$$

Proof 3 (by Daniel Sitaru - Romania).
$\boldsymbol{W L O G}$, assume $a \leq b$. As before,

$$
0<a \leq \frac{2 a b}{a+b}=\frac{2}{\frac{1}{a}+\frac{1}{b}} \leq \frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}} \leq b
$$

We'll use Schweitzer's inequality:

$$
\left(\sum_{k=1}^{n} x_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{x_{k}}\right) \leq \frac{(m+M)^{2} n^{2}}{4 m M}
$$

where $x_{1}, \ldots, x_{n} \in[m, M], M>0$.
with $=2, x_{1}=\frac{2 a b}{a+b}, x_{2}=\sqrt{\frac{a^{2}+b^{2}}{2}}$, we directly get

$$
\left(\frac{2 a b}{a+b}+\sqrt{\frac{a^{2}+b^{2}}{2}}\right)\left(\frac{a+b}{2 a b}+\sqrt{\frac{2}{a^{2}+b^{2}}}\right) \leq \frac{(a+b)^{2}}{a b} .
$$

Acknowledgment (by Alexander Bogomolny - USA)

The problem above has been kindly posted to the CutTheKnotMath page by Dan Sitaru, along with several solutions. Solution 1 is by Kevin Soto Palacios; Solution 2 by Soumava Chakraborty; Solution 3 is by Dan Sitaru.

80. Inequality with Cubes and Cube Roots

In $\triangle A B C$,

$$
\sum_{c y c l}(\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c})^{3} \geq \sqrt[3]{3 a}+\sqrt[3]{3 b}+\sqrt[3]{3 c}-2
$$

where, as usual, a, b, c denote the side lengths of the triangle.

Proposed by Daniel Sitaru - Romania

Proof 1 (by Leonard Giugiuc - Romania).
First note that $\sqrt[3]{a}, \sqrt[3]{b}, \sqrt[3]{c}$ from a triangle. Indeed,

$$
(\sqrt[3]{a}+\sqrt[3]{b})^{3}=a+b+3 \sqrt[3]{a b}(\sqrt[3]{a}+\sqrt[3]{b})>a+b>c
$$

implying $\sqrt[3]{a}+\sqrt[3]{b}>\sqrt[3]{c}$. With this in mind, denote

$$
\begin{aligned}
-\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c} & =2 x \\
\sqrt[3]{a}-\sqrt[3]{b}+\sqrt[3]{c} & =2 y \\
\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c} & =2 z
\end{aligned}
$$

Then $x, y, z>0$. Further $\sqrt[3]{a}=y+z, \sqrt[3]{b}=x+z$, and $\sqrt[3]{c}=x+y$. The required inequality becomes

$$
4\left(x^{3}+y^{3}+z^{3}\right) \geq \sqrt[3]{3}(x+y+z)-1
$$

Let $x+y+z=3 s$. By Jensen's inequality, $x^{3}+y^{3}+z^{3} \geq 3 s^{3}$, with equality only if $x=y=z+s$. Hence, suffice it to show that

$$
12 s^{3}-3 \sqrt[3]{3} s+1 \geq 0
$$

which is equivalent to $(2 \sqrt[3]{3} s-1)(\sqrt[3]{3} s+1) \geq 0,3$ which is obviously true.
Equality holds only if $x=y=z=\frac{1}{2 \sqrt[3]{3}}$, i.e., when $a=b=c=\frac{1}{3}$.

Proof 2 (by Daniel Sitaru - Romania).
By the AM - GM inequality,

$$
\begin{gathered}
(\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c})^{3}+\frac{2}{3}=(\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c})^{3}+\frac{1}{3}+\frac{1}{3} \\
\geq 3 \sqrt[3]{(\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c})^{3} \cdot \frac{1}{3} \cdot \frac{1}{3}}=\frac{3}{\sqrt[3]{9}}(\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c})=\sqrt[3]{3}(\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c})
\end{gathered}
$$

That is,

$$
(\sqrt[3]{a}+\sqrt[3]{b}-\sqrt[3]{c})^{2}+\frac{2}{3} \geq \sqrt[3]{3 a}+\sqrt[3]{3 b}-\sqrt[3]{3 c}
$$

Similarly,

$$
(\sqrt[3]{b}+\sqrt[3]{c}-\sqrt[3]{a})^{3}+\frac{2}{3} \geq \sqrt[3]{3 b}+\sqrt[3]{3 c}-\sqrt[3]{3 a}
$$

and

$$
(\sqrt[3]{c}+\sqrt[3]{a}-\sqrt[3]{b})^{3}+\frac{2}{3} \geq \sqrt[3]{3 c}+\sqrt[3]{3 a}-\sqrt[3]{3 b}
$$

Adding the three gives the required inequality. Equality is attained for $a=b=c=\frac{1}{3}$.

Acknowledgment (by Alexander Bogomolny - USA)

I am grateful to Dan Sitaru for communicated to me the above problem from his book Math Accent, with two solutions. Solution 1 is by Leo Giugiuc, Solution 2 is by Dan Sitaru.

81. A Followup on Solving A Fourth Degree Equation

Acknowledgment (by Alexander Bogomolny - USA)

I learned of a problem posted by Dan Sitaru from a solution by Kunihiko Chikaya. More than the solution I liked the question, and not even the question its being a followup on the previous one. This teaches a brilliant way to generate new problems by modifying the ones already solved. This is certainly an excellent illustration of George Polya's last step - Looking back - in problem solving.
Find

$$
\sum_{i=1}^{4}\left|x_{i}\right|
$$

where $x_{i}, i=1,2,3,4$ are the roots of

$$
x^{4}+8 x^{3}+23 x^{2}+28 x+10=0
$$

Proposed by Daniel Sitaru - Romania

Proof (by Kunihiko Chikaya - Tokyo - Japan).

Clearly this problem is a followup on another one where a similar equation has been solved by three different methods. Any of these will be a good first step for answering the question at hand. I'll use the second solution which implies that

$$
x^{4}+8 x^{3}+23 x^{2}+28 x+10=(x+2)^{4}-(x+2)^{2}-2 .
$$

Thus we are led to four roots of the given polynomial; $-2 \pm \sqrt{2}$ and $2 \pm i$, whose moduli add up to $4+2 \sqrt{5}$.

82. An Inequality in Triangle III

Prove that in $\triangle A B C$, with angles A, B, C side lengths a, b, c the following inequality holds:

$$
\frac{a(b+c)}{b c \cdot \cos ^{2} \frac{A}{2}}+\frac{b(c+a)}{c a \cdot \cos ^{2} \frac{B}{2}}+\frac{c(a+b)}{a b \cdot \cos ^{2} \frac{C}{2}} \geq 8 .
$$

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru, Leonard Giugiuc - Romania).

WLOG, assume $a \geq b \geq c$. Then $a b+a c \geq b c+c a \geq c b+c a$; also, $\frac{1}{b c} \geq \frac{1}{c a} \geq \frac{1}{a b}$. From these, $\frac{a b+a c}{b c} \geq \frac{a b+b c}{a c} \geq \frac{b c+a c}{a b}$. On the other hand, $\frac{1}{\cos ^{2} x}=1+\tan ^{2} x$ and the tangent function in strictly increasing and positive on $\left(0, \frac{\pi}{2}\right)$, hence
$1+\tan ^{2} \frac{A}{2} \geq 1+\tan ^{2} \frac{B}{2} \geq 1+\tan ^{2} \frac{C}{2}$. We can apply now Chebyshev's inequality to get

$$
\begin{gathered}
\sum_{c y c} \frac{a b+a c}{b c \cdot \cos ^{2} \frac{A}{2}} \geq \\
\geq \frac{1}{3}\left(\frac{a b+a c}{b c}+\frac{a b+b c}{a c}+\frac{b c+a c}{a b}\right)\left(3+\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2}\right)
\end{gathered}
$$

Suffice it to prove that

$$
\frac{1}{3}\left(\frac{a b+a c}{b c}+\frac{a b+b c}{a c}+\frac{b c+a c}{a b}\right)\left(3+\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2}\right) \geq 24
$$

But obviously $\frac{a b+a c}{b c}+\frac{a b+b c}{a c}+\frac{b c+a c}{a b} \geq 6$. On the other hand,

$$
3+\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2} \geq 3+\frac{1}{3}\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right)^{2} \geq 3+1=4
$$

Proof 2 (by Kunihiko Chikaya - Japan).

From the half - angle formula and the Low of Cosine,

$$
\cos ^{2} \frac{A}{2}=\frac{1+\cos A}{2}=\frac{(b+c)^{2}-a^{2}}{4 b c}
$$

and similarly for the other two angles. Thus the inequality at hand is equivalent to

$$
\frac{a(b+c)}{(b+c)^{2}-a^{2}}+\frac{b(c+a)}{(c+a)^{2}-b^{2}}+\frac{c(a+b)}{(a+b)^{2}-c^{2}} \geq 2
$$

or,

$$
\frac{a(b+c)}{b+c-a}+\frac{b(c+a)}{c+a-b}+\frac{c(a+b)}{a+b-c} \geq 2(a+b+c)
$$

or, else

$$
\frac{a^{2}}{b+c-a}+\frac{b^{2}}{c+a-b}+\frac{c^{2}}{a+b-c} \geq a+b+c
$$

Now, by the Cauchy - Schwarz inequality, for any $x, y, z>0$,

$$
\frac{a^{2}}{x}+\frac{b^{2}}{y}+\frac{c^{2}}{z} \geq \frac{(a+b+c)^{2}}{x+y+z}
$$

which with $x=b+c-a, y=c+a-b, z=a+b-c$ gives

$$
\frac{a^{2}}{b+c-a}+\frac{b^{2}}{c+a-b}+\frac{c^{2}}{a+b-c} \geq \frac{(a+b+c)^{2}}{a+b+c}=a+b+c
$$

Proof 3 (by Alexander Bogomolny - USA).
We know that $\cos ^{2} \frac{A}{2}=\frac{p(p-a)}{b c}$, where $p=\frac{a+b+c}{2}$ is the semiperimeter of $\triangle A B C$.
Thus, the required inequality can be rewritten as

$$
\frac{a(b+c)}{p(p-a)}+\frac{b(c+a)}{p(p-b)}+\frac{c(b+a)}{p(p-c)} \geq 8
$$

Now observe that $\frac{a(b+c)}{p(p-a)}=\frac{2 p}{p}+\frac{a^{2}}{p(p-a)}$, and similar for the other two fractions.
Since, $\sum_{c y c} \frac{2 a}{p}=4$, the required inequality reduces to

$$
\frac{a^{2}}{p(p-a)}+\frac{b^{2}}{p(p-b)}+\frac{c^{2}}{p(p-c)} \geq 4
$$

Consider the function $f(x)=\frac{x^{2}}{p-x}, f^{\prime}(x)=\frac{2 x p}{(p-x)^{2}}>0$ and $f^{\prime \prime}(x)=\frac{2 p(p+x)}{(p-x)^{3}}<0$ for $x \in(0, p)$. Thus the function is convex on $(0, p)$. Keeping p fixed, we may apply Jensen's inequality:

$$
\begin{aligned}
\frac{a^{2}}{p(p-a)} & +\frac{b^{2}}{p(p-b)}+\frac{c^{2}}{p(p-c)} \geq \frac{\left(\frac{a+b+c}{3}\right)^{2}}{p\left(p-\frac{a+b+c}{3}\right)} \\
& =3 \frac{\left(\frac{2 p}{3}\right)^{2}}{p\left(p-\frac{2 p}{3}\right)}=3 \cdot \frac{4}{9} \cdot \frac{3}{1}=4 .
\end{aligned}
$$

The problem form the Math Phenomenon has been posted at the CutTheNotMath page by Dan Sitaru, along with a solution (Solution 1) by Leo Giugiuc and Dan Sitaru. Solution 2 is by Kunikiko Chikaya.

83. An Inequality with Exponents

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted a problem form his book "Math Phenomenon" at the CutTheKnotMath page. He also posted a solution (Solution 1)

If $a, b, c \in(0,1]$, then

$$
e^{\frac{4}{e}}\left(b \cdot a^{2 \sqrt{2}}+c \cdot b^{2 \sqrt{b}}+a \cdot c^{2 \sqrt{c}}\right) \geq 3 \sqrt[3]{a b c}
$$

When does the equality hold?

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru - Romania).

Define $f(x):(0,1] \rightarrow \mathbb{R}$ with $f(x)=x^{2 \sqrt{x}} . f^{\prime}(x)=x^{2 \sqrt{x}-\frac{1}{2}}(2+\ln x)$.

$$
\lim _{x \rightarrow 0^{+}} x^{2 \sqrt{x}}=\lim _{x \rightarrow 0^{+}} e^{2 \sqrt{x} \ln x}=e^{2 \lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x}=e^{0}=1 .
$$

$f^{\prime}(x)$ has the only root that can be found from $2+\ln x=0$, giving $x=e^{-2}$. Thus $f(x)$ is monotone decreasing on $\left(0, e^{-2}\right]$ and monotone increasing on $\left(e^{-2}, 1\right] . f(1)=1$. It follows that

$$
e^{-\frac{4}{e}} \leq a^{2 \sqrt{a}}<1, e^{-\frac{4}{e}} \leq b^{2 \sqrt{b}}<1, e^{-\frac{4}{e}} \leq x^{2 \sqrt{c}}<1 .
$$

And, subsequently,

$$
b \cdot e^{-\frac{4}{e}} \leq b a^{2 \sqrt{a}}<1, c \cdot e^{-\frac{4}{e}} \leq c b^{2 \sqrt{b}}<1, a \cdot e^{-\frac{4}{e}} \leq a c^{2 \sqrt{c}}<1
$$

Adding up and using the AM - GM inequality,

$$
b \cdot e^{-\frac{4}{e}}+c \cdot e^{-\frac{4}{e}}+a \cdot e^{-\frac{4}{e}} \geq(a+b+c) e^{-\frac{4}{e}} \geq 3 \sqrt{a b c} \cdot e^{-\frac{4}{e}} .
$$

In other words,

$$
e^{\frac{4}{e}}\left(b \cdot e^{-\frac{4}{e}}+c \cdot e^{-\frac{4}{e}}+a \cdot e^{-\frac{4}{e}}\right) \geq 3 \sqrt{a b c} .
$$

Proof 2 (by Alexander Bogomolny - USA).
This solution is much the same as the first one, with a few simplifications. First, replace $a=x^{2}, b=y^{2}, c=z^{2}$ to reduce the required inequality to

$$
e^{\frac{4}{e}}\left(y^{2} x^{4 x}+z^{2} y^{4 y}+x^{2} z^{4 z}\right) \geq 3 \sqrt[3]{x^{2} y^{2} z^{2}}
$$

With the AM-GM inequality we obtain

$$
\begin{aligned}
& \frac{1}{3}\left(y^{2} x^{4 x}+z^{2} y^{4 y}+x^{2} z^{4 z}\right) \geq \sqrt[3]{x^{4 x} y^{4 y} z^{4 z}} \cdot \sqrt[3]{x^{2} y^{2} z^{2}} \\
& \quad \geq \sqrt[3]{x^{2} y^{2} z^{2}} \sqrt[3]{\left[\left[\frac{1}{e}^{\frac{1}{e}}\right]\right]^{4 \cdot 3}}=\sqrt[3]{x^{2} y^{2} z^{2}} \cdot\left(\frac{1}{e}\right)^{\frac{4}{e}}
\end{aligned}
$$

The latter inequality is the consequence of the properties of function $f(x)=x^{x}$, defined for $x>0$. Its derivative $f^{\prime}(x)=x^{x}(1+\ln x)$ vanishes only at $x=\frac{1}{e}$, where the function attains its minimum:

Indeed, the derivative $f^{\prime}(x)=x^{x}(1+\ln x)$ is negative for $x<\frac{1}{e}$ and positive for $x>\frac{1}{e}$. Thus the required inequality hods for $a, b, c>0$.
The equality is attained when $x=y=z=\frac{1}{e}$, i.e., when $a=b=c=\frac{1}{e^{2}}$, in which case both sides of the inequality are equal to $3 e^{-2}$.

84. Parallelogram in Trapezoid

In trapezoid $A B C D, B C \| A D, P \in C D$ satisfies $A P=B P ; M \in A B$, with $\angle A M D=\angle B M C ; N=B P \cap C M$ and $Q=A P \cap D M$.

Prove that the quadrilateral $M N P Q$ is a parallelogram.

Proposed by Miguel Ochoa Sanchez - Peru

Proof 1 (by Leonard Giugiuc - Romania).
Choose $A=(1,0), B=(-1,0)$, and $P=(0, a)$ with $a>0$. Since $P \in C D$ does not cross the interior of $\triangle A P B$, there is $m \in(-a, a)$ such that $C D$ is defined by the equation $-m x+y=a$. Also, since $B C \| A D$, and neither passes through the interior of $\triangle A P B$, there is $n \in\left(-\frac{1}{a}, \frac{1}{a}\right)$ such that $B C$ and $A D$ are defined by $x-n y=-1$ and $x-n y=1$, respectively.
These gives us $C=\left(\frac{n a-1}{1-m n}, \frac{a-m}{1-m n}\right)$ and $D=\left(\frac{n a+1}{1-m n}, \frac{a+m}{1-m n}\right)$. Assume $M=(k, 0)$. Since $\angle B M C=\angle A M D$, the lines $M C$ and $M D$ have opposite antislopes.
Thus

$$
\frac{k-\frac{n a-1}{1-m n}}{\frac{a-m}{1-n m}}=\frac{-k+\frac{n a+1}{1-m n}}{\frac{a+m}{1-m n}}
$$

implying $k=\frac{n a^{2}-n}{a(1-m n)}$. Using this, we can easily check that $M C \| A P$ and $M D \| B P$. Thus $M N P Q$ is indeed a parallelogram.

Proof 2 (by Alexander Bogomolny - USA).
Find point M^{\prime} on $A B$ such that $\angle B M^{\prime} C=90^{\circ}-\frac{1}{2} \angle A P B$. From M^{\prime} draw a ray $M^{\prime} D^{\prime}$, with D^{\prime} on line $C P$ such that $\angle C M^{\prime} D^{\prime}=\angle A P B$. Then, as we know, $A D^{\prime} \| B C$, so, since also $A D \| B C$, we see that $D^{\prime}=D$. Thus M^{\prime} solves Heron's problem for C and D and, as such, is unique on $A B$ with the property that $\angle B M^{\prime} C=\angle A M^{\prime} D$. It follows that $M=M^{\prime}$.
From the construction of M^{\prime}, the quadrilateral $M N P Q$ is a parallelogram.

85. A Cyclic Inequality in Three Variables II

Let $a, b, c>0$. Prove that

$$
\frac{10 a^{3}}{3 a^{2}+7 b c}+\frac{10 b^{3}}{3 b^{2}+7 c a}+\frac{10 c^{3}}{3 a^{2}+7 a b} \geq a+b+c
$$

Proposed by Daniel Sitaru - Romania

Proof 1 (by Anas Adlany - Morroco).
Since the inequality is homogeneous, we may assume WLOG, $a^{2}+b^{2}+c^{2}=1$. First using the $\boldsymbol{G} \boldsymbol{M}-\boldsymbol{Q M}$ inequality and then Chebyshev's inequality twice, we get

$$
\begin{gathered}
\sum_{c y c l} \frac{10 a^{3}}{3 a^{2}+7 b c} \geq \sum_{c y c l}\left(\frac{10 a^{3}}{3 a^{2}+7\left(\frac{b^{2}+c^{2}}{2}\right)}\right) \\
=20 \sum_{c y c l} \frac{a^{3}}{6 a^{2}+7 b^{2}+7 c^{2}}=20 \sum_{c y c l}\left(\frac{a^{3}}{7-a^{2}}\right) \\
\geq \frac{20}{9}\left(\sum_{c y c l} a\right)\left(\sum_{c y c l} a^{2}\right)\left(\sum_{c y c l} \frac{1}{7-a^{2}}\right) \geq \frac{20}{9}\left(\sum_{c y c l} a\right)\left(\frac{9}{\sum_{c y c l}\left(7-a^{2}\right)}\right)=\sum_{c y c l} a
\end{gathered}
$$

as desired.

Solution 2 (by Imad Zak - Lebanon).

Since the inequality is homogeneous, we may assume $\boldsymbol{W L O G}, a b c=1$. The inequality is then rewritten as $\sum_{c y c l} f(a) \geq 0$, where

$$
f(x) \frac{10 x^{4}}{3 x^{3}+7}-x=\frac{7 x\left(x^{3}-1\right)}{3 x^{3}+7}
$$

The function is convex, so that $f(x) \geq g(x)=\frac{21}{10}(x-1)$, which is its tangent at $x=1$.
Thus

$$
\sum_{c y c l} f(a) \geq \sum_{c y c l} g(a)=\frac{63}{10}-\frac{63}{10}=0
$$

which is the required inequality.
Proof 3 (by Soumitra Mandal - India).
By Hölder's inequality,

$$
(a+b+c)^{3} \leq \sum_{c y c l} \frac{a^{3}}{3 a^{2}+7 b c} \cdot \sum_{c y c l}\left(3 a^{2}+7 b c\right) \cdot \sum 1 .
$$

Thus, suffice it to prove that

$$
\sum_{c y c l}\left(3 a^{2}+7 b c\right) \leq \frac{10(a+b+c)^{2}}{3}
$$

or, in other words, that $a^{2}+b^{2}+c^{2} \geq a+b+c$. But then

$$
\sum_{c y c l} \frac{10 a^{3}}{3 a^{2}+7 b c} \geq \frac{10(a+b+c)^{3}}{3 \sum_{c y c l}\left(3 a^{2}+7 b c\right)} \geq \frac{10(a+b+c)^{3}}{10(a+b+c)^{2}}=a+b+c .
$$

Proof 4 (by Soumava Chakraborty - India).
We have a series of equivalent inequalities:

$$
\begin{gathered}
\frac{10 a^{3}}{3 a^{2}+7 b c}+\frac{10 b^{3}}{3 b^{2}+7 c a}+\frac{10 c^{3}}{3 a^{2}+7 a b} \geq a+b+c \\
\sum_{c y c l}\left(\frac{10 a^{3}}{3 a^{2}+7 b c}-a\right) \geq 0
\end{gathered}
$$

$$
\begin{gathered}
\frac{7}{2} \sum_{c y c l} \frac{a(a+b)(a-c)+a(a-b)(a+c)}{3 a^{2}+7 b c} \geq 0 \\
\frac{7}{2} \sum_{c y c l}\left[\frac{a(a-b)(a+c)}{3 a^{2}+7 b c}+\frac{a(a+b)(a-c)}{3 a^{2}+7 b c}\right] \geq 0 \\
\frac{7}{2} \sum_{c y c l}\left[\frac{a(a-b)(a+c)}{3 a^{2}+7 b c}+\frac{b(b+c)(b-a)}{3 b^{2}+7 c a}\right] \geq 0 \\
\frac{7}{2} \sum_{c y c l}(a-b)\left[\frac{a(a+c)}{3 a^{2}+7 b c}-\frac{b(b+c)}{3 b^{2}+7 c a}\right] \geq 0 \\
\frac{7}{2} \sum_{c y c l}(a-b)^{2}\left[\frac{7 c\left(a^{2}+b^{2}\right)+7 c^{2}(a+b)+4 a b c}{\left(3 a^{2}+7 b c\right)\left(3 b^{2}+7 c a\right)}\right] \geq 0
\end{gathered}
$$

The latter is obviously true and, so, the rest are also true.

Acknowledgment (by Alexander Bogomolny - USA)

The problem above (from the Romanian Mathematical Magazine) has been kindly communicated to me by Dan Sitaru, along with four solutions. Solution 1 is by Anas Adlany (Morroco); Solution 2 is by Imad Zak (Lebanon); Solution 3 is by Kevin Soto Palacios (Peru); Solution 3 is by Soumitra Mandal (India); Solution 4 is by Soumava Chakraborty (India).

86. A Cyclic Inequality in Three Variables IV

Let $a, b, c>0$. Prove that

$$
2 \sum_{c y c l}(a+b)^{3}+5 \sum_{c y c l} a^{3} \geq 21 \sum_{c y c l} a^{2} b
$$

Proposed by Daniel Sitaru - Romania

Proof 1 (by Kevin Soto Palacios - Peru).

The required inequality is equivalent to $9 \sum_{c y c l} a^{3}+6 \sum_{c y c l} a b^{2} \geq 15 \sum_{c y c l} a^{2} b$.
Using $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{G} \boldsymbol{M}$ inequality,

$$
\begin{aligned}
6 a^{3}+6 b^{2} a & \geq 12 a^{2} b \\
6 b^{3}+6 c^{2} b & \geq 12 b^{2} c \\
6 c^{3}+6 a^{2} c & \geq 12 c^{2} a
\end{aligned}
$$

Summing the three up gives

$$
\begin{equation*}
6 \sum_{c y c l} a^{3}+6 \sum_{c y c l} a b^{2} \geq 12 \sum_{c y c l} a^{2} b \tag{10}
\end{equation*}
$$

On the other hand, again, by the AM - GM inequality,

$$
\begin{gathered}
3\left(a^{3}+b^{3}+c^{3}\right)=\left(a^{3}+a^{3}+b^{3}\right)+\left(b^{3}+b^{3}+c^{3}\right)+\left(c^{3}+c^{3}+a^{3}\right) \\
\geq 3 a^{2} b+3 b^{2} c+3 c^{2} a
\end{gathered}
$$

Adding this to 10 proves the required inequality.

Proof 2 (by Soumava Chakraborty - India).
The required inequality reduces to,

$$
3 \sum_{c y c l} a^{3}+2 \sum_{c y c l} a^{2} b+2 \sum_{c y c l} a b^{2} \geq 7 \sum_{c y c l} a^{2} b .
$$

Bu the AM - GM inequality,

$$
\begin{gathered}
a^{3}+a^{2} b+a b^{2} \geq 3 a^{2} b \\
b^{3}+b^{2} c+b c^{2} \geq 3 b^{2} c \\
c^{3}+c^{a}+c a^{2} \geq 3 c^{2} a
\end{gathered}
$$

Summing up we get

$$
\begin{equation*}
\sum_{c y c l} a^{3}+\sum_{c y c l} a^{2} b+\sum_{c y c l} a b^{2} \geq 3 \sum_{c y c l} a^{2} b \tag{1}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
3\left(a^{3}+b^{3}+c^{3}\right)=\left(a^{3}\right. & \left.+a^{3}+b^{3}\right)+\left(b^{3}+b^{3}+c^{3}\right)+\left(c^{3}+c^{3}+a^{3}\right) \\
& \geq 3 a^{2} b+3 b^{2} c+3 c^{2} a
\end{aligned}
$$

So that $\sum_{c y c l} a^{3} \geq \sum_{c y c l} a^{2} b$. adding this to twice (1) gives

$$
3 \sum_{c y c l} a^{3}+2 \sum_{c y c l} a^{2} b+2 \sum_{c y c l} a b^{2} \geq 7 \sum_{c y c l} a^{2} b
$$

as expected.
Proof 3 (by Seyran Ibrahimov - Azerbaidian).
By the AM - GM inequality,

$$
\begin{aligned}
a^{3}+a^{3}+a b^{2}+a b^{2} & \geq 4 a^{2} b \\
b^{3}+b^{3}+b c^{2}+b c^{2} & \geq 4 b^{2} c \\
c^{3}+c^{3}+c a^{2}+c a^{2} & \geq 4 c^{2} a
\end{aligned}
$$

Summing up gives $\sum_{c y c l} a^{3}+\sum_{c y c l} a b^{2} \geq 2 \sum_{c y c l} a^{2} b$. Denotes the left - hand side X.
Further, the required inequality reduces to

$$
9 \sum_{c y c l} a^{3}+6 \sum_{c y c l} a b^{2} \geq 15 \sum_{c y c l} a^{2} b
$$

which can be written as $\sum_{c y c l} a^{3}+2 X \geq 5 \sum_{c y c l} a^{2} b$. It will proved correct if

$$
\sum_{c y c l} a^{3} \geq \sum_{c y c l} a^{2} b
$$

But this is true due to the Rearrangement inequality.
Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem at the CutTheKnotMath page, followed by three solutions. Solution 1 is by Kevin Soto Palacios (Peru); Solution 2 is by Soumava Chakraborty (India); Solution 3 is by Seyran Ibrahimov (Azerbaijan).

87. A Cyclic Inequality in Three Variables IX

Let $x, y, z>0$. Prove that

$$
9\left(\sum_{c y c l} \frac{x^{2}}{y^{2}}\right)^{2} \geq 8\left(\sum_{c y c l} \frac{x}{y}\right)\left(\sum_{c y c l} \frac{x^{3}}{y^{3}}-3\right)
$$

Proposed by Daniel Sitaru - Romania

Proof 1 (by Saptak Bhattacharya - India).
Let $x=\frac{x}{y}, b=\frac{y}{z}, a=\frac{z}{x}$. Note that $a b c=1$. The given inequality rewrites as

$$
9\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq 8(a+b+c)\left(a^{3}+b^{3}+c^{3}-3 a b c\right)
$$

Using $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$ and rearranging, this reduces to

$$
\left(\sum_{c y c l} a^{2}\right)^{2}-8\left(\sum_{c y c l} a b\right)\left(\sum_{c y c l} a^{2}\right)+16\left(\sum_{c y c l} a b\right)^{2} \geq 0
$$

or, $\left(a^{2}+b^{2}+c^{2}-4 a b-4 b c-4 c a\right)^{2} \geq 0$ which is obviously true.

Proof 2 (Nassim Nicholas Taleb-USA).

$$
\text { Set } f=9 \sum_{c y c l} \frac{x^{2}}{y^{2}}-8\left(\sum_{c y c l} \frac{x}{y}\right)\left(-3 \sum_{c y c l} \frac{x^{3}}{y^{3}}\right) \text {. We need to prove that } f \geq 0 \text {. }
$$

Factoring we get

$$
f=\frac{9\left(\sum_{c y c l} x^{2} y^{4}\right)^{2}}{x^{4} y^{4} z^{4}}-\frac{8\left(\sum_{c y c l} x y^{2}\right)^{2}\left(\sum_{c y c l} x^{2} y^{4}-\sum_{c y c l} x^{3} y^{2} z\right)}{x^{4} y^{4} z^{4}}
$$

The numerator reduces to

$$
\left(\sum_{c y c l} x^{2} y^{4}-4 \sum_{c y c l} x^{3} y^{2} z\right)^{2} \geq 0
$$

f1 $=-4 x^{3} y^{2} z+x^{4} z^{2}-4 x y^{3} z^{2}+y^{2} z^{4}+x^{2}\left(y^{4}-4 y z^{3}\right) ;$
We know that there is no region where $f 1=0$. We can see the positive and the negatives

$$
\begin{aligned}
& \text { GraphicsRow [\{RegionPlot3D }[f 1>\theta,\{x, 0,11\},\{y, \theta, 1\},\{z, \theta, 1\}], \\
& \quad \operatorname{Region} P \operatorname{lot} 3 D[f 1<\theta,\{x, 0,11\},\{y, 0,1\},\{z, 0,1\}]\}]
\end{aligned}
$$

RegionPlot3D[f1 $=0,\{x, 0,100\},\{y, \theta, 100\},\{z, 0,100\}]$

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem (from his book "Math Accent") at the CutTheKnotMath page, along with a solution (Solution 1) by Saptak Bhattacharya. Solution 2 is by Nassim Nicholas Taleb. The illustration is by Gary Davis.
88. A Cyclic Inequality in Three Variables VI

Let $a, b, c>0$. Prove that

$$
\frac{2(a+b+c)}{a b c} \geq \sum_{c y c l}\left(\sqrt{\frac{a+b}{2 a c}}+\sqrt{\frac{2 a}{c(a+b)}}\right)
$$

Proposed by Daniel Sitaru - Romania
Proof 1 (by Kevin Soto Palacios - Peru).

$$
\sum_{c y c l} \sqrt{\frac{a+b}{2 a c}}+\sum_{c y c l} \sqrt{\frac{2 a}{c(a+b)}} \leq \sum_{c y c l} \sqrt{\frac{(a+b) b}{2 a b c}}+\sum_{c y c l} \sqrt{\frac{(a+b) a}{2 a b c}}
$$

$$
\leq \frac{\sum_{c y c l} \sqrt{a+b}(\sqrt{a}+\sqrt{b})}{\sqrt{a b c}} \leq \frac{\sum_{c y c l} \sqrt{2}(\sqrt{a+b})^{2}}{\sqrt{2 a b c}}
$$

It follows that

$$
\begin{gathered}
\sum_{c y c l} \sqrt{\frac{a+b}{2 a c}}+\sum_{c y c l} \sqrt{\frac{2 a}{c(a+b)}} \leq \frac{\sum_{c y c l} \sqrt{2}(\sqrt{a+b})^{2}}{\sqrt{a b c}} \\
=\frac{2 \sqrt{2}(a+b+c)}{\sqrt{2 a b c}}=\frac{2(a+b+c)}{\sqrt{a b c}}
\end{gathered}
$$

as required.

Proof 2 (by Soumava Chakraborty - India).

Using the Cauchy - Schwarz inequality,

$$
\begin{gathered}
\sum_{c y c l} \sqrt{\frac{a+b}{2 a c}} \leq \sum_{c y c l} \sqrt{\frac{(a+b) b}{2 a b c}} \leq \frac{\sqrt{\sum_{c y c l} a} \sqrt{2 \sum_{c y c l} a}}{\sqrt{2 a b c}} \\
=\frac{a+b+c}{\sqrt{a b c}}
\end{gathered}
$$

Again, using the Cauchy - Schwarz inequality,

$$
\begin{aligned}
& \sum_{c y c l} \sqrt{\frac{2 a}{c(a+b)}} \leq \sqrt{2 \sum_{c y c l} a} \sqrt{\sum_{c y c l} \frac{1}{c(a+b)}} \leq \sqrt{2 \sum_{c y c l} a} \sqrt{\sum_{c y c l} \frac{1}{c(2 \sqrt{a b})}} \\
& =\sqrt{\sum_{c y c l} a} \sqrt{\frac{1}{\sqrt{a b c}} \sum_{c y c l} \frac{1}{\sqrt{a}}}=\sqrt{\sum_{c y c l} a} \sqrt{\frac{1}{\sqrt{a b c}} \sum_{c y c l} \frac{b c}{\sqrt{a b c}}}= \\
& =\sqrt{\frac{\sum_{c y c l} a}{a b c}} \sqrt{\sum_{c y c l} \sqrt{a b}} \leq \sqrt{\frac{\sum_{c y c l} a}{a b c}} \sqrt{\sqrt{\sum_{c y c l} a} \sqrt{\sum_{c y c l} b}} \leq \frac{\sum_{c y c l} a}{\sqrt{a b c}}
\end{aligned}
$$

Now it only remains to add the two inequalities.
Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the problem from his book, Math Accent, with two solutions, at the CutTheKnotMath page. Solution 1 is by Kevin Soto Palacios; Solution 2 is by Soumava Chakraborty.

89. A Cyclic Inequality in Three Variables VIII

Let $x, y, z>0$. Prove that

$$
\sum_{c y c l}\left(x^{2}+y^{2}\right) z+\sum_{c y c l} \frac{x y}{(x+y)^{2}} \geq 27 x y z
$$

Proposed by Daniel Sitaru - Romania
Proof (by Mihalcea Andrei Ştefan - Romania).
Dividing by $x y z$ throughout, we get an equivalent inequality:

$$
4 \sum_{c y c l}\left(\frac{x}{y}+\frac{y}{x}\right)+4 \sum_{c y c l} \frac{1}{\frac{x}{y}+\frac{y}{x}+2} \geq 27
$$

We'll show that

$$
4\left(\frac{x}{y}+\frac{y}{x}\right)+4 \frac{1}{\frac{x}{y}+\frac{y}{x}+2} \geq 9
$$

Denote $\alpha=\frac{x}{y}+\frac{y}{x} \geq 2$ (by the $\boldsymbol{A} \boldsymbol{M}$ - GM inequality). In terms of α the latter inequality becomes $4 \alpha+\frac{4}{\alpha+2} \geq 9$, which reduces to

$$
4 \alpha^{2}-\alpha+14=(\alpha-2)(4 \alpha+7) \geq 0
$$

which is true because $\alpha \geq 2$.

Acknowledgment (by Alexander Bogomolny - USA)

Dan Sitaru has kindly posted the above problem (from the Romanian Mathematical Magazine) at the CutTheKnotMath page, along with a solution by Mihalcea Andrei Ştefan.

90. A Cyclic Inequality in Three Variables \mathbf{X}

$$
\text { Let } a, b, c>0 \text { satisfy } a^{2}+b^{2}+c^{2}=3 . \text { Prove that }
$$

$$
\sum_{c y c l} \frac{1}{(a+1)^{3}}+4 \sum_{c y c l} \frac{1}{(a+1)^{4}} \geq \frac{9}{8}
$$

Proposed by Daniel Sitaru - Romania
Proof 1 (by Leonard Giugiuc - Romania).
First note that from $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{Q} \boldsymbol{M}$ inequality, $\left(\frac{a+b+c}{3}\right)^{2} \leq \frac{a^{2}+b^{2}+c^{2}}{3}=1$ so that $a+b+c \leq 3$.
Now, both functions, $y=\frac{1}{(x+1)^{3}}$ and $y=\frac{1}{(x+1)^{4}}$ are convex on $(0, \infty)$, so that by Jensen's inequality

$$
\sum_{c y c l} \frac{1}{(a+1)^{3}} \geq \frac{3}{\left(\frac{a+b+c}{3}+1\right)^{3}} \geq \frac{3}{8}
$$

and

$$
\sum_{c y c l} \frac{4}{(a+1)^{4}} \geq \frac{3 \cdot 4}{\left(\frac{a+b+c}{3}+1\right)^{4}} \geq \frac{3}{4}
$$

Proof 2 (by Alexander Bogomolny - USA).
We obtain the same result by using Radon's inequality

$$
\sum_{c y c l} \frac{1}{(a+1)^{3}} \geq \frac{(1+1+1)^{4}}{(a+b+c+3)^{3}} \geq \frac{3}{8}
$$

and

$$
\sum_{c y c l} \frac{4}{(a+1)^{4}} \geq \frac{4(1+1+1)^{5}}{(a+b+c+3)^{4}} \geq \frac{3}{4}
$$

Proof 3 (by Imad Zak - Lebanon).
Define $(x)=\frac{1}{(x+1)^{3}}+\frac{4}{(x+1)^{4}}$. We have

$$
f(x)-\left(\frac{17}{16}-\frac{11}{16}\right)=\frac{(x-1)^{2}\left(11 x^{3}+49 x^{2}+85 x+63\right)}{16(x+1)^{4}} \geq 0
$$

implying

$$
\sum_{c y c l} f(a) \geq \sum_{c y c l}\left(\frac{17}{16}-\frac{11 a}{16}\right)=3 \cdot \frac{17}{16}-(a+b+c) \cdot \frac{11}{16}
$$

But from

$$
\sum_{c y c l} a^{2}=3
$$

it follows that $a+b+c \leq 3$. Thus,

$$
\sum_{c y c l} f(a) \geq \frac{51}{16}-\frac{33}{16}=\frac{9}{8}
$$

Proof 4 (by Amit Itagi).
Let define $x=a^{2}, y=b^{2}, z=c^{2}$. The problem becomes

$$
\begin{gathered}
\text { Let } x, y, z>0 \text { satisfy } x+y+z=3 . \text { Prove that } \\
\sum_{\text {cycl }} \frac{\sqrt{x}+5}{(\sqrt{x}+1)^{4}} \geq \frac{9}{8}
\end{gathered}
$$

Note that the function $f(u)=\frac{\sqrt{u}+5}{(\sqrt{u}+1)^{4}}$ is convex on $(0, \infty)$ and thus the problem lends itself to Jensen's inequality:

$$
\sum_{\text {cycl }} \frac{\sqrt{x}+5}{(\sqrt{x}+1)^{4}} \geq 3 \frac{\sqrt{\frac{3}{3}}+5}{\left(\sqrt{\frac{3}{3}}+1\right)^{4}}=\frac{9}{8}
$$

Acknowledgment (by Alexander Bogomolny - USA)

Dan Sitaru has kindly posted the above problem (from his book "Math Accent") at the CutTheKnotMath page to which Leo Giugiuc responded with Solution 1. Solution 3 is by Imad Zak; Solution 4 is by Amit Itagi.
91. A Cyclic Inequality in Three Variables XII

Prove that, for all $a, b, c>0$

$$
\left(\sum_{c y c l} \frac{1}{\left(a^{2}-a b+b^{2}\right)^{6}}\right)^{2} \leq 3 \sum_{c y c l}\left(\frac{a+b}{a^{2}+b^{2}}\right)^{24}
$$

Proposed by Daniel Sitaru - Romania

Proof (by Leonard Giugiuc - Romania).

By Cauchy - Schwarz inequality, $\left(a^{2}+b^{2}\right)^{2} \leq(a+b)\left(a^{3}+b^{3}\right)$, so that
$\frac{1}{a^{2}-a b+b^{2}} \leq\left(\frac{a+b}{a^{2}+b^{2}}\right)^{2}$. From here, $\frac{1}{\left(a^{2}-a b+b^{2}\right)^{6}} \leq\left(\frac{a+b}{a^{2}+b^{2}}\right)^{12}$.
Summing up and, subsequently, applying the $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{Q M}$ inequality,

$$
\left(\sum_{c y c l} \frac{1}{\left(a^{2}-a b+b^{2}\right)^{6}}\right)^{6} \leq\left(\frac{a+b}{a^{2}+b^{2}}\right)^{12} \leq 3 \sum_{c y c l}\left(\frac{a+b}{a^{2}+b^{2}}\right)^{24}
$$

Acknowledgment (by Alexander Bogomolny - USA)

Dan Sitaru has kindly posted the above problem (from his book "Math Accent") at the CutTheKnotMath page. The solution is by Leo Giugiuc.

92. A Cyclic Inequality in Three Variables XIII

Prove that, for all $a, b, c>0$

$$
\sum_{c y c l} \frac{a^{2}+b^{2}}{a+b}+11 \sum_{c y c l} \frac{a b}{a+b}>6 \sum_{c y c l} \sqrt{a b}
$$

Proposed by Daniel Sitaru - Romania

Proof 1.

The inequality is equivalent to

$$
\sum_{c y c l} \frac{(a+b)^{2}+9 a b-6(a+b) \sqrt{a b}}{a+b}>0
$$

This simplifies to

$$
\sum_{c y c l} \frac{(a+b-3 \sqrt{a b})^{2}}{a+b}>0
$$

which is obvious.
Proof 2 (by Seyran Ibrahimov - Azerbaidian).
Using the $\boldsymbol{A} \boldsymbol{M} \boldsymbol{- G M}$ inequality,

$$
\frac{a^{2}+b^{2}}{a+b}+\frac{11 a b}{a+b}=\frac{(a+b)^{2}}{a+b}+\frac{9 a b}{a+b} \geq 6 \sqrt{a b}
$$

and similar for the other terms.
Proof 3.
Set $a+b=s, a b=r$. The required inequality becomes

$$
s^{2}-6 s \sqrt{r}+r>0
$$

Since $s^{2}-6 s \sqrt{r}+r=(s-3 \sqrt{r})^{2} \geq 0$. We only need to show that the equality is not possible. The equality would mean $s-3 \sqrt{r}=0$, i.e., $a+b=3 \sqrt{a b}$, or, $\sqrt{a}=\frac{\sqrt{b}(7 \pm 3 \sqrt{5})}{2}$. Similarly, $\sqrt{b}=\frac{\sqrt{c}(7 \pm 3 \sqrt{5})}{2}$ and $\sqrt{c}=\frac{\sqrt{a}(7 \pm 3 \sqrt{5})}{2}$.
The product of the three equates a rational number 1 to an irrational number $\left(\frac{7 \pm 3 \sqrt{5}}{2}\right)^{3}$ which is impossible. Thus, the required inequality is indeed strict.

Acknowledgment (by Alexander Bogomolny - USA)

Dan Sitaru has kindly posted the above problem (from his book "Math Accent") at the CutTheKnotMath page, with solutions by Soumitra Mandal, Ravi Prakash (India, Solution 1), Seyran Ibrahimov (Azerbaijan, Solution 2), Mihalcea Andrei Ştefan (Romania) and Abdallah El Farissi (Algeria) Solution 3.
93. A Cyclic Inequality in Three Variables XV

Prove that for positive a, b, c

$$
\frac{a\left(a^{2}+b^{2}\right)}{a^{3}+b^{3}}+\frac{b\left(b^{2}+c^{2}\right)}{b^{3}+c^{3}}+\frac{c\left(c^{2}+a^{2}\right)}{c^{3}+a^{3}} \leq \sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}
$$

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).

Consider function $f:(0, \infty) \rightarrow \mathbb{R}$; defined as

$$
\begin{gathered}
f(x)=\frac{x^{2}+x^{6}}{1+x^{6}}-x=\frac{x^{2}+x^{6}-x-x^{7}}{1+x^{6}} \\
=\frac{x^{6}(1-x)-x(1-x)}{1+x^{6}}=\frac{x(1-x)\left(x^{5}-1\right)}{x^{6}+1} \\
=\frac{-x(x-1)\left(x^{5}-1\right)}{x^{6}+1}=\frac{-x(x-1)^{2}\left(x^{4}+x^{3}+x^{2}+x+1\right)}{x^{6}+1} \leq 0 .
\end{gathered}
$$

Now,

$$
f\left(\sqrt{\frac{a}{b}}\right)=\frac{\frac{a}{b}+\frac{a^{3}}{b^{3}}}{1+\frac{a^{3}}{b^{3}}}-\sqrt{\frac{a}{b}}=\frac{a\left(a^{2}+b^{2}\right)}{a^{3}+b^{3}}-\sqrt{\frac{a}{b}} .
$$

It follows that $f\left(\sqrt{\frac{a}{b}}\right) \leq 0$ is equivalent to

$$
\frac{a\left(a^{2}+b^{2}\right)}{a^{3}+b^{3}}-\sqrt{\frac{a}{b}} \leq 0
$$

i.e., $\frac{a\left(a^{2}+b^{2}\right)}{a^{3}+b^{3}} \leq \sqrt{\frac{a}{b}}$. The required inequality in nothing but

$$
f\left(\sqrt{\frac{a}{b}}\right)+f\left(\sqrt{\frac{b}{c}}\right)+f\left(\sqrt{\frac{c}{a}}\right) \leq 0
$$

Challenge (by Alexander Bogomolny - USA)

Prove that, for $x, y>0$,

$$
\frac{1+x^{2}}{1+x^{3}}+\frac{1+y^{2}}{1+y^{3}}+\frac{x y\left(1+x^{2} y^{2}\right)}{1+x^{3} y^{3}} \leq 3
$$

Visual support:

As this doesn't (easily) match standard inequalities, we can use calculus.
We get equality $l h s=r h s$ for $x=y=1$.
We can see visually and check analytically that this constitutes a maximum.
Let f be the left hand side.

$$
\Delta=\frac{\partial f}{\partial\{x, y\}} / / \text { FullSimplify } ; \Delta / / \text { MatrixForm| }
$$

latrixForm=

$$
\binom{-\frac{3 x^{2}\left(1+x^{2}\right)}{\left(1+x^{3}\right)^{2}}+\frac{2 x}{1+x^{3}}-\frac{3 x^{3} y^{4}\left(1+x^{2} y^{2}\right)}{\left(1+x^{3} y^{3}\right)^{2}}+\frac{2 x^{2} y^{3}}{1+x^{3} y^{3}}+\frac{y\left(1+x^{2} y^{2}\right)}{1+x^{3} y^{3}}}{-\frac{3 y^{2}\left(1+y^{2}\right)}{\left(1+y^{3}\right)^{2}}+\frac{2 y}{1+y^{3}}-\frac{3 x^{4} y^{3}\left(1+x^{2} y^{2}\right)}{\left(1+x^{3} y^{3}\right)^{2}}+\frac{2 x^{3} y^{2}}{1+x^{3} y^{3}}+\frac{x\left(1+x^{2} y^{2}\right)}{1+x^{3} y^{3}}}
$$

Which is satsfied for $x=1$, with a matrix of local second derivatives $\left(\begin{array}{ll}-2 & -1 \\ -1 & -2\end{array}\right)$
and contour plot:
Contour plot:

This problem with the solution has been kindly communicated to me by Dan Sitaru. Wolframalpha was instrumental in obtaining the 3d plots.
94. A Cyclic Inequality in Three Variables XVI

Prove that for $a, b, c \in \mathbb{R}$

$$
\sum_{c y c l}|(a+b)(1-a b)|<\frac{3}{2}+\sum_{c y c l} a^{2}+\frac{1}{2} \sum_{c y c l} a^{4}
$$

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).

$$
\begin{gather*}
{[(1+a)+b(1-a)]^{2} \geq 0} \\
(1+a)^{2}+2 b\left(1-a^{2}\right)+b^{2}\left(1-a^{2}\right) \geq 0 \Leftrightarrow \\
1+2 a+a^{2}+2 b-2 b a^{2}+b^{2}-2 b^{2} a+b^{2} a^{2} \geq 0 \Leftrightarrow \\
1+a^{2}+b^{2}+a^{2} b^{2}+2\left(a+b-a^{2} b-a b^{2}\right) \geq 0 \Leftrightarrow \\
\left(1+a^{2}\right)\left(1+b^{2}\right) \geq 2(a b(a+b)-a(a+b)) \Leftrightarrow \\
2(a+b)(a b-1) \leq\left(1+a^{2}\right)\left(1+b^{2}\right) \Leftrightarrow \\
2(a+b)(1-a b) \geq-1\left(1+a^{2}\right)\left(1+b^{2}\right) \tag{1}
\end{gather*}
$$

$$
\begin{gathered}
{[(1-a)-b(1+a)]^{2} \geq 0 \Leftrightarrow} \\
(1-a)^{2}-2 b\left(1-a^{2}\right)+b^{2}(1+a)^{2} \geq 0 \Leftrightarrow
\end{gathered}
$$

$$
\begin{gather*}
1-2 a+a^{2}-2 b+2 b a^{2}+b^{2}+2 a b^{2}+a^{2} b^{2} \geq 0 \Leftrightarrow \\
1+a^{2}+b^{2}+a^{2} b^{2}-2\left(a+b-a b^{2}-a^{2} b\right) \geq 0 \Leftrightarrow \\
\left(1+a^{2}\right)\left(1+b^{2}\right) \geq 2(a+b-a b(a+b)) \Leftrightarrow \\
2(a+b)(1-a b) \leq\left(1+a^{2}\right)\left(1+b^{2}\right) \tag{2}
\end{gather*}
$$

From (1), (2) it follows that

$$
\begin{equation*}
2|(a+b)(1-a b)| \leq\left(1+a^{2}\right)\left(1+b^{2}\right) \tag{3}
\end{equation*}
$$

Similarly,

$$
\begin{array}{r}
2|(b+c)(1-b c)| \leq\left(1+b^{2}\right)\left(1+c^{2}\right) \\
2|(c+a)(1-c a)| \leq\left(1+c^{2}\right)\left(1+a^{2}\right) \tag{5}
\end{array}
$$

In (3) equality is attained for $a=0 ; b=1$ or $a=1 ; b=0$; similarly, for (4) and (5)

$$
\begin{gathered}
\text { Thus, } \sum_{c y c l} A \text { of three inequality is strict: } \\
2 \sum_{c y c l}|(a+b)(1-a b)|<\sum_{c y c l}\left(1+a^{2}+b^{2}+a^{2} b^{2}\right) \\
3+2\left(a^{2}+b^{2}+c^{2}\right)+\sum_{c y c l} a^{2} b^{2}<3+2\left(a^{2}+b^{2}+c^{2}\right)+\sum_{c y c l} a^{4} \\
\text { Dividing by } 2, \\
\sum_{c y c l}|(a+b)(1-a b)|<\frac{3}{2}+a^{2}+b^{2}+c^{2}+\frac{1}{2} \sum_{c y c l} a^{4}
\end{gathered}
$$

Acknowledgment (by Alexander Bogomolny - USA)
This problem with the solution has been kindly communicated to me by Dan Sitaru, all on a tex file.

95. A Cyclic Inequality with Many Sums

Let $a, b, c>0, a b c=1$, prove that

$$
\left(\sum_{c y c l} a^{4}\right)\left(\sum_{c y c l} \frac{a}{b}\right)\left(\sum_{c y c l} a^{3}\right)\left(\sum_{c y c l} \frac{a}{c}\right)\left(\sum_{c y c l} a^{2}\right) \geq\left(\sum_{c y c l} a\right)^{3}\left(\sum_{c y c l} \frac{1}{a}\right)^{2}
$$

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru - Romania).

If $n \in \mathbb{N}$,

$$
\begin{gathered}
\overbrace{\geq}^{\text {Chebyshev }} \frac{1}{3}\left(a^{n+1}+b^{n+1}+c^{n+1}=a^{n}\right)(a+b+c) \overbrace{\geq}^{A M-G M} \frac{1}{3}\left(a^{n}+b^{n}+c^{n}\right) \cdot 3 \sqrt[3]{a b c} \\
=\frac{1}{3}\left(a^{n}+b^{n}+c^{n}\right) \cdot 3=a^{n}+b^{n}+c^{n} .
\end{gathered}
$$

It follows that

$$
a^{4}+b^{4}+c^{4} \geq a^{3}+b^{3}+c^{3} \geq a^{2}+b^{2}+c^{2} \geq a+b+c
$$

In particular,

$$
\begin{equation*}
\sum_{c y c l} a^{4} \geq \sum_{c y c l} a \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{c y c l} a^{2} \geq \sum_{c y c l} a \tag{2}
\end{equation*}
$$

Further,

$$
\begin{gather*}
\sum_{c y c l} a^{3}=a^{3}+b^{3}+c^{3}=a^{2} \cdot a+b^{2} \cdot a+c^{2} \cdot c \\
\overbrace{\geq}^{\text {Chebyshev }} \frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)(a+b+c) \\
\overbrace{\geq}^{A M-G M} \frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right) \cdot 3 \sqrt[3]{a b c}=\frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right) \cdot 3=a^{2}+b^{2}+c^{2} \\
\geq a b+b c+c a=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\sum_{c y c l} \frac{1}{a} \\
\text { So that } \sum_{c y c l} a^{3} \geq \sum_{c y c l} \frac{1}{a} \tag{3}
\end{gather*}
$$

$$
\begin{aligned}
& a=\sqrt[3]{\frac{a}{b} \cdot \frac{a}{b} \cdot \frac{b}{c}} \leq \frac{\frac{a}{b}+\frac{a}{b}+\frac{b}{c}}{3} \\
& b=\sqrt[3]{\frac{b}{c} \cdot \frac{b}{c} \cdot \frac{c}{a}} \leq \frac{\frac{b}{c}+\frac{b}{c}+\frac{c}{a}}{3} \\
& c=\sqrt[3]{\frac{c}{a} \cdot \frac{c}{a} \cdot \frac{a}{b}} \leq \frac{\frac{c}{a}+\frac{c}{a}+\frac{a}{b}}{3}
\end{aligned}
$$

By adding (4), (5), (6) $\sum^{c y c l} \frac{a}{b} \geq \sum_{c y c l} a$ and, by analogy with (4) - (6),

$$
\begin{align*}
& \frac{1}{a}=\sqrt[3]{\frac{b}{a} \cdot \frac{b}{a} \cdot \frac{a}{c}} \leq \frac{\frac{b}{a}+\frac{b}{a}+\frac{a}{c}}{3} \tag{8}\\
& \frac{1}{b}=\sqrt[3]{\frac{c}{b} \cdot \frac{c}{b} \cdot \frac{b}{a}} \leq \frac{\frac{c}{b}+\frac{c}{b}+\frac{c}{b}}{3} \tag{9}\\
& \frac{1}{c}=\sqrt[3]{\frac{a}{c} \cdot \frac{a}{c} \cdot \frac{c}{b}} \leq \frac{\frac{a}{c}+\frac{a}{c}+\frac{c}{b}}{3} \tag{10}
\end{align*}
$$

$$
\begin{equation*}
\text { By adding the relationships (8), (9); 10), } \sum_{c y c l} \frac{a}{c} \geq \sum_{c y c l} \frac{1}{a} \tag{11}
\end{equation*}
$$

The product of (1), (22), (3), (7), (11) is exactly

$$
\left(\sum_{c y c l} a^{4}\right)\left(\sum_{c y c l} \frac{a}{b}\right)\left(\sum_{c y c l} a^{3}\right)\left(\sum_{c y c l} \frac{a}{c}\right)\left(\sum_{c y c l} a^{2}\right) \geq\left(\sum_{c y c l} a\right)^{3}\left(\sum_{c y c l} \frac{1}{a}\right)^{2}
$$

Proof 2 (by Leonard Giugiuc - Romania).
By the $\boldsymbol{A} \boldsymbol{M}$ - $\boldsymbol{G M}$ inequality, $\sum_{c y c l} a \geq 3$, so that $\left(\sum_{c y c l} a\right)^{3} \geq 9\left(\sum_{c y c l} a\right)$. But

$$
9\left(\sum_{c y c l} a^{3}\right) \geq\left(\sum_{c y c l} a\right)^{3}
$$

Combining all these gives

$$
\sum_{c y c l} a^{3} \geq \sum_{c y c l} a
$$

By Hölder's inequality,

$$
\left(\sum_{c y c l} a^{4}\right)\left(\sum_{c y c l} a^{3}\right)\left(\sum_{c y c l} a^{2}\right) \geq\left(\sum_{c y c l} a^{3}\right)^{3} .
$$

implying

$$
\left(\sum_{c y c l} a^{4}\right)\left(\sum_{c y c l} a^{3}\right)\left(\sum_{c y c l} a^{2}\right) \geq\left(\sum_{c y c l} a^{3}\right)^{3}
$$

On the other hand,

$$
\left(\sum_{c y c l} \frac{1}{a}\right)^{2}=\left(\sum_{c y c l} a b\right)^{2}
$$

As in 11 of Solution 1,

$$
\sum_{\text {cycl }} \frac{1}{a} \geq \sum_{\text {cycl }} \frac{1}{a}
$$

so that

$$
\left(\sum_{c y c l} \frac{a}{b}\right)\left(\sum_{c y c l} \frac{a}{c}\right) \geq\left(\sum_{c y c l} \frac{1}{a}\right)^{2}
$$

which completes the proof.

Acknowledgment (by Alexander Bogomolny - USA)

Dan Sitaru has kindly posted the problem from this book Math Accent at the CutTheKnotMath page and supplied his solution (Solution 1) on a tex file. Solution 2 is by Leo Giugiuc.

96. A Triple Integral Inequality

Prove that, for all $a, b, c \in\left(0, \frac{\pi}{4}\right)$
$0 \leq \int_{0}^{a}\left(\int_{0}^{b}\left(\int_{0}^{c}\left(\sum_{c y c l}(\tan x-2 \tan y \tan z)+4 \prod_{c y c l} \tan x\right) d x\right) d y\right) d z \leq a b c$
Proposed by Daniel Sitaru - Romania

Proof 1 (by Leonard Giugiuc - Romania).

$$
T=\sum_{c y c l}(\tan x-2 \tan y \tan z)+4 \prod_{c y c l} \tan x=\frac{1}{2}\left(1-\prod_{c y c l}(1-2 \tan x)\right)
$$

Assuming $a, b, c \in\left(0, \frac{\pi}{4}\right), 0 \leq T \leq 1$. Thus,

$$
\begin{gathered}
0 \leq \int_{0}^{a}\left(\int_{0}^{b}\left(\int_{0}^{c}\left(\sum_{c y c l}(\tan x-2 \tan y \tan z)+4 \prod_{c y c l} \tan x\right) d x\right) d y\right) d z \\
\leq \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} 1 d x d y d z=a b c
\end{gathered}
$$

Proof 2 (by Soumitra Mandal - India).

$$
\text { Let } f:[0, c] \rightarrow \mathbb{R}^{+} \text {defined by }
$$

$f(x)=\tan x(4 \tan y \tan z-2 \tan y-2 \tan z+1)+\tan y+\tan z-2 \tan y \tan z$ for all $x \in[0, c]$. Now,
$f^{\prime}(x)=\sec ^{2} x(4 \tan y \tan z-2 \tan y-2 \tan z+1) \geq 0$ since $x \in(0, c) \subseteq\left(0, \frac{\pi}{4}\right)$ and $y, z \in\left(0, \frac{\pi}{4}\right)$. So, f is continuous on $[0, c]$ and

$$
f^{\prime}(x) \geq 0 \text { hence } f \text { is increasing on }[0, c] . \text { So, } f\left(\frac{\pi}{4}\right) \geq f(x) \geq f(x) \geq f(0)
$$

$$
\Rightarrow 4 \tan y \tan z-2 \tan y-2 \tan z+1 \geq f(x) \geq \tan y+\tan z-2 \tan y \tan z
$$

$$
\Rightarrow(2 \tan y-1)(2 \tan z-1) \geq f(x) \geq \frac{1}{2}-\frac{1}{2}(2 \tan y-1)(2 \tan z-1)
$$

$$
\Rightarrow(2 \tan y-1)(2 \tan z-1) \geq f(x) \geq \frac{1}{2}-\frac{1}{2}(2 \tan y-1)(2 \tan z-1)
$$

$$
\Rightarrow 1 \geq f(x) \geq 0 \text { for all, } y, z \in\left(0, \frac{\pi}{4}\right)
$$

$$
\therefore 0 \leq \int_{0}^{a}\left(\int_{0}^{b}\left(\int_{0}^{c} \sum_{c y c}(\tan x-2 \tan y \tan z)+4 \prod_{c y c} \tan x d x\right) d y\right) d z \leq a b c
$$ (proved)

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem (from the Romanian
Mathematical Magazine at the CutTheKnotMath page. Solution 1 is by Leo Giugiuc. Solution 2 is by Soumitra Mandal - Chandar Nagore - India.

97. An Inequality in Triangle and in General

In any acute $\triangle A B C$,

$$
\sum_{c y c l} \frac{\cot A \cot ^{3} B}{\cot ^{2} B+2 \cot ^{2} A}+2 \sum_{c y c l} \frac{\cot ^{2} A+\cot B}{\cot A+2 \cot B} \geq 1
$$

Remark (by Alexander Bogomolny - USA)
Both solutions below use the fact that in any triangle

$$
\cot A \cot B+\cot B \cot C+\cot C \cot A=1
$$

Thus, using the substitutions $a=\cot A, b=\cot B, c=\cot C$ the problem reduces to proving that

$$
\text { Prove that for positive } a, b, c s u c h ~ t h a t ~ a b+b c+c a=1,
$$

$$
\sum_{c y c l} \frac{a b^{3}}{b^{2}+2 a^{2}}+2 \sum_{c y c l} \frac{a^{2} b}{a+2 b} \geq 1
$$

Proof 1 (by Dung Thanh Tùng - Vietman).
The required inequality is equivalent to

$$
\sum_{c y c l} a b-2 \sum_{c y c l} \frac{a^{3} b}{b^{2}+2 a^{2}}+2 \sum_{c y c l} \frac{a^{2} b}{a+2 b} \geq 1
$$

reducing the task to proving

$$
\begin{equation*}
\sum_{c y c l} \frac{a^{2} b}{a+2 b} \geq \sum_{c y c l} \frac{a^{3} b}{b^{2}+2 a^{2}} \tag{1}
\end{equation*}
$$

We'll prove $\frac{a^{2} b}{a+2 b} \geq \frac{a^{3} b}{b^{2}+2 a^{2}}$ which is equivalent to $2 a^{2}+b^{2} \geq a(a+2 b)$, i.e., $(a-b)^{2} \geq 0$, implying (1).
Equality holds when $a=b=c=\frac{1}{\sqrt{3}}$, i.e., when $A=B=C=60^{\circ}$.
Proof 2 (by Myagmarsuren Yadamsuren - Mongolia).

$$
\begin{aligned}
& \frac{a b^{3}}{b^{2}+2 a^{2}}+2 \frac{a^{2} b}{a+2 b}=a b\left(\frac{b^{2}}{b^{2}+2 a^{2}}+\frac{(2 a)(2 a)}{(a+2 b)(2 a)}\right) \\
& =a b\left(\frac{b^{2}}{b^{2}+2 a^{2}}+\frac{(2 a)^{2}}{2 a^{2}+4 a b}\right) \geq a b\left(\frac{(b+2 a)^{2}}{(b+2 a)^{2}}\right)=a b
\end{aligned}
$$

where, on the penultimate step, we used Bergström's inequality. Summing up and using $a b+b c+c a=1$, delivers the required inequality.

Acknowledgment (by Alexander Bogomolny - USA)

Dan Sitaru has kindly posted the above problem (from his book "Math Accent") at the CutTheKnotMath page. Solution 1 is by Dung Tùng; Solution 2 is by Myagmarsuren Yadamsuren.

98. An Inequality in Triangle with Differences of Medians

Prove tha in a scalene $\triangle A B C$:

$$
\frac{8\left(m_{a}-m_{b}\right)\left(m_{b}-m_{c}\right)\left(m_{c}-m_{a}\right)}{(b-a)(c-b)(a-c)}>\frac{27 a b c}{(a+2 s)(b+2 s)(c+2 s)}
$$

Proposed by Daniel Sitaru - Romania

Proof 1.

$$
\begin{gathered}
\left(m_{a}-m_{b}\right)\left(m_{a}+m_{b}\right)=m_{a}^{2}-m_{b}^{2} \\
=\frac{1}{2}\left(b^{2}+c^{2}\right)-\frac{1}{4} a^{2}-\frac{1}{2}\left(a^{2}+c^{2}\right)+\frac{1}{4} b^{2} \\
=\frac{2 b^{2}+2 c^{2}-a^{2}-2 a^{2}-2 c^{2}+b^{2}}{4}=\frac{3\left(b^{2}-a^{2}\right)}{4}=\frac{3(b-a)(b+a)}{4} \\
\frac{m_{a}-m_{b}}{b-a}=\frac{3(b+a)}{4\left(m_{a}+m_{b}\right)}>\frac{3(b+a)}{4\left(\frac{b+c}{2}+\frac{a+c}{2}\right)}= \\
=\frac{3(b+a)}{2(a+b+2 c)}=\frac{3(b+a)}{2(2 s+c)} \geq \frac{3 \cdot 2 \sqrt{a b}}{2(2 s+c)}
\end{gathered}
$$

It follows that

$$
\frac{2\left(m_{a}-m_{b}\right)}{b-a}>\frac{3 \sqrt{a b}}{2 s+c}
$$

Similarly, $\frac{2\left(m_{b}-m_{c}\right)}{c-b}>\frac{3 \sqrt{b c}}{2 s+a}$ and $\frac{2\left(m_{c}-m_{a}\right)}{a-c}>\frac{3 \sqrt{c a}}{2 s+b}$. Multiplying the three relationship yields

$$
\frac{8\left(m_{a}-m_{b}\right)\left(m_{b}-m_{c}\right)\left(m_{c}-m_{a}\right)}{(b-a)(c-b)(a-c)}>\frac{27 a b c}{(a+2 s)(b+2 s)(c+2 s)}
$$

Proof 2.

First we note $a>b \Rightarrow m_{a}<m_{b}$. Indeed, from $m_{a}^{2}=\frac{b^{2}+c^{2}}{2}-\frac{a^{2}}{4}$ and $m_{b}^{2}=\frac{a^{2}+c^{2}}{2}-\frac{b^{2}}{4}$ we obtain $m_{a}^{2}-m_{b}^{2}=\frac{3}{4}\left(b^{2}-a^{2}\right)$.
Now, using $m_{a} m_{b} \leq \frac{2 c^{2}+a b}{4}$,

$$
\begin{aligned}
& \left(m_{a}-m_{b}\right)^{2}=m_{a}^{2}+m_{b}^{2}-2 m_{a} m_{b} \\
& \geq \frac{a^{2}+b+2+4 c^{2}}{4}-\frac{2 c^{2}+a b}{2} \\
& =\frac{(b-a)^{2}}{4}
\end{aligned}
$$

sucht that $\frac{2\left(m_{a}-m_{b}\right)}{b-a} \geq 1$. Similarly, $\frac{2\left(m_{b}-m_{c}\right)}{c-b} \geq 1$ and $\frac{2\left(m_{c}-m_{a}\right)}{a-c} \geq 1$ the product of which leads to

$$
\frac{8\left(m_{a}-m_{b}\right)\left(m_{b}-m_{c}\right)\left(m_{c}-m_{a}\right)}{(b-a)(c-b)(a-c)} \geq 1
$$

Suffice it to prove that $1>\frac{27 a b c}{(a+2 s)(b+2 s)(c+2 s)}$. But, by the $\boldsymbol{A} \boldsymbol{M}-\boldsymbol{G M}$ inequality, $a+b+c \geq 3 \sqrt[3]{a b c}$. Thus, we continue

$$
\frac{27 a b c}{(a+2 s)(b+2 s)(c+2 s)}<\frac{27 a b c}{(2 s)(2 s)(2 s)}=\frac{27 a b c}{(a+b+c)^{3}} \leq \frac{27 a b c}{27 a b c}=1
$$

This completes the proof.

Acknowledgment (by Alexander Bogomolny - USA)

Dan Sitaru has kindly posted at the CutTheKnotMath page the above problem of his that was published in the Romanian Mathematical Magazine. Dan messaged me his solution in a tex file an later added two more solutions. Solution 2 is by Soumava Chakraborty. Şerban George Florin and independently Athina Kalampolka and Chris Kyriazis gave solutions very similar to that of Dan Sitaru.
99. An Inequality in Triangle with Roots and Circumradius Prove that in any $\triangle A B C$,

$$
a \sqrt{b}+b \sqrt{c}+c \sqrt{a} \leq 3 R \sqrt{2 s}
$$

where s is the semiperimeter of $\triangle A B C, R$ its circumradius.

Proposed by Daniel Sitaru - Romania

Proof (by Mihalcea Andrei Ştefan - Romania).

Use Hölder's inequality followed by the rearrangement inequality,

$$
\begin{gathered}
(a \sqrt{b}+b \sqrt{c}+c \sqrt{a})^{2} \leq(a+b+c)(a b+b c+c a) \\
\leq 2 s\left(a^{2}+b^{2}+c^{2}\right)
\end{gathered}
$$

But we know that $a^{2}+b^{2}+c^{2} \leq 9 R^{2}$. A combination of the two gives desired result.

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem from his book Math Accent, with a solution, at the CutTheKnotMath page. The solution is by Mihalcea Andrei Ştefan, a grade 9 student.
100. An Inequality in Triangle with the Sines of Half - Angles and

Cube Roots

Prove that in an acute-angled triangle $\triangle A B C$:

$$
2 \sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \sin ^{2} \frac{C}{2} \geq \sqrt[3]{a b c}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

Proposed by Daniel Sitaru - Romania
Proof 1(by Daniel Sitaru - Romania).

$$
\begin{gathered}
2 \sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \sin ^{2} \frac{C}{2}=\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) 2 \sin ^{2} \frac{C}{2}= \\
=2 \sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right)(1-\cos C)=\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right)-\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \cos C \\
2 \sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \sin ^{2} \frac{C}{2}=\sum_{c y c l} \frac{a}{b}+\sum_{c y c l} \frac{b}{a}-\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \cos C \\
=\frac{\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \cos C=\sum_{c y c l} \frac{a^{2}+b^{2}}{a b} \cdot \frac{a^{2}+b^{2}-c^{2}}{2 a b}}{2 a^{2} b^{2} c^{2}} \sum_{c y c l} c^{2}\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)=\frac{1}{2 a^{2} b^{2} c^{2}} \sum_{c y c l}\left[c^{2}\left(a^{2}+b^{2}\right)^{2}-c^{4}\left(a^{2}+b^{2}\right)\right] \\
=\frac{1}{2 a^{2} b^{2} c^{2}} \sum_{c y c l}\left(c^{2}\left(a^{4}+b^{4}+2 a^{2} b^{2}\right)-c^{4} a^{2}-c^{4} b^{2}\right) \\
=\frac{1}{2 a^{2} b^{2} c^{2}} \sum_{c y c l}\left(c^{2} a^{4}+c^{2} b^{4}+2 a^{2} b^{2} c^{2}-c^{4} b^{2}-c^{4} a^{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{2 a^{2} b^{2} c^{2}}\left(\sum_{c y c l} a^{4} c^{2}-\sum_{c y c l} a^{4} c^{2}+\sum_{c y c l} b^{4} c^{2}-\sum_{c y c l} b^{4} c^{2}+6 a^{2} b^{2} c^{2}\right) \\
=\frac{6 a^{2} b^{2} c^{2}}{6 a^{2} b^{2} c^{2}}=3
\end{gathered}
$$

We continue:

$$
\begin{align*}
& 2 \sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \sin ^{2} \frac{C}{2}=\sum_{c y c l} \frac{a}{b}+\sum_{c y c l} \frac{b}{a}-3 \tag{2}\\
& \frac{a}{b}+\frac{a}{b}+\frac{b}{c} \geq 3 \sqrt[3]{\frac{a}{b} \cdot \frac{a}{b} \cdot \frac{b}{c}}=3 \sqrt[3]{\frac{a^{2}}{b c}}=3 \frac{a}{\sqrt[3]{a b c}} \tag{3}\\
& \frac{b}{c}+\frac{b}{c}+\frac{c}{a} \geq 3 \sqrt[3]{\frac{b}{c} \cdot \frac{b}{c} \cdot \frac{c}{a}}=3 \sqrt[3]{\frac{b^{2}}{a c}}=3 \frac{b}{\sqrt[3]{a b c}} \tag{4}\\
& \frac{c}{a}+\frac{c}{a}+\frac{a}{b} \geq 3 \sqrt[3]{\frac{c}{a} \cdot \frac{c}{a} \cdot \frac{a}{b}}=3 \sqrt[3]{\frac{c^{2}}{a b}}=3 \frac{c}{\sqrt[3]{a b c}} \tag{5}
\end{align*}
$$

Further,

$$
\begin{gathered}
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \geq 3 \frac{a+b+c}{\sqrt[3]{a b c}} \\
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{a+b+c}{\sqrt{a b c}} \geq \frac{3 \sqrt[3]{a b c}}{\sqrt[3]{a b c}}=3
\end{gathered}
$$

From (22) it follows that

$$
2 \sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \sin ^{2} \frac{C}{2}=\sum_{c y c l} \frac{a}{b}+\sum_{c y c l} \frac{b}{a}-3 \geq 3+\sum_{c y c l} \frac{b}{a}-3=\sum_{c y c l} \frac{b}{a}
$$

i.e.,

$$
\begin{gather*}
2 \sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \sin ^{2} \frac{C}{2} \geq \sum_{c y c l} \frac{b}{a} \tag{6}\\
\frac{a}{c}+\frac{a}{c}+\frac{b}{a} \geq 3 \sqrt[3]{\frac{a}{c} \cdot \frac{a}{c} \cdot \frac{b}{a}}=\frac{3 \sqrt[3]{a b c}}{c} \\
\frac{b}{a}+\frac{b}{a}+\frac{c}{b} \geq 3 \sqrt[3]{\frac{b}{a} \cdot \frac{b}{a} \cdot \frac{c}{b}}=3 \frac{\sqrt[3]{a b c}}{a} \\
\frac{c}{b}+\frac{c}{b}+\frac{a}{c} \geq 3 \sqrt[3]{\frac{c}{b} \cdot \frac{c}{b} \cdot \frac{a}{c}}=3 \frac{\sqrt[3]{a b c}}{b} \\
\sum_{\text {cycl }} \frac{b}{a} \geq \sqrt[3]{a b c}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
\end{gather*}
$$

From (6) and (7),

$$
2 \sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \sin ^{2} \frac{C}{2} \geq \sqrt[3]{a b c}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

Proof 2 (by Kevin Soto Palacios - Peru).
We'll prove instead a stronger inequality

$$
\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right)(1-\cos C) \geq \frac{a+b+c}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

Or, equivalently,

$$
A-B \geq \frac{a+b+c}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

where

$$
\begin{gathered}
A=\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \text { and } B=\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \cos C \\
B=\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \cos C=\sum_{c y c l}\left(\frac{a^{2}+b^{2}}{a b}\right)\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right) \\
=\sum_{c y c l}\left(\frac{\left(a^{2}+b^{2}\right)^{2}}{2 a^{2} b^{2}}\right)-\left(\frac{c^{2}\left(a^{2}+b^{2}\right)}{2 a^{2} b^{2}}\right) \\
=\sum_{c y c l} \frac{a^{2}}{2 b^{2}}+\sum_{c y c l} \frac{b^{2}}{2 a^{2}}+\sum_{c y c l} 1-\sum_{c y c l} \frac{c^{2}}{2 b^{2}}-\sum_{c y c l} \frac{c^{2}}{2 a^{2}}=3 . \\
A=\sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right)=\sum_{c y c l} \frac{b+c}{a} .
\end{gathered}
$$

We need to prove that

$$
A-B=\sum_{c y c l} \frac{b+c}{a}-3 \geq\left(\frac{a+b+c}{3}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

This is equivalent to

$$
\left(\sum_{c y c l} a\right)\left(\sum_{c y c l} \frac{1}{a}\right)-6 \geq\left(\frac{a+b+c}{3}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right),
$$

i.e.,

$$
\frac{2}{3}\left(\sum_{c y c l} a\right)\left(\frac{1}{a}\right) \geq 6
$$

which is true because, by the $\boldsymbol{A} \boldsymbol{M} \boldsymbol{-} \boldsymbol{G M}$ inequality,

$$
\left(\sum_{c y c l} a\right)\left(\frac{1}{a}\right) \geq 3 \sqrt[3]{a b c} \cdot 3 \frac{1}{\sqrt[3]{a b c}}=9
$$

Solution 3 (by Soumava Chakraborty - India).
First observe that

$$
\begin{gathered}
L H S=2 \sum_{c y c l}\left(\frac{a}{b}+\frac{b}{a}\right) \sin ^{2} \frac{C}{2}=2 \sum_{c y c l}\left(\frac{a^{2}+b^{2}}{a b}\right) \frac{(s-a)(s-b)}{a b} \\
=\sum_{c y c l} \frac{c^{2}\left(a^{2}+b^{2}\right)(b+c-a)(c+a-b)}{2 a^{2} b^{2}}
\end{gathered}
$$

Let's prove that

$$
\begin{gather*}
L H S=\sum_{c y c l} \frac{c^{2}\left(a^{2}+b^{2}\right)(b+c-a)(c+a-b)}{2 a^{2} b^{2}} \\
\geq\left(\frac{a+b+c}{3}\right)\left(\frac{a b+b c+c a}{a b c}\right) \\
L H S=\sum_{c y c l} \frac{c^{2}\left(a^{2}+b^{2}\right)(b+c-a)(c+a-b)}{2 a^{2} b^{2}} \geq\left(\frac{a+b+c}{3}\right)\left(\frac{a b+b c+c a}{a b c}\right) \tag{1}
\end{gather*}
$$

This is equivalent to

$$
\begin{gathered}
3 \sum_{c y c l} c^{2}\left(a^{2}+b^{2}\right)(b+c-a)(c+a-b) \geq 2 a b c \sum_{c y c l} a \sum_{c y c l} a b \Leftrightarrow \\
4\left(a^{3} b^{2} c+a^{3} b c^{2}+b^{3} c^{2} a+b^{3} c a^{2}+c^{3} a^{2} b+c^{3} a b^{2}\right) \geq 24 a^{2} b^{2} c^{2} \Leftrightarrow \\
\left(a^{2} b+a^{2} c+b^{2} c+b^{2} a+c^{2} a+c^{2} b\right) \geq 6 a b c
\end{gathered}
$$

which is the same as

$$
\begin{equation*}
b\left(a^{2}+c^{2}\right)+c\left(a^{2}+b^{2}\right)+a\left(b^{2}+c^{2}\right) \geq 6 a b c \tag{2}
\end{equation*}
$$

But, by the AM - GM inequality, $b\left(a^{2}+c^{2}\right) \geq 2 a b c, c\left(a^{2}+b^{2}\right) \geq 2 a b c$, $a\left(b^{2}+c^{2}\right) \geq 2 a b c$, so that (2) holds and so is (1).
This is stronger that the required inequality.
Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted at the CutTheKnotMath page the above problem of his that was published in the Romanian Mathematical Magazine. Dan messaged me his solution (Solution 1) in a tex file. Solution 2 is by Kevin Soto Palacios; Solution 3 is by Soumava Chakraborty.

Its nice to be important but more important its to be nice.

At this paper works a TEAM. This is RMM TEAM.

To be continued!
Daniel Sitaru

