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Mihalcea Andrei Ştefan - Romania, Şerban George Florin - Romania

Ravi Prakash - New Delhi - India



5

51. An Inequality from RMM with a Generic 5

Prove that, for a, b, c > 0,

3
√

(2a+ 5)(2b+ 5)(2c+ 5) ≥ 6abc

ab+ bc+ ca
+ 5

Proposed by Daniel Sitaru - Romania

Proof:
By Hölder’s inequality,

2
3
√
abc+ 5 =

3
√

8abc+
3
√

125 ≤ 3
√

2a+ 5
5
√

2b+ 5 5
√

2c+ 5

= 3
√

(2a+ 5)(2b+ 5)(2c+ 5)

On the other hand, 2 3
√
abc ≥ 6abc

ab+bc+ca . Indeed, by the AM - GM inequality , the
latter is equivalent to

2
3
√
abc(ab+ bc+ ca) ≥ 2

3
√
abc
(

3 3
√

(abc)2
)

= 6abc

�

Acknowledgment (by Alexander Bogomolny - USA)

Daniel Sitaru has kindly posted the above problem from the Romanian
Mathematical Magazine , with two practically identical proofs - one by Kevin
Soto Palacios (Peru), the other Pham Quy (Vietnam), at the CutTheKnotMath
page .

52. An Inequality from RMM with Powers of 2

Prove that, for x, y, z > 0

2x + 2y + 2z + 2x+y+z >
x+y
√

16xy +
y+z
√

16yz +
z+x
√

16zx + 1

Proposed by Daniel Sitaru - Romanian

Proof (by Ravi Prakash - India):
Note that

2x + 2y + 2z + 2x+y+z − 2x+y − 2y+z − 2z+x − 1

= (2x − 1)(2y − 1)(2z − 1) > 0,

implying that

2x + 2y + 2z + 2x+y+z > 2x+y + 2y+z + 2z+x + 1.

But
2x+y = 4

x+y
2 ≥ 4

2xy
x+y =

x+y
√

16xy

The required inequality follows from the above by cycling through the pairs (y, z)
and (z, x) then adding. �

Acknowledgment (by Alexander Bogomolny - USA)
Daniel Sitaru has kindly posted the above problem from the Romanian
Mathematical Magazine, with a proof by Ravi Prakash (India), at the
CutTheKnotMath page .
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53. An Inequality in Acute Triangle, Courtesy of Ceva’s Theorema

Let, in ∆ABC, a, b, c, AA′, BB′, CC ′ be the altitudes; AA′′, BB′′, CC ′′ the angle
bisectors, and AA′′′, BB′′′, CC ′′ the symmedians.
Then

AB′ ·BC ′ · CA′ +AB′′ ·BC ′′ · CA′′ +AB′′′ ·BC ′′′ · CA′′′ ≤ 3

8
abc.

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania):
Lemma:

Assume that in an acute ∆ABC,AA0, BB0, CC0 are concurrent cevians. Then

8 ·BA0 · CB0 ·AC0 ≤ abc.
For convenience, denote BA0 = x1, A0C = y1, CB0 = x2, B0A = y2, AC0 = x3,
C0B = y3. Then by Ceva’s theorem ,

x1
y1
· x2
y2
· x3
y3

= 1.

We have to prove that 8x1x2x3 ≤ (x1 + y1)(x2 + y2)(x3 + y3). In other words, we
need to show that

x1 + y1
x1

· x2 + y2
x2

· x3 + y3
x3

≥ 8,

or, (
1 +

y1
x1

)
·
(

1 +
y2
x2

)
·
(

1 +
y3
x3

)
≥ 8,

Multiplying out, this is reduced to

1 +
y1
x1

+
y2
x2

+
y3
x3

+
y1y2
x1x2

+
y2y3
x2x3

+
y3y1
x3x1

+
y1y2y3
x1x2x3

≥ 8

Making multiple uses of Ceva’s theorem, this is equivalent to

1 +
y1
x1

+
y2
x2

+
y3
x3

+
x3
y3

+
x1
y1

+
x2
y2

+ 1 ≥ 8

and, in turn, to ( y1
x1

+
x1
y1

)
+
( y2
x2

+
x2
y2

)
+
( y3
x3

+
x3
y3

)
≥ 6

which is true by the AM - GM inequality applied thrice.
Since the triples of angle bisectors, altitudes, and symmedians are all concurrent
cevians, we may apply the lemma to each triple:

8 ·AB′ ·BC ′ · CA′ ≤ abc
8 ·AB′′ ·BC ′′ · CA′′ ≤ abc

8 ·AB′′′ ·BC ′′′ · CA′′′ ≤ abc
Adding up give the desired result. �

Aknowledgment (by Alexander Bogomolny - USA)
The inequality with the solution has been posted by Daniel Sitaru at the
CutTheKnotMath page .
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54. Power and Fractions Inequality

Prove that, for a, b, c > 0, ∑
cycl

a3b3

c5
≥
∑
cycl

ab

c

Proposed by Daniel Sitaru - Romania

Proof 1 (by Ravi Prakash - India):
By the AM - GM inequality ,

a3c3

b5
+
ba

c
+
cb

a
≥
(a3c3
b5
· ba
c
· cb
a

) 1
3

=
3ac

b
.

Similarly, b
3a3

c5 + ac
b + cb

a ≥
3ba
c and c3b3

a5 + ac
b + ba

c ≥
3cb
a . Adding up,∑

cycl

a3c3

b5
+ 2

∑
cycl

ba

c
≥ 3

∑
cycl

ba

c

which directly proves the required inequality. �

Proof 2 (by Lâm Phan - Vietnam).
By the AM - GM inequality ,

2
∑
cycl

a3c3

b5
=
(a3c3
b5

+
b3a3

c5

)
+
(b3a3
c5

+
c3b3

a5

)
+
(c3b3
a5

+
a3c3

b5

)

≥ 2
a3

bc
+ 2

b3

ca
+ 2

c3

ab
=

=
(a3
bc

+
b3

ca

)
+
( b3
ca

+
c3

ab

)
+
( c3
ab

+
a3

bc

)
≥ 2

ab

c
+ 2

bc

a
+ 2

ca

2
= 2

∑
cycl

ac

b

�

Proof 3 (by Soumava Chakraborty - India).
The given inequality is equivalent to∑

cycl

a8b8 ≥ a4b4c4
∑
cycl

a2b2.

Let a2b2 = x, b2c2 = y, c2a2 = z, x, y, z > 0. We need to prove that

(1) x4 + y4 + z4 ≥ xyz(x+ y + z)

Schur’s inequality for t = 2 gives

(a) x4 + y4 + z4 + xyz(x+ y + z) ≥ xy(x2 + y2) + yz(y2 + z2) + zx(z2 + x2)

Now, x2 + y2 ≥ 2xy, etc., so that

(2) xy(x2 + y2) + yz(y2 + z2) + zx(z2 + x2) ≥ 2(x2y2 + y2z2 + z2x2)

Further,

2(x2y2 + y2z2 + z2x2)− 2xyz(x+ y + z) =

= (xy − yz)2 + (yz − zx)2 + (zx− xy)2 ≥ 0,

implying

(3) 2(x2y2 + y2z2 + z2x2) ≥ 2xyz(x+ y + z)
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(2) and (3) give

(b) xy(x2 + y2) + yz(y2 + z2) + zx(z2 + x2) ≥ 2xyz(x+ y + z)

(a) and (b) add up to the required (1) �

Proof 4 (by Rory Tarnow - Mordi).

4
∑
cycl

a3b3

c5
=
∑
cycl

(
2
a3b3

c5
+
b3c3

a5
+
c3a3

b5

)
≥

≥
∑
cycl

4
(a3b3
c5
· a

3b3

c5
· b

3c3

a5
· c

3a3

b5

) 1
4

= 4
∑
cycl

ab

c
.

�

Proof 5 (by Alexander Bogomolny - USA).
As in Proof 3, the required inequality is reduced to∑

cycl

a8b8 ≥ a4b4c4
∑
cycl

a2b2.

By Chebysev’s inequality ,

3
∑
cycl

a8b8 ≥
∑
cycl

a6b6
∑
cycl

a2b2.

But, by the AM - GM inequality ,∑
cycl

a6b6 ≥ 3(a12b12c12)
1
3 = 3a4b4c4.

Acknowledgment (by Alexander Bogomolny - USA):
Daniel Sitaru has kindly posted the above problem at the CutTheKnotMath
page , along with several solutions. The problems comes from his book Math Accent.

�

55. An Inequality for the Cevians through Spieker Point via Brocard
Angle

Let AA′, BB′, CC ′be the cevians through the Spieker point in ∆ABC.

Then

a2b2 + b2c2 + c2a2 ≥ 2s(AC ′ ·BA′ · CB′ +AB′ ·BC ′ · CA′)
where s is the semiperimeter of ∆ABC and a, b, c are its side lengths.

Proposed by Daniel Sitaru - Romania
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Proof (by Alexander Bogomolny - USA).
The Spieker point can be characterised in several ways. One of these is a point
where the three triangle’s cleavers intersect. Thus, in particular,

AB +BA′ = AC + CA′ =
a+ b+ c

2
= s,

i.e., BA′ = a+b−c
2 and A′C = a−b+c

2 .

Similarly we can calculate the remaining four segments. To sum up,

A′B = B′A =
a+ b− c

2
,

A′C = C ′A =
a− b+ c

2
,

B′C = C ′B =
−a+ b+ c

2
.

There is a well known expression involving the Brocard angle ω of ∆ABC:

sin2 ω =
(−a+ b+ c)(a− b+ c)(a+ b− c)(a+ b+ c)

4(a2b2 + b2c2 + c2a2)
.

Using that and 1 > sin2 ω, we obtain

1 >
2B′C · 2C ′A · 2A′B · 2s
4(a2b2 + b2c2 + c2a2)

=
4s ·B′C · C ′A ·A′B
a2b2 + b2c2 + c2a2

,

1 >
4s ·A′C · C ′B ·B′A
a2b2 + b2c2 + c2a2

.

Summing up leads to the desired result.
�
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56. Sanchez’s Areas in Bottema’s Configuration

ABQP and CBNL are two squares sharing a vertex. M is the midpoint of AC.

Prove that [∆MPN ] = [∆MLQ], where [F ] denotes the area of shape F .

Proposed by Miguel Ochoa Sanchez - Peru

Proof (by Leonard Giugiuc - Romania).
Note that ∆MPN = ∆BPN ∪∆MBP ∪∆MBN and

∆MLQ = ∆BLQ ∪∆MBL ∪∆MBQ :

Let’s set BC = c, AB = a. Observe that ∠PBN = QBN + 45◦ = ∠QBL. Denote
this angle as ω. Then

[∆BPN ] =
1

2
(a
√

2) · c · sinω =
1

2
a · (c

√
2) · sinω = [∆BLQ].



11

Introduce angles α and γ as shown:

Then, since [∆ABM ] = [∆CBM ],

a sinα = c sin γ

Using that,

2([∆MBP ] + [∆MBN ]) = BM · (BP · sin∠MBP +BN · sin∠MBN)

= BM ·
(
a
√

2 sin(α+ 45◦) + c · sin(γ + 90◦)
)

= BM · (a sinα+ a cosα+ c cos γ) = BM · (c sin γ + a cosα+ c cos γ)

= BM · (cosα+ c sin γ + c cos γ) = BM ·
(
a sin(α+ 90◦) + c

√
2 sin(γ + 45◦)

)
= BM · (BQ · sin∠MBQ+BL · sin∠MBL) = 2([∆MBQ] + [∆MBL]),

which proves the require [∆MPN ] = [∆MLQ]. �

57. Non square Matrix as a Tool for Proving an Inequality

Let a, b, c be non-negative. Prove that

2(a+ b+ c)(a+ 3b+ 3c) ≥
(√

b(a+ b) + 2
√
c(b+ c) +

√
a(c+ a)

)2
Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Proof (by Daniel Sitaru, Leonard Giugiuc - Romania).
Define matrix

A =

(√
a+ b

√
b+ c

√
a

√
c√

b
√
c

√
a+ c

√
b+ c

)
. We have A ∈M4,2(R).

Further

AAt =

(
a+ b+ b+ c+ a+ c

√
a(a+ b) + 2

√
c(b+ c) +

√
a(a+ c)√

a(a+ b) + 2
√
c(b+ c) +

√
a(a+ c) a+ b+ b+ c+ a+ c

)
AAt ∈M2(R). By the Cauchy - Binet theorem ,det(AAt) ≥ 0. More explicitly,

AAt =

(
2a+ 2b+ 2c

√
a(a+ b) + 2

√
c(b+ c) +

√
a(a+ c)√

a(a+ b) + 2
√
c(b+ c) +

√
a(a+ c) 2a+ 2b+ 2c

)
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whereas,

det(AAt) = (2a+ 2b+ 2c)(a+ 2b+ 3c)−
(√

b(a+ b) + 2
√
c(b+ c) +

√
a(c+ a)

)2
.

Or, else,

det(AAt) = 2(a+b+c)

(
(a+2b+3c)−

(√
b(a+ b)+2

√
c(b+ c)+

√
a(c+ a)

))2

≥ 0

�

58. An Inequality with Determinants V

With a, b, c the sides and s the semiperimeter of ∆ABC, prove that

∆ =

∣∣∣∣∣∣∣∣∣
s a2b

a3+b
b2c
b3+c

c2a
c3+a

a2b
a3b s c2a

c3+a
b2c
b3+c

b2c
b3+c

c2a
c3+a s a2b

a3+b
c2a
c3+a

b2c
b3+c

a2b
a3+b s

∣∣∣∣∣∣∣∣∣ ≥ 0

Equality is only achieved for a = b = c = 1.

Proposed by Daniel Sitaru - Romania

Lemma:
For x, y, z, t ∈ R,

∆′ =

∣∣∣∣∣∣∣∣
x y z t
y x t z
z t x y
t z y x

∣∣∣∣∣∣∣∣
= (x+ y + z + t)(x− y + z − t)(x+ y − z − t)(x− y − z + t)

Proof 1 of Lemma (by Leonard Giugiuc - Romania).
We shall compute the determinant first using row and/or column operations, de-
scribing each step symbolically next to the determinant the operation applied to:

∆′ =

∣∣∣∣∣∣∣∣
x y z t
y x t z
z t x y
t z y x

∣∣∣∣∣∣∣∣
(r1=:r1+r2+r3+r4)

= (x+ y + z + t)

∣∣∣∣∣∣∣∣
1 1 1 1
y x t z
z t x y
t z y z

∣∣∣∣∣∣∣∣
(c4=:c4−c3+c2−c1)

= (x+ y + z + t)(x− y + z − t)

∣∣∣∣∣∣∣∣
1 1 1 0
y x t 1
z t x −1
t z y 1

∣∣∣∣∣∣∣∣
(c2=:c2−c1,c3=:c3−c1)

= (x+ y + z + t)(x− y + z − t)

∣∣∣∣∣∣∣∣
1 0 0 0
y x− y t− y 1
z t− z x− z −1
t z − t y − t 1

∣∣∣∣∣∣∣∣
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= (x+ y + z + t)(x− y + z − t)

∣∣∣∣∣∣
x− y t− y 1
t− z x− z −1
z − t y − t 1

∣∣∣∣∣∣
(r1=:r1+r2,r3=:r3+r2)

= (x+ y + z + t)(x− y + z − t)

∣∣∣∣∣∣
x− y + t− z x− y + t− z 0

t− z x− z −1
0 x+ y − z − t 0

∣∣∣∣∣∣
= (x+ y + z + t)(x− y + z − t)

∣∣∣∣x− y + t− z x− y + t− z
0 x+ y − z − t

∣∣∣∣
= (x+ y + z + t)(x− y + z − t)(x− y + t− z)(x+ y − z − t)

�

Proof 2 of Lemma (by Alexander Bogomolny - USA).
Note that the matrix in the lemma is defined block-wise, say

S =


x z z t
y x t z
z t x y
t z y x

 =

(
A B
B A

)
,

where A =

(
x y
y x

)
and B =

(
t z
z t

)
. It is easily verifiable that the matrices com-

mute: AB = BA, which allows for an application of Silvester’s theorem, concerning
the determinants of block - matrices. In our case,

det(S) = det(A2 −B2) = (x2 + y2 − t2 − z2)2 − [2(xy − tz)]2

= (x2 + y2 − t2 − 2xy + 2tz)(x2 + y2 − t2 − z2 + 2xy − 2tz)

=
(

(x− y)2 − (t− z)2
)(

(x+ y)2 − (t+ z)2
)

which is exactly the same expression as above.
Reference:
1. John R. Silvester, Determinants of Block Matrices, The Mathematical Gazzete,
Vol. 84, No. 501 (Nov, 2000), pp. 460 - 467 �

Proof (by Daniel Sitaru, Leonard Giugiuc - Romania):

In the problem, let x = s, y = a2b
a3+b , z = b2c

b3+c , t = c2a
c3+a . We have, for example, by

the AM - GM inequality ,

a2b

a3 + b
≤ a2b

2a
√
ab

=
ab

2
√
ab

=

√
ab

2
≤ a+ b

4
.

For equality, we need a3 = b and also a = b, with the only feasible solution
a = b = 1.
Similarly to the above, b2c

b3+c ≤
b+c
4 and c2a

c3+a ≤
c+a
4 . From these we conclude that

y + z + t ≤ x which guarantees that all four factors in Lemma are nonnegative,
making ∆′ ≥ 0 and also ∆ ≥ 0. The equality in y + z + t ≤ x is achieved when
a = b = c = 1. Otherwise, ∆ > 0. �

Acknowledgment (by Alexander Bogomolny - USA)
The inequality from the Romanian Mathematical Magazine has been shared
at the CutTheKnotMath page by Daniel Sitaru. The problem and the solution
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above are due to Daniel Sitaru and Leo Giugiuc. I reproduce that part here because
of a lemma of a general character, interesting in its own right.

59. An Inequality with Determinants VI

Let a, b, c > 0, all distinct, and

∆1 =

∣∣∣∣∣∣
1 a a3

1 b b3

1 c c3

∣∣∣∣∣∣ ,∆2 =

∣∣∣∣∣∣
a2 b2 c2

b2 + c2 c2 + a2 a2 + b2

bc ca ab

∣∣∣∣∣∣
Prove that

∆1 −∆2

(b− a)(a− c)(b− c)
≥ 12 6

√
(abc)5.

Proposed by Daniel Sitaru - Romania

Proof (by Ravi Prakash - India):

∆1 =

∣∣∣∣∣∣
1 a a3

1 b b3

1 c c3

∣∣∣∣∣∣
r1:r1−r2,r2=r2−r3

=

∣∣∣∣∣∣
0 a− b a3 − b3
0 b− c b3 − c3
1 c c3

∣∣∣∣∣∣
= (a− b)(b− c)

∣∣∣∣1 a2 + ab+ b2

1 b2 + bc+ c2

∣∣∣∣ = (a− b)(b− c)(c− a)(a+ b+ c).

∆2 =

∣∣∣∣∣∣
a2 b2 c2

b2 + c2 c2 + a2 a2 + b2

bc ca ab

∣∣∣∣∣∣
r2:=r1+r2

= (a2 + b2 + c2)

∣∣∣∣∣∣
a2 b2 c2

1 1 1
bc ca ab

∣∣∣∣∣∣
=
a2 + b2 + c2

abc

∣∣∣∣∣∣
a3 b3 c3

a b c
abc abc abc

∣∣∣∣∣∣ = (a2 + b2 + c2)

∣∣∣∣∣∣
a3 b3 c3

a b c
1 1 1

∣∣∣∣∣∣ =

= (a2 + b2 + c2)∆1

Thus, we have

∆1 −∆2

(a− b)(b− c)(c− a)
= (a+ b+ c) + (a+ b+ c)(a2 + b2 + c2)

3(abc)
1
3 + 3(abc)

1
3 (a2 + b2 + c2) ≥ 3(abc)

1
3 · 4(a2b2c2)

1
4 = 12(abc)

5
6

�

Acknowledgment (by Alexander Bogomolny - USA)
The inequality from his book ”Ice Math” (Problem 026) has been kindly shared
at the CutTheKnotMath page by Daniel Sitaru, along with a solution by Ravi
Prakash.

60. Inequality in Quadrilateral

In a quadrilateral ABCD, with sides AB = a,BC = b, CD = c,DA = d, the

following inequality holds∑
cycl

√
a2 + b2 + c2 > 2

√
3 ·AC ·BD.

Proposed by Daniel Sitaru - Romania
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Proof (by Alexander Bogomolny- USA).
The Arithmetic Mean - Quadratic Mean inequality gives:√

a2 + b2 + c2

3
≥ a+ b+ c

3
,

implying
√
a2 + b2 + c2 ≥ a+b+c√

3
and similarly, for other triples of the sides, such

that, on adding up, we obtain∑
cycl

√
a2 + b2 + c2 ≥ 3(a+ b+ c+ d)√

3
=
√

3(a+ b+ c+ d).

By the AM - GM inequality , a + c ≥ 2
√
ac and b + d ≥ 2

√
bd. Now, by the

Ptolemy’s inequality ,

(
√
ac+

√
bc)2 > ac+ bd ≥ AC ·BD,

so that
√
ac+

√
bd >

√
AC ·BD. Putting everything together shows that∑

cycl

√
a2 + b2 + c2 ≥

√
3(a+ b+ c+ d) ≥ 2

√
3(
√
ac+

√
bd) > 2

√
3
√
AC ·BD.

�

Acknowledgment (by Alexander Bogomolny - USA)
The problem, due to Daniel Sitaru, has been published in the Romanian Math-
ematical Magazine where more solutions can be found.

61. Cyclic Inequality with Logarithms

Let a, b, c > 1. Prove that

ln(ab · bc · ca) + 6
∑
cycl

b(1 + 2a)

1 + 4a+ a2
≥ 3(a+ b+ c).

Proposed by Daniel Sitaru - Romania

Solution 1 (by Leonard Giugiuc - Romania).
First we prove
Lemma

For a, b ≥ 1,

b ln a+
6b(1 + 2a)

a2 + 4a+ 1
≥ 3b.

Indeed, set f(b) = b ln a+ 6b(1+2a)
a2+4a+1 − 3b on [1,∞).

f ′(b) = ln a+
6(1 + 2a)

a2 + 4a+ 1
− 3.

Now let g(a) = (a2 + 4a+ 1)f ′(b) = (a2 + 4a+ 1) ln a− 3a2 + 3, on [1,∞). We have

g′(a) = 2(a+ 2) ln a− 5a+ 4 +
1

a
.

g′′(a) = 2 ln a− 3 +
4

a
− 1

a2
,

g′′′(a) =
2(a− 1)2

a3
≥ 0, a ≥ 1
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We deduce that g′′(a), g′(a), g(a) are all increasing for a ≥ 1, implying that so is f

and since f(1) = g(a)
a2+4a+1 ≥ 0, the conclusion follows.

The other two inequalities are treated in a similar manner and then added to obtain
the required inequality.

f ′(x) < 0, for x < 1, and f ′(x) > 0, for x > 1.

Since f(1) = 0, f(x) ≥ 0, for x > 0.

�

Solution 2 (by Leonard Giugiuc -Romania).
First we prove
Lemma

Function f(x) = lnx+
6(1 + 2x)

x2 + 4x+ 1
is strictly increasing on [0,∞).

Indeed, f ′(x) = 1
x −

12(x2+x+1)
(x2+4x+1)2 . Further,

f ′(x) ≥ 0⇔ [(x2 + x+ 1) + 3x]2 ≥ 12x(x2 + x+ 1),

which is true by the AM - GM inequality for u = x2 + x+ 1 and v = 3x. Back
to the problem: by the lemma, f(x) ≥ f(1) = 3, x ≥ 1.
Thus, bf(a) + cf(b) + af(c) ≥ 3(a+ b+ c), implying the required inequality. �

Acknowledgment (by Alexander Bogomolny - USA)
The problem above has been posted on the CutTheKnotMath page by Daniel
Sitaru. Leonard Giugiuc submitted two solutions (Solution 1 and Solution 2);
Soumitra Mandal submitted a solution, practically the same as Solution 2.

62. Beatty Sequences II

Assume r and s are two (strictly) irrational numbers that satisfy 1
r + 1

s = 1. Then
the sequences {an} = {bnrc : n ∈ N} and {bn} = {bnsc : n ∈ R} are complemen-
tary. In other words,

{an} ∪ {bn} = N and {an} ∩ {bn} = ∅
where N = {1, 2, 3, . . .}.

This statement of Beatty’s theorem (1926) one proof of which was published in
1927 and has been reproduced elsewhere at this site.

Below is a slight modification of the proof posted by Daniel Sitaru at the
CutTheKnotMath page.

Proof (by Alexander Bogomolny - USA).
Assume to the contrary that there are integers n,m, q such that

q < mr < q + 1

q < ns < q + 1,

which is the same as
m

q + 1
<

1

r
<
m

q



17

n

q + 1
<

1

s
<
n

q
.

Adding up we obtain m+n
q+1 < 1

r + 1
s <

m+n
q , or

m+ n

q + 1
< 1 <

m+ n

q
,

so that q < m+ n < q + 1, which is impossible since both m+ n and q have been
assumed to be integers. This immediately implies that {an} ∩ {bn} = ∅.
Below any integer N the two sequence have between them

⌊
N
r

⌋
+
⌊
N
s

⌋
terms.

Let’s denote the two numbers as, say a(N) and b(N). We have
a(N) < N

r < a(N) + 1 and b(N) < N
s < b(N) + 1

so that
a(N)

N
<

1

r
<
a(N) + 1

N
b(N)

N
<

1

s
<
b(N) + 1

N

Adding up gives a(N)+b(N)
N < 1 < a(N)+b(N)+2

N , or
a(N) + b(N) < N < a(N) + b(N) + 2. Since all the quantities involved are integers,
it follows that, it follows that N = a(N) + b(N) + 1, or a(N) + b(N) = N − 1, the
exact number of integer intervals up to and including N . Thus every interval of
with successive integer endpoints, say [u, u + 1], contains exactly one term of the
union {an} ∪ {bn} so that, indeed, {an}cup{bn} = N. �

63. An Inequality in Cyclic Quadrilateral IV

Prove that in quadrilateral ABCD, with sides AB = a,BC = b, CD = c,

DA = d, and the area = [ABCD], the following inequality holds

a2 − b2 − c2 + d2 + 4S ≤ 2
√

2(ad+ bc)

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).
In ∆ABD : BD2 = a2 + d2 − 2ad cosA,
In ∆BCD : BD2 = b2 + c2 − 2bc cos(π −A).
It follows that a2 + d2 − 2ad cosA = b2 + c2 + 2bc cosA, or,
S = 1

2ad sinA+ 1
2bc sinA, or, sinA = 2S

ad+bc .

Let f : (0, 2π)→ R, f(x) = sinx+ cosx =
√

2 cos
(
x+ π

4

)
.

Thus max f(x) =
√

2. We now have sinx+ cosx ≤
√

2, i.e.
a2−b2−c2+d2

2(ad+bc) + 2S
ad+bc ≤

√
2, which is a2 − b2 − c2 + d2 + 4S ≤ 2

√
2(ad+ bc). �

Acknowledgment (by Alexander Bogomolny - USA)
The problem from his book Math Accent has been posted at CutTheKnotMath
page by Daniel Sitaru, with his solution.
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64. Algebraic - Geometric Inequality

Let x, y, z > 0. Prove that√
x2 −

√
3xy + y2 +

√
y2 −

√
2yz + z2 ≥

√
z2 − zx+ x2

Proposed by Daniel Sitaru - Romania

Proof 1 (by Leonard Giugiuc - Romania).

In complex numbers, let u = e
iπ
6 , v = e

iπ
4 , and w = e

5iπ
12 . We have√

x2 −
√

3xy + y2 = |x− yu|,
√
y2 −

√
2yz + z2 = |y − zv| = |u||y − zw| =

= |yu− zw|. It follows that√
x2 −

√
3xy + y2 +

√
y2 −

√
2yz + z2 = |x− yu|+ |yu− zw|

≥ |x− yu+ yu− zw| = |x− zw| =

√
x2 − xz

(√6−
√

2

2

)
+ z2

≥
√
x2 − xz + z2.

�

Proof 2.
Consider triangles ABC and ACD such that AB = x,AC = y,AD = z,

∠BAC = π
6 ,∠CAD = π

4 . Then BC =
√
x2 −

√
3xy + y2 and

CD =
√
y2 −

√
2 + z2. Also, ∠BAD = 75◦, BD =

√
z2 − zx cos 75◦ + x2.

Since cos 75◦ < cos 60◦ = 1
2 , z

2 − zx cos 75◦ + x2 > z2 − zx+ x2. Now,

BC + CD ≥ BD >
√
z2 − zx+ x2

which proves the required inequality. �

Proof 3. √
x2 −

√
3xy + y2 +

√
y2 −

√
2yz + z2

=

√(√3

2
x− y

)2
+
(x

2

)2
+

√(
y − z√

2

)2
+
( z√

2

)2
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≥

√(√3

2
x− z√

2

)2
+
(x

2
+

z√
2

)2
=

√
x2 + z2 −

√
3− 1√

2
zx >

√
z2 − xz + x2

since
√

2 + 1 >
√

3. This completes the proof. �

Acknowledgment (by Alexander Bogomolny - USA)
Daniel Sitaru has kindly posted the above problem (from his book ”Math Accent”)
at the CutTheKnotMath page . Solution 1 is by Leo Giugiuc; Solution 2 is by
Ravi Prakash and, independently, by Chris Kyriazis; Solution 3 is by Nguyen Minh
Triet and, independently, by Soumitra Mandal.

65. For Equality Choose Angle Bisector

What Might This Be About?
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Source:

We’ll prove a little more: the condition BF = CE is not sufficient for θ = ϕ, it is
also necessary:
Given ∆ABC and point D, on neither AB or AC. From circles (ABD) and
(ACD) intersect AC in E; (ACD) intersect AB in F :

Let ∠BAD = θ,∠CAD = ϕ. Prove that θ = ϕ if BF = CE.

Proposed by Miguel Ochoa Sanchez - USA

Solution 1 (by Alexander Bogomolny - USA).
Angles θ and ϕ are subtended by the chords BD,DE in circle (ABD) and by the
chords DF,CD in circle (ACD), implying DF

CD = BD
DE . In addition,

∠BDF = ∠BDE − ∠FDE, whereas ∠CDE = ∠CDF − ∠FDE. Both angles
BDE and CDF are supplementary to ∠BAC and are thus equal. It follows that
∠BDF = ∠CDE, and, consequently, triangles BDF and CDE are similar. They
are equal when, say, the two chords BD and DE in circle (ABD) are equal. This
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only happens when θ = ϕ. Thus ∆BDF = ∆CDE and then also BF = CE if AD
bisects ∠BAC. �

Solution 2 (by Leonard Giugiuc - Romania).
Here we establish only the sufficiency of the condition BF = CE for θ = ϕ.
Introduce M,N,P and x as below.

Denote circle (ABE) as w and circle (ACF ) as q. By the power of B relative to
q,BM · BC = BF · AB, i.e., a · BM = xc. Similarly, by the power of C with
respect to w, a · CN = x · b. From here, BM

CN = c
b .

P belongs to the radical axis w and q, hence, it has the same power relative to both
w and q. It follows that PB ·PN = PC ·PM , or PB(PC−CN) = PC(PB−BM),
which is equivalent to PB · CN = PC · BM , implying PB

PC = BM
CN = c

b . By the
inverse of the Internal Bisector theorem , AP is the angle bisector of ∠BAC. �

Acknowledgment (by Alexander Bogomolny - USA)
The problem that is due to Miguel Ochoa Sanchez has been posted by Leonard
Giugiuc at the CutTheKnotMath page along with a solution (Solution 2).

66. A Cyclic Inequality in Three Variables XX

Prove that, for a, b, c > 0, with a+ b+ c = 1.

5
∑
cycl

√
ab ≤

∑
cycl

4
√

(a+ 4b)(2a+ 3b)(3b+ 2a)(4a+ b) ≤ 5

Proposed by Daniel Sitaru - Romania

Proof 1.
By the AM - GM inequality ,∑

cycl

4
√

(a+ 4b)(2a+ 3b)(3b+ 2a)(4a+ b)

≤
∑
cycl

(a+ 4b)(2a+ 3b)(3b+ 2a)(4a+ b)

4

Again, by the AM - GM inequality,∑
cycl

4
√

(a+ 4b)(2a+ 3b)(3b+ 2a)(4a+ b) ≤
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≥
∑
cycl

4

√
5
√
ab4 · a2b3 · a3b2 · a4b = 5

∑
cycl

√
ab.

This completes the proof. �

Proof 2.

4
√

(a+ 4b)(2a+ 3b)(3b+ 2a)(4a+ b)

= 4
√

(4a2 + 4b2 + 17ab)(6a2 + 6b2 + 13ab) ≥ 4
√

(25ab)(25ab) = 5
√
ab.

Further
4
√

(a+ 4b)(2a+ 3b)(3b+ 2a)(4a+ b)

≤
∑
cycl

4

√
(a+ 4b)(2a+ 3b)(3b+ 2a)(4a+ b)

4
=

10

2
a+ b+ c = 5.

�

Acknowledgment (by Alexander Bogomolny - USA)
This is a problem from the Romanian Mathematical Magazine , posted by
Daniel Sitaru at the CutTheKnotMath page . Solution 1 is by Anas Adlany and
independently by Diego Alvariz and also by Dang Thanh Tùng; Solution 2 is by
Kevin Soto Palacios and independently by Soumava Chakraborty.

67. An Inequality from Gazeta Matematica, March 2016 III

Several inequalities with solution by Daniel Sitaru and Leonard Giugiuc have been
just published in Gazeta Matematica (March 2016). Here is one with two of its ap-
plications and a proof (Proof 1) from the article. Along the way several additional
proofs have been added. Proof 2 is by Imad Zak; Proof 3 is by Emil Stoyanov;
Proof 4 is by Grégoire Nicollier.

Let a, b, c be real numbers. Prove that:

a2 + b2 + 1 ≥ a+ ab+ b

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Proof 1 (by Daniel Sitaru, Leonard Giugiuc - Romania).

Define A =

(
1 a b
a b 1

)
. By the Binet - Cauchy theorem , det(AAT ) ≥ 0. But

det(AAT ) = (a2 + b2 + 1)2 − (a+ ab+ b)2

proving the inequality at hand. �

Proof 2 (by Imad Zak - Lebanon).

Let S = a + b and P = ab, by the AM - GM inequality , we have P ≤ S2

4 and

the required inequality is equivalent to S2 − S + 1 ≥ 3P , so suffice it to prove that

S2 − S + 1 ≥ 3S2

4 which is equivalent to S2

4 − S + 1 ≥ 0, or
(
S
2 − 1

)2
≥ 0 which is

clearly true. The equality holds when S = 2 and P = 1, i.e., when a = b = 1. �
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Proof 3 (by Emil Stoyanov).
The required inequality is equivalent to a2 − (b+ 1)a+ (b2 − b+ 1) ≥ 0. Consider
the quadric function f(x) = x2 − (b + 1)x + (b2 − b + 1) ≥ 0. Its discriminant
D = (b+ 1)2 − 4b2 + 4b− 4 = −3(b− 1)2 is never positive, implying that function
f is never negative. �

Proof 4 (by Grégoire Nicollier).
The inequality reduces to (a − 1)2 + (b − 1)2 ≥ (a − 1)(b − 1) which could be
strengthened to (a− 1)2 + (b− 1)2 ≥ 2(a− 1)(b− 1). �

Proof 5 ( by Alexander Bogomolny - USA).
By the AM - QM inequality ,

a2 + b2 + 1 ≥ 1

2
(a+ b)2 + 1.

Suffice it to prove that

(a+ b)2 + 2 ≥ 2a+ 2ab+ 2b.

But this is equivalent to (a− 1)2 + (b− 1)2 ≥ 0, which is obvious. �

Application 1 (by Daniel Sitaru)∏
1≤i≤j≤n

(i2 + j2 + 1) ≥ n!
∏

1≤i≤j≤n

(2 +
√
ij).

Observe that a2 + b2 + 1 ≥ a+ b+ ab ≥ ab+ 2
√
ab =

√
ab(2 +

√
ab).

Using this, ∏
1≤i≤j≤n

(i2 + j2 + 1) ≥
∏

1≤i<j<n

√
ij(2 +

√
ij) =

=
∏

1≤i≤j≤n

√
ij

∏
1≤i≤j≤n

(2 +
√
ij) = n!

∏
1≤i≤j≤n

(2 +
√
ij).

Obviously, the inequality can be strengthened.

Application 2 (by Daniel Sitaru)
Prove that ∫ π

2

0

1

sinx+ sinx cosx+ cosx
dx ≥ π

4
.

Set a = sinx and b = cosx.
Then 2 ≥ 1 + sin2 x+ cos2 x ≥ sinx+ sinx cosx+ cosx, implying∫ π

2

0

1

sinx+ sinx cosx+ cosx
dx ≥ 1

2

∫ π
2

0

dx ≥ π

4

Note that, according to wolframalpha,∫ π
2

0

1

sinx+ sinx cosx+ cosx
dx ≈ 1.02245.
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68. An Inequality form Gazeta Matematica, March 2016 IV

Several inequalities with solution by Dan Sitaru and Leo Giugiuc have been just
published in Gazeta Matematica (March 2016). Here is one of two exercises that
lets you check your understanding of the technique. I have.

For real a, b, c such that a2 + b2 + c2 = 1, prove the inequality

a+ ac+ b ≤ 2.

Proposed by Daniel Sitaru, Leonard Giugiuc - Romania

Proof (by Alexander Bogomolny - USA).

Define A =

(
a b c
1 1 a

)
. By the Binet - Cauchy theorem , det(AAT ) ≥ 0. But

det(AAT ) = (a2 + b2 + c2)(2 + a2)− (a+ ac+ b)2 ≥ 0,

which is 2 + a2 ≥ (a+ ac+ b2). Given that a2 ≤ a2 + b2 + c2 = 1, we conclude that

3 ≥ 2 + a2 ≥ (a+ ac+ b)2

i.e., a+ ac+ b ≤
√

3− a somewhat stronger inequality than is required.
With the constraint a2 + b2 + c2 = 2, we are led to 4 ≥ 2 + a2 ≥ (a+ ac+ b)2, and
a+ ac+ b ≤ 2. Ought to be a typo. �

Illustration (by Nassim Nicholas Taleb - USA)
Nassim Nicholas Taleb has kindly produced the following graphics:
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What graphics tells us is that 1.5535 is closer to the smallest bound for a+ ac+ b
than

√
3.

Using Lagrange’s multiplier to find max(a + ac + b) subject to a2 + b2 + c2 = 1
produced an approximation, 1.576881.

Pradyumna Agashe found this estimate: a + ac + b ≤ 19
12 = 1.583. The proof

stems from an equivalent inequality(a
2
− c
)2

+
(
b− 1

2

)2
+
(a√3

2
− 1√

3

)2
≥ 0.

69. Inequality with Roots, Squares and the Area

Let P be an interior point in ∆ABC . Prove that:

√
2(PA+ PB + PC) ≥

√
a2 + b2 + c2 + 4

√
3S,

where S = [∆ABC] , the area of ∆ABC, a, b, c its side lengths. Equality is achieved
when P is the Fermat - Torricelli point in ∆ABC.

Proposed by Daniel Sitaru - Romania

Proof 1 (by Alexander Bogomolny - USA).
Rotate ∆CBP around B and away from A through 60◦ into position C ′BP ′.
Observe that this creates equilateral triangles BCC ′ and BPP ′.

This gives us PB = PP ′, and PC = P ′C ′ so that

(1) PA+ PB + PC = AP + PP ′ + P ′C ′ ≥ AC ′.

The Law of Cosines in ∆ABC ′ gives (with ∠ABC = β)

AC ′2 = AB2 +BC ′2 − 2 ·AB ·BC ′ cos∠ABC ′ = c2 + a2 − 2ac cos(β + 60◦)

= c2 + a2 − 2ac(cos 60◦ cosβ − sin 60◦ sinβ) = c2 + a2 − 2ac
(1

2
cosβ −

√
3

2
sinβ

)
= c2 + a2 − (ac cosβ +

√
3ac sinβ) = c2 + a2 − a2 + c2 − b2

2
+
√

3 · 2S

=
2a2 + 2c2 − a2 − c2 + b2

2
+ 2
√

3S =
a2 + c2 + b2

2
+ 2
√

3S
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Thus AC ′ =
√

a2+b2+c2

2 + 2
√

3S. With (1), this implies

PA+ PB + PC ≥
√
a2 + b2 + c2

2
+ 2
√

3S,

which is the same as the required

√
2(PA+ PB + PC) ≥

√
a2 + b2 + c2 + 4

√
3S

For equality, we need P, P ′ ∈ AC ′.

In such a case, ∠BP ′C ′ = 120◦, for, it’s complementary to ∠BP ′P . This makes
∠BPC = 120◦. Also, ∠BPA = 120◦, as complementary to ∠BPP ′. Thus,
∠ABC = 120◦ also, which makes P the Fermat - Torricelli point in ∆ABC.
Naturally, this argument does not work when ∠ABC > 120◦. �

Solution 2 (by Leonard Giugiuc - Romania).
We’ll consider the case in which A,B,C < 120◦. Let T be the Fermat - Torricelli
point. Denote TA = x, TB = y and TC = z. Choose T = 0, A = x,B = yu and

C = zu2, u = − 1
2 + i

√
3
2 . We have:

a2 = y2 + yz + z2,

b2 = z2 + zx+ x2,

a2 = x2 + xy + y2,

4S
√

3 = 3(xy + yz + zx),

so that a2 + b2 + c2 + 4S
√

3 = 2(x + y + z)2. Thus, our inequality reduces to
PA+ PB + PC ≥ TA+ TB + TC, which is known . Let’s prove it, though.

Let P = w. We need to show that

|w − x|+ |w − yu|+ |w − zu2| ≥ x+ y + z

which is equivalent to

|w − x|+ |u2||w − yu|+ |u||w − zu2| ≥ x+ y + z

But

|w − x|+ |u2||w − yu|+ |u||w − zu2| ≥ |w(1 + u2 + u)− (x+ y + z)|
= x+ y + z.

Naturally, equality holds iff w = 0, i.e., when P = T . �
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70. Romano Norwegian Inequality

Here is a sample inequality from a recent book 300 Romanian Mathematical Chal-
lenges by Professor Radu Gologan, Daniel Sitaru and Leonard Giugiuc. The prob-
lem is an invention of Lorian Nelu Saceanu, Norway - Romania. Solution below is
by Leonard Giugiuc.

Let ABC be a triangle with no obtuse angles.
Prove that

√
cotA+

√
cotB +

√
cotC ≥ 2.

Proposed by Lorian Nelu Saceanu - Romania

Proof (by Leonard Giugiuc - Romania).
Denote x = cotA, y = cotB, z = cotC. Then x, y, z ≥ 0 and xy+ yz+ zx = 1. We
need to prove

√
x+
√
y +
√
z ≥ 2.

WLOG, let’s assume that yz = max{xy, yz, xz}. As a consequences, 1
3 ≤ yz ≤ 1.

Define y+ z = 2s and yz = p; then, by the AM - GM inequality , s ≥ p and also
1√
3
≤ p ≤ 1. On the other hand, x = 1−xy

x+y = 1−p2
2s . Further

√
y +
√
z =

√
y + z + 2

√
yz =

√
2s+ 2p. For any fixed p ∈

[
1√
3
, 1
]

we consider the

function fp : [p,∞)→ R, defined by fp(t) =
√

1−p2
2t +

√
2t+ 2p.

First off, f ′p(t) = −
√

1−p2

(2t)
3
2

+ 1√
2t+2p

. We’ll prove that f ′p(t) ≥ 0. This is equivalent

to showing that 8t3 ≥ (1 − p2)(2t + 2p), i.e., 4t3 − (1 − p2)t − (1 − p2)p ≥ 0, for
t ≥ p.
Define function gp(t) : [p,∞)→ R, by gp(t) = 4t3 − (1− p2)t− (1− p2)p.

The only critical point of gp(t) in [0,∞) is t =
√

1−p2
12 , which is clearly less than p,

implying gp(t) ≥ gp(p) = 2p(3p2 − 1) ≥ 0, for t ≥ p, so that

fp(t) ≥ fp(p) =
√

1−p2
2p + 2

√
p for t ≥ p, s, in particular.

Thus, suffice it to show that, for p ∈
[

1√
3

]
,
√

1−p2
2p + 2

√
p ≥ 2. This is equivalent

to
√

(1−p)(1+p)
2p ≥ 2(1−p)

2+
√
p . Since 1 − p ≥ 0, we just need to prove

√
1+p
2p ≥

2
√
1−p

1+
√
p .

Set
√
p = u. Then u ∈

[
1
4√3
, 1
]

and we’ll show that 1+u2

2u2 ≥ 4(1−u2)
(1+u2) which is

9u4 + 2u3 − 6u2 + 2u ≥ 0, or (3u2 − 1)2 + 2u3 + 2u ≥ 0. The latter is obviously

true for u ∈
[

1
4√3
, 1
]
. The proof is complete. �

71. Radon’s Inequality and Applications

Radon’s Inequality (by Alexander Bogomolny - USA)
The content of the present page has been borrowed (at least in its initial form)
from an article by Dorin Marghidanu Generalisations and Refinements for
Bergström and Radon’s Inequalities.
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If xk, ak > 0, k ∈ {1, 2, . . . , n}, p > 0, then:

xp+1
1

ap1
+
xp+1
2

ap2
+ . . .+

xp+1
n

apn
≥ (x1 + x2 + . . .+ xn)p+1

(a1 + a2 + . . .+ an)p
.

The equality is only attained for

x1
a1

=
x2
a2

= . . . =
xn
an
.

Clearly, for p = 1 the inequality becomes that of Bergström.

Proof of Radon’s Inequality.
As a first step, we prove the inequality for n = 2, deriving it from the well-known
Hölder’s inequality:

n∑
i=1

uivi ≤

(
n∑
i=1

usi

) 1
s
(

n∑
i=1

vti

) 1
t

,

where 1
s + 1

t = 1, s, t, > 1, and all ui and vi are assumed positive. This is obviously
a generalisation of the Cauchy - Schwarz inequality . The same method will
also work for larger n but I prefer to use Dorin Marghidanu’s original derivation
that depends on the case of n = 2.

Thus, we want to prove that, say,

xp+1

ap
+
yp+1

bp
≥ (x+ y)p+1

(a+ b)p
.

Setting s = p+1
p and t = p+ 1, we start with

x+ y = a
1
s

( x
a

1
s

)
+ b

1
s

( y
b

1
s

)
≤ (a

s
s + b

s
s )

1
s

( xt
a
t
s

+
yt

b
t
s

) 1
t

=

[
(a+ b)p

(xp+1

ap
+
yp+1

bp

)] 1
(p+1)

This is equivalent to the required inequality. Now for the rest of n. Define

dn =
xp+1
1

ap1
+
xp+1
2

xp2
+ . . .+

xp+1
n

xpn
− (x1 + x2 + . . .+ xn)p+1

a1 + a2 + . . .+ an
.

Our task is to prove that dn ≥ 0, for n ≥ 2. We are going to show more, viz., that
the sequence {dn} monotone increasing and, since d1 = 0, this will solve the entire
problem of proving Radon’s inequality.

To this end,

dn+1 − dn =

n+1∑
k=1

xp+1
k

apk
−

(
∑n+1
k=1)p+1

(
∑n+1
k=1 ak)p

−
n∑
k=1

xp+1
k

apk
+

(
∑n
k=1 xk)p+1

(
∑n
k=1 ak)p

=

[
(
∑n
k=1 xk)p+1

(
∑n
k=1 ak)p +

xp+1
n+1

apn+1

]
−

(
∑n+1
k=1 xk)p+1

(
∑n+1
k=1 ak)p

≥
(
∑n+1
k=1)p+1

(
∑n+1
k=1 ak)p

−
(
∑n+1
k=1 xk)p+1

(
∑n+1
k=1 ak)p

= 0,
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where in the penultimate step we used the earlier case of n = 2.

Obviously, this proof can be regarded as a proof by induction . �

Reverse Radon’s Inequality

Daniel Sitaru has kindly alert me to the validity of what’s known as the reverse
Radon’s inequality:

If xk, ak > 0, k ∈ {1, 2, ..., n}, 0 ≤ p ≤ 1, then

xp1
ap−11

+
xp2
ap−12

+ . . .+
xpn

ap−1n

≤ (x1 + x2 + . . .+ xn)p

(a1 + a2 + . . .+ an)p−1
.

Applications:
1. A Problem in Four Variables

Daniel Sitaru has posted the following problem from the Romanian
Mathematical Magazine:

If a, b, c, d ∈ (0,∞), and abcd = 1 then

(a+ b+ c)5

(b+ c+ d)4
+

(b+ c+ d)5

(c+ d+ a)4
+

(c+ d+ a)5

(d+ a+ b)4
+

(d+ a+ b)5

(a+ b+ c)4
≥ 12

Proposed by Daniel Sitaru - Romania

Proof (by Alexander Bogomolny - USA).
The inequality is solved by an application of Radon’s inequality, followed by the
AM - GM inequality :

(a+ b+ c)5

(b+ c+ d)4
+

(b+ c+ d)5

(c+ d+ a)4
+

(c+ d+ a)5

(d+ a+ b)4
+

(d+ a+ b)5

(a+ b+ c)4
≥

≥ [3(a+ b+ c+ d)]5

[3(a+ b+ c+ d)]4
= 3(a+ b+ c+ d) ≥ 3 · 4(abcd)

1
4 ≥ 12.

�

2. 42 IMO, Problem 2

Prove that, for all positive a, b, c,

a

a2 + 8bc
+

b

b2 + 8ca
+

c

c2 + 8ab
≥ 1

Proof (by Alexander Bogomolny - USA).
The left-land side can be rewritten as

M =
a

3
2

a3 + 8abc
+

b
3
2

b3 + 8abc
+

c
3
2

c3 + 8abs

which suggests using Radon’s inequality with p = 1
2 and n = 3:

M ≥ (a+ b+ c)
3
2

(a2 + b3 + c3 + 24abc)
1
2

=

√
(a+ b+ c)3

a3 + b3 + c3 + 24abc
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Thus suffice it to prove that (a+b+c)3

a3+b3+c3+24abc ≥ 1. This inequality reduces to

ab2 + a2b+ bc2 + b2c+ ca2 + c2a ≥ 6abc

which is an immediate consequence of the AM - GM inequality . �

72. An Inequality in Triangle, IX

In an acute ∆ABC,A′, A′′ ∈ BC;B′, B′′ ∈ AC;C ′, C ′′ ∈ AB.AA′, BB′, CC ′ are
angle bisectors that intersect at the incenter I;AA′′, B′′, C ′′ are the altitudes that
intersect at the orthocenter H. Prove that

27
∏
cycl

IA′ ·HA′′ ≤ 1

27

∏
cycl

laha,

where la, lb, lc, are the lengths of the bisector and ha, hb, hc the lengths of the alti-
tudes in ∆ABC.

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).
Let M be a point in the interior of ∆ABC, and AA0, BB0, CC0 the cevians
through M . Then by Gergonne’s Theorem , and, applying the AM - GM
inequality ,

1 =
MA0

AA0
+
MB0

BB0
+
MC0

CC0
≥ 3

√
MA0

AA0
· MB0

BB0
· MC0

CC0
.

In particular, 1 ≥ 27 IA
′

la
· IB

′

lb
· IC

′

lc
and 1 ≥ 27HA

′′

ha
· HB

′′

hb
· HC

′′

hc
whose product gives

the required result. �

Acknowledgment (by Alexander Bogomolny - USA)
The inequality and the solution have been kindly communicated to me by Daniel
Sitaru.

73. An Inequality in Triangle, X

In any ∆ABC,

1

r2

∑
cycl

a3 cosB cosC ≥ 16

(∑
cycl

sinA

)(∑
cycl

cos2A

)
where r is the inradius of ∆ABC.

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru).
Since, by the Law of Sines, a

sinA = b
sinB = c

sinC = 2R, where R is the circumra-
dius of ∆ABC,

∆ =

∣∣∣∣∣∣
a b cosC c cosB
b c cosA a cosC
c a cosB b cosA

∣∣∣∣∣∣ = 8R3

∣∣∣∣∣∣
sinA sinB cosC sinC cosB
sinB sinC cosA sinA cosC
sinC sinA cosB sinB cosA

∣∣∣∣∣∣
= 8R3

∣∣∣∣∣∣
sinA sin(B + C) sinC cosB
sinB sin(A+ C) sinA cosC
sinC sin(A+B) sinB cosA

∣∣∣∣∣∣ = 8R3

∣∣∣∣∣∣
sinA sin(π −A) sinC cosB
sinB sin(π −B) sinA cosC
sinC sin(π − C) sinB cosA

∣∣∣∣∣∣
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= 8R3

∣∣∣∣∣∣
sinA sinA sinC cosB
sinB sinB sinA cosC
sinC sinC sinB cosA

∣∣∣∣∣∣ = 0

On the other hand,

0 = ∆ =

∣∣∣∣∣∣
a b cosC c cosB
b c cosA a cosC
c a cosB b cosA

∣∣∣∣∣∣
= abc cos2A+ abc cos2 C + abc cos2A−

−c3 cosA cosB − a3 cosB cosC − b3 cosA cosC

= abc
∑
cycl

cos2A−
∑
cycl

a3 cosB cosC

= 4RS
∑
cycl

cos2A−
∑
cycl

a3 cosB cosC,

where S = [∆ABC] is the area of ∆ABC. (As is well known, abc=4RS.)
Further, ∑

cycl

a3 cosB cosC = 4RS
∑
cycl

cos2A

= 4Rrp
∑
cycl

cos2A

= 4Rr · a+ b+ c

2

∑
cycl

cos2A

so that∑
cycl a

3 cosB cosC∑
cycl cos2A

= 2Rr(a+ b+ c) = 2Rr · 2R ·
∑
cycl

sinA = 4R2r
∑
cycl

sinA

Now using Euler’s inequality R > 2r,∑
cycl a

3 cosB cosC

(
∑
cycl sinA)(

∑
cycl cos2A)

= 4R2r ≥ 16r3,

which is the same as the required inequality. �

Acknowledgment (by Alexander Bogomolny - USA)
The inequality and the solution have been kindly communicated to me by Dan
Sitaru. It was published at the Romanian Mathematical Magazine .

74. An Inequality with Cycling Sums

Acknowledgment (by Alexander Bogomolny - USA)
The following problem and its solution have been communicated to me by Daniel
Sitaru along with Proof 1. Proof 2 has been added by Imad Zak.

Prove that, for all positive numbers x, y, z, xyz = 1 , the following inequality holds:∑
cycl

(x4 + y3 + z) ≥
∑
cycl

x2 + y2

z
+ 3

Proposed by Daniel Sitaru - Romania
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Proof 1 (by Daniel Sitaru).
We use the two special cases of Schur’s inequality :{

t = 1 :
∑
cycl x

3 + 3xyz ≥
∑
cycl xy(x+ y),

t = 2 :
∑
cycl x

4 + xyz
∑
cycl x ≥

∑
cycl xy(x2 + y2)

The two inequalities are simplified by nothing that xyz = 1. Add the two:∑
cycl

(x4 + x3 + x) + 3 ≥
∑
cycl

x2 + y2

z
+
∑
cycl

(x
z

+
y

z

)

=
∑
cycl

x2 + y2

z
+
∑
cycl

(x
z

+
z

x

)
≥
∑
cycl

x2 + y2

z
+ 6

which prove the required inequality. �

Proof 2 (by Imad Zak - Lebanon).
First note that by the AM - GM inequality ,∑

cycl

y3 ≥ 3xyz = 3

Thus (where we also use Schur’s inequality with t = 2),∑
cycl

(x4 + y3 + z) =
∑
cycl

x4 +
∑
cycl

x4 +
∑
cycl

y3 +
∑
cycl

z

≥
∑
cyclx4

+
∑
cycl

z + 3 =
∑
cycl

x4 + xyz
∑
cycl

x+ 3

≥
∑
cycl

xy(x2 + y2) + 3 =
∑
cycl

1

z
(x2 + y2) + 3

Equality holds when x = y = z = 1. �

75. An Inequality with Determinants

Let a, b, c, d > 0. Then ∣∣∣∣∣∣∣∣
a −b 0 0
0 b −c 0
0 0 c −d
1 1 1 1 + d

∣∣∣∣∣∣∣∣ ≥ 3
4
√

4(abcd)
5
6

Determine when the equality holds.

Proposed by Daniel Sitaru - Romania

Proof (by Ravi Prakash - India).
It could be seen that the determinant ∆ in the left-hand side of the required in-
equality equals ∆ = abcd+acd+abd+abc+ bcd which is evaluated via AM - GM
inequality :

∆ = abcd+ acd+ abd+ abc+ bcd
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=
1

2
abcd+

1

2
abcd+ acd+ abd+ abc+ bcd

≥ 6
[1

4
(abcd)2(acd)(abd)(abc)(bcd)

] 1
6

= 6
(1

4

) 1
6

(abcd)
5
6

= 3 · 4 1
3 (abcd)

5
6

The equality holds when 1
2abcd = abc = bcd = · · · , i.e., when a = b = c = d = 2. �

Acknowledgment (by Alexander Bogomolny - USA)
The inequality from the book Math Accent has been posted at the CutTheKnot-
Math page by Dan Sitaru along with a solution by Ravi Prakash.

76. An Inequality with Determinants II

Let 0 < a, b, c, d < 1. Then

∆ =

∣∣∣∣∣∣∣∣
1 1 1 1
a b c d
a2 b2 c2 d2
1
a2

1
b2

1
c2

1
d2

∣∣∣∣∣∣∣∣ <
1

abcd

(1

a
+

1

b
+

1

c
+

1

d

)
Proposed by Daniel Sitaru - Romania

Proof 1 (by Leonard Giugiuc).
Start with subtracting the first column from the other three:

∆ =

∣∣∣∣∣∣∣∣
1 0 0 0
a b− a c− a d− a
a2 (b− a)(b+ a) (c− a)(c+ a) (d− a)(d+ a)
1
a2

(b−a)(b+a)
a2b2

(c−a)(c+a)
a2c2

(d−a)(d+a)
a2d2

∣∣∣∣∣∣∣∣
=

(b− a)(c− a)(d− a)

a2

∣∣∣∣∣∣
1 1 1

b+ a c+ a d+ a
b+a
b2

c+a
c2

d+a
d2

∣∣∣∣∣∣
=

(b− a)(c− a)(d− a)

a2b2c2d2

∣∣∣∣∣∣
1 1 1

b+ a c+ a d+ a
c2d2(b+ a) b2d2(c+ a) b2c2(d+ a)

∣∣∣∣∣∣
=

(b− a)(c− a)(d− a)

a2b2c2d2
·∆′;

where ∆′ is being evaluated furher:

∆′ =

∣∣∣∣∣∣
1 0 0

b+ a c− b d− b
c2d2(b+ a) d2(c− b)(ab+ ac+ bc) c2(d− b)(ab+ ad+ bd)

∣∣∣∣∣∣
It follows that

|∆| = |(b− a)(c− a)(d− a)(c− b)(d− b)(d− c)|(abc+ abd+ acd+ bcd)

a2b2c2d2

<
abc+ abd+ acd+ bcd

a2b2c2d2
=

1

abcd

(1

a
+

1

b
+

1

c
+

1

d

)
because |(b− a)(c− a)(d− a)(c− b)(d− c)| < 1. �
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Proof 2 (by Hector Manuel Garduno Castaneda).
First of all, the required inequality is equivalent to

D =

∣∣∣∣∣∣∣∣
a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

1 1 1 1

∣∣∣∣∣∣∣∣ < abcd
(1

a
+

1

b
+

1

c
+

1

d

)

Note that D = −

∣∣∣∣∣∣∣∣
1 1 1 1
a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

∣∣∣∣∣∣∣∣ . Set P (x) =

∣∣∣∣∣∣∣∣
1 1 1 1
x2 b2 c2 d2

x3 b3 c3 d3

x4 b4 c4 d4

∣∣∣∣∣∣∣∣ .
P (x) is a polynomial of degree 4 and P (b) = P (c) = P (d) = 0. Thus

P (x) = q(b, c, d)(x− b)(x− c)(αx+ β)

Indeed, P (a) = q(b, c, d)(a − b)(a − c)(a − d)(αa + β). Now, since D is symmetric
in all four variables, it is easy to show that q(b, c, d) = (b− c)(b− d)(c− d) so that

(1) P (x) = (b− c)(b− d)(c− d)(x− b)(x− c)(x− d)(αx+ β)

On the other hand, in the determinant representation of P (x) we get

P (0) =

∣∣∣∣∣∣∣∣
1 1 1 1
0 b2 c2 d2

0 b3 c3 d3

0 b4 c4 d4

∣∣∣∣∣∣∣∣ = b2c2d2

∣∣∣∣∣∣
1 1 1
b c d
b2 c2 d2

∣∣∣∣∣∣
Comparing this to (1) gives β = bcd. Thus,

P (x) = (b− c)(b− d)(c− d)(x− b)(x− c)(x− d)(ax+ bcd)

Using the symmetry of D again, we obtain α = bc+ bd+ cd, and, therefore,

D = −P (a) = (b− c)(d− b)(d− c)(b− a)(c− a)(d− a)(abc+ abd+ acd+ bcd)

and the required inequality follows. �

Acknowledgment (by Alexander Bogomolny - USA)
The inequality from the book Math Power has been posted at the CutTheKnot-
Math page by Dan Sitaru. Solution 1 is by Leo Giugiuc; Solution 2 is by Hector
Manuel Garduno Castaneda.

77. An Inequality with Determinants III

If 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, then∣∣∣∣∣∣∣∣∣∣
0 x2 y2 z2 1
x2 0 x2 + y2 x2 + z2 1
y2 x2 + y2 0 y2 + z2 1
z2 x2 + z2 y2 + z2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣
0 a2 b2 c2 1
a2 0 a2 + b2 a2 + c2 1
b2 a2 + b2 0 b2 + c2 1
c2 a2 + c2 b2 + c2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
Proposed by Daniel Sitaru - Romania
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Proof 1 (by Daniel Sitaru - Romania).
Following the notations in the diagram below:

OA = a;OB = b;OC = c;AC2 = a2 + c2;BC2 = b2 + c2;AB2 = a2 + b2 and

OM = x;ON = y;OP = z;MP 2 = x2 + z2;NP 2 = y2 + z2;MN2 = x2 + y2.

One may recollect that

V [OABC] =
1

288
·

∣∣∣∣∣∣∣∣∣∣
O OA2 OB2 OC2 1
OA2 0 OA2 +OB2 OA2 +OC2

OB2 OA2 +OB2 0 OB2 +OC2 1
OC2 OC2 +OA2 OC2 +OB2 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
In other words,

V [OABC] =
1

288

∣∣∣∣∣∣∣∣∣∣
0 a2 b2 c2 1
a2 0 a2 + b2 a2 + c2 1
b2 a2 + b2 0 b2 + c2 1
c2 a2 + c2 b2 + c2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
Similarly,

V [OMNP ] =
1

288

∣∣∣∣∣∣∣∣∣∣
0 x2 y2 z2 1
x2 0 x2 + y2 x2 + z2 1
y2 x2 + y2 0 y2 + z2 1
z2 x2 + z2 y2 + z2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
and the fact that, obviously, V (OMNP ) ≤ V (OABC), proves the required inqual-
ity. �
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Solution 2 (by Alexander Bogomonly - USA).
We’ll use column and row transformations:∣∣∣∣∣∣∣∣∣∣

0 x2 y2 z2 1
x2 0 x2 + y2 x2 + z2 1
y2 x2 + y2 0 y2 + z2 1
z2 x2 + z2 y2 + z2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 x2 y2 z2 1
x2 −x2 y2 z2 1
y2 x2 −y2 z2 1
z2 x2 y2 −z2 1
1 0 0 0 0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
x2 y2 z2 1
−x2 y2 z2 1
x2 −y2 z2 1
x2 y2 −z2 1

∣∣∣∣∣∣∣∣ = x2y2z2

∣∣∣∣∣∣∣∣
1 1 1 1
−1 1 1 1
1 −1 1 1
1 1 −1 1

∣∣∣∣∣∣∣∣ =

= x2y2z2

∣∣∣∣∣∣∣∣
1 1 1 1
−2 0 0 0
0 −2 0 0
0 0 −2 0

∣∣∣∣∣∣∣∣ = −x2y2z2
∣∣∣∣∣∣
−2 0 0
0 −2 0
0 0 −2

∣∣∣∣∣∣ = 8x2y2z2

Similarly, the determinant in the right-hand side of the required inequality equals
8a2b2c2, making the inequality obvious. �

Acknowledgment (by Alexander Bogomolny - USA)
The inequality from his book Math Accent has been posted at the CutTheKnot-
Math page by Dan Sitaru. Dan has later communicated privately a solution
(Solution 1) and placed a link to this page at the Romanian Mathematical
Magazine .

78. An Inequality with Integrals and Rearrangement

Acknowledgment (by Alexander Bogomolny - USA)
Leo Giugiuc has kindly communicated to me the following problem, along with a
solution. The problem is from Dan Sitaru’s book Math Accent.
If a, b, c ∈ (0, π) then:∑

b2c3
∫ a

0

(cotx)(tan−1 x)dx < abc(a3 + b3 + c3)

Proposed by Daniel Sitaru - Romania

Proof (by Leonard Giugiuc - Romania).

First off, lim
x→0+

(cotx · arctanx) = lim
x→0+

(
cosx · arctanx

sinx

)
= 1, implying that the

function f : [0, π)→ R, defined by

f(x) =

{
cotx · arctanx, x ∈ (0, π)

1, x = 0,

is continuos.

Now, for x ∈
(

0, π2

)
, arctanx < x < tanx, implying that

cotx · arctanx < cotx · tanx = 1. It follows that on
[
0, π2

]
, f(x) < 1 so that∫ a

0
f(x)dx <

∫ a
0

1dx < a, if a ∈
(

0, π2

]
. �
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Illustration by Alexander Bogomolny - USA:

If a ∈
(
π
2 , π

)
then∫ a

0

f(x)dx =

∫ π
2

0

f(x)dx+

∫ a

π
2

f(x)dx <

∫ π
2

0

f(x)dx <
π

2
< a

Thus, for a ∈ (0, π),
∫ a
0
f(x)dx < a and similarly

∫ b
0
f(x)dx < b and

∫ c
0
f(x)dx < c.

Thus,
∑
cycl

b2c3
∫ a

a

f(x)dx <
∑
cycl

ab2c3. But
∑
cycl

ab2c3 = abc
∑
cycl

bc2

and, by the rearrangement inequality,
∑
cycl

bc2 ≤ a3 + b3 + c3

79. An Inequality with Just Two Variables

Prove that, for positive a, b,(
2ab

a+ b
+

√
a2 + b2

2

)(
a+ b

2ab
+

√
2

a2 + b2

)
≤ (a+ b)2

ab
.

Proposed by Danile Sitaru - Romania

Proof 1 (by Kevin Soto Palacios - Huarmey - Peru).

The required inequality is equivalent to

1 + 1+
(a+ b

2ab

)(√a2 + b2

2

)
+
( 2ab

a+ b

)(√ 2

a2 + b2

)
≤ 2 +

a

b
+
b

a
,

or,
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(a+ b

2ab

)(√a2 + b2

2

)
+
( 2ab

a+ b

)(√ 2

a2 + b2

)
≤ a

b
+
b

a
,

Focusing on the left - hand side:(a+ b

2ab

)(√a2 + b2

2

)
+
( 2ab

a+ b

)(√ 2

a2 + b2

)

=
1√

2(a2 + b2)

(
a+ b

2ab
(a2 + b2) +

4ab

a+ b

)

≤ 1√
2(a2 + b2)

(
a+ b

2ab
(a2 + b2) + (a+ b)

)
≤ 1

a+ b

(
a+ b

2ab
(a2 + b2) + (a+ b)

)

=
a2 + b2

2ab
+ 1 ≤ 1

2

(a
b

+
b

a

)
+

1

2

(a
b

+
b

a

)
=
a

b
+
b

a
,

where we applied the AM - GM inequality .

�

Proof 2 (by Soumava Chakraborty - Kolkata - India).

We know that

Harmonic mean ≤ Arithmetic mean ≤ Quadratic mean,

implying

2ab

a+ b
=

2
1
a + 1

b

≤ a+ b

2
≤
√
a2 + b2

2

such that

(1)
2ab

a+ b
+

√
a2 + b2

2
≤ 2

√
a2 + b2

2
.

Also,

a+ b

2

( 1

ab

)
≤
√
a2 + b2

2

( 1

ab

)
,

such that

(2)
a+ b

2ab
+

√
2

a2 + b2
≤
√
a2 + b2

2

( 1

ab

)
+

√
2

a2 + b2
,

Multiplying (1) and (2) we get(
2ab

a+ b
+

√
a2 + b2

2

)(
a+ b

2ab
+

√
2

a2 + b2

)

≤ 2

√
a2 + b2

2

(√
a2 + b2

2

( 1

ab

)
+

√
2

a2 + b2

)
=
a2 + b2

ab
+ 2 =

(a+ b)2

ab
.

�
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Proof 3 (by Daniel Sitaru - Romania).

WLOG, assume a ≤ b. As before,

0 < a ≤ 2ab

a+ b
=

2
1
a + 1

b

≤ a+ b

2
≤
√
a2 + b2

2
≤ b.

We’ll use Schweitzer’s inequality:(
n∑
k=1

xk

)(
n∑
k=1

1

xk

)
≤ (m+M)2n2

4mM
,

where x1, . . . , xn ∈ [m,M ],M > 0.

with = 2, x1 =
2ab

a+ b
, x2 =

√
a2 + b2

2
, we directly get(

2ab

a+ b
+

√
a2 + b2

2

)(
a+ b

2ab
+

√
2

a2 + b2

)
≤ (a+ b)2

ab
.

�

Acknowledgment (by Alexander Bogomolny - USA)
The problem above has been kindly posted to the CutTheKnotMath page by
Dan Sitaru, along with several solutions. Solution 1 is by Kevin Soto Palacios;
Solution 2 by Soumava Chakraborty; Solution 3 is by Dan Sitaru.

80. Inequality with Cubes and Cube Roots

In ∆ABC,∑
cycl

( 3
√
a+

3
√
b− 3
√
c)3 ≥ 3

√
3a+

3
√

3b+
3
√

3c− 2

where, as usual, a, b, c denote the side lengths of the triangle.

Proposed by Daniel Sitaru - Romania

Proof 1 (by Leonard Giugiuc - Romania).

First note that 3
√
a, 3
√
b, 3
√
c from a triangle. Indeed,

( 3
√
a+

3
√
b)3 = a+ b+ 3

3
√
ab( 3
√
a+

3
√
b) > a+ b > c,

implying 3
√
a+ 3
√
b > 3
√
c. With this in mind, denote

− 3
√
a+

3
√
b+ 3
√
c = 2x,

3
√
a− 3
√
b+ 3
√
c = 2y,

3
√
a+

3
√
b− 3
√
c = 2z.

Then x, y, z > 0. Further 3
√
a = y + z, 3

√
b = x+ z, and 3

√
c = x+ y. The required

inequality becomes

4(x3 + y3 + z3) ≥ 3
√

3(x+ y + z)− 1.

Let x+ y + z = 3s. By Jensen’s inequality, x3 + y3 + z3 ≥ 3s3, with equality only
if x = y = z + s. Hence, suffice it to show that

12s3 − 3
3
√

3s+ 1 ≥ 0,

which is equivalent to (2 3
√

3s− 1)( 3
√

3s+ 1) ≥ 0, 3 which is obviously true.
Equality holds only if x = y = z = 1

2 3√3
, i.e., when a = b = c = 1

3 . �
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Proof 2 (by Daniel Sitaru - Romania).
By the AM - GM inequality,

( 3
√
a+

3
√
b− 3
√
c)3 +

2

3
= ( 3
√
a+

3
√
b− 3
√
c)3 +

1

3
+

1

3

≥ 3
3

√
( 3
√
a+

3
√
b− 3
√
c)3 · 1

3
· 1

3
=

3
3
√

9
( 3
√
a+

3
√
b− 3
√
c) =

3
√

3( 3
√
a+

3
√
b− 3
√
c).

That is,

( 3
√
a+

3
√
b− 3
√
c)2 +

2

3
≥ 3
√

3a+
3
√

3b− 3
√

3c.

Similarly,

(
3
√
b+ 3
√
c− 3
√
a)3 +

2

3
≥ 3
√

3b+
3
√

3c− 3
√

3a

and

( 3
√
c+ 3
√
a− 3
√
b)3 +

2

3
≥ 3
√

3c+
3
√

3a− 3
√

3b

Adding the three gives the required inequality. Equality is attained for
a = b = c = 1

3 . �

Acknowledgment (by Alexander Bogomolny - USA)
I am grateful to Dan Sitaru for communicated to me the above problem from his
book Math Accent, with two solutions. Solution 1 is by Leo Giugiuc, Solution 2 is
by Dan Sitaru.

81. A Followup on Solving A Fourth Degree Equation

Acknowledgment (by Alexander Bogomolny - USA)
I learned of a problem posted by Dan Sitaru from a solution by Kunihiko Chikaya.
More than the solution I liked the question, and not even the question its being a
followup on the previous one. This teaches a brilliant way to generate new problems
by modifying the ones already solved. This is certainly an excellent illustration of
George Polya’s last step - Looking back - in problem solving.
Find

4∑
i=1

|xi|

where xi, i = 1, 2, 3, 4 are the roots of

x4 + 8x3 + 23x2 + 28x+ 10 = 0

Proposed by Daniel Sitaru - Romania

Proof (by Kunihiko Chikaya - Tokyo - Japan).
Clearly this problem is a followup on another one where a similar equation has
been solved by three different methods. Any of these will be a good first step for
answering the question at hand. I’ll use the second solution which implies that

x4 + 8x3 + 23x2 + 28x+ 10 = (x+ 2)4 − (x+ 2)2 − 2.

Thus we are led to four roots of the given polynomial; −2 ±
√

2 and 2 ± i, whose
moduli add up to 4 + 2

√
5. �
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82. An Inequality in Triangle III

Prove that in ∆ABC, with angles A,B,C side lengths a, b, c the following inequality
holds:

a(b+ c)

bc · cos2 A2
+

b(c+ a)

ca · cos2 B2
+

c(a+ b)

ab · cos2 C2
≥ 8.

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru, Leonard Giugiuc - Romania).
WLOG, assume a ≥ b ≥ c. Then ab + ac ≥ bc + ca ≥ cb + ca; also, 1

bc ≥
1
ca ≥

1
ab .

From these, ab+acbc ≥ ab+bc
ac ≥ bc+ac

ab . On the other hand, 1
cos2 x = 1 + tan2 x and the

tangent function in strictly increasing and positive on
(

0, π2

)
, hence

1 + tan2 A
2 ≥ 1 + tan2 B

2 ≥ 1 + tan2 C
2 . We can apply now Chebyshev’s inequality

to get ∑
cyc

ab+ ac

bc · cos2 A2
≥

≥ 1

3

(ab+ ac

bc
+
ab+ bc

ac
+
bc+ ac

ab

)(
3 + tan2 A

2
+ tan2 B

2
+ tan2 C

2

)
Suffice it to prove that

1

3

(ab+ ac

bc
+
ab+ bc

ac
+
bc+ ac

ab

)(
3 + tan2 A

2
+ tan2 B

2
+ tan2 C

2

)
≥ 24

But obviously ab+ac
bc + ab+bc

ac + bc+ac
ab ≥ 6. On the other hand,

3 + tan2 A

2
+ tan2 B

2
+ tan2 C

2
≥ 3 +

1

3

(
tan

A

2
+ tan

B

2
+ tan

C

2

)2
≥ 3 + 1 = 4

�

Proof 2 (by Kunihiko Chikaya - Japan).
From the half - angle formula and the Low of Cosine,

cos2
A

2
=

1 + cosA

2
=

(b+ c)2 − a2

4bc
,

and similarly for the other two angles. Thus the inequality at hand is equivalent to

a(b+ c)

(b+ c)2 − a2
+

b(c+ a)

(c+ a)2 − b2
+

c(a+ b)

(a+ b)2 − c2
≥ 2,

or,
a(b+ c)

b+ c− a
+

b(c+ a)

c+ a− b
+

c(a+ b)

a+ b− c
≥ 2(a+ b+ c),

or, else
a2

b+ c− a
+

b2

c+ a− b
+

c2

a+ b− c
≥ a+ b+ c,

Now, by the Cauchy - Schwarz inequality, for any x, y, z > 0,

a2

x
+
b2

y
+
c2

z
≥ (a+ b+ c)2

x+ y + z
,

which with x = b+ c− a, y = c+ a− b, z = a+ b− c gives

a2

b+ c− a
+

b2

c+ a− b
+

c2

a+ b− c
≥ (a+ b+ c)2

a+ b+ c
= a+ b+ c

�
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Proof 3 (by Alexander Bogomolny - USA).

We know that cos2 A2 = p(p−a)
bc , where p = a+b+c

2 is the semiperimeter of ∆ABC.
Thus, the required inequality can be rewritten as

a(b+ c)

p(p− a)
+
b(c+ a)

p(p− b)
+
c(b+ a)

p(p− c)
≥ 8

Now observe that a(b+c)
p(p−a) = 2p

p + a2

p(p−a) , and similar for the other two fractions.

Since,
∑
cyc

2a
p = 4, the required inequality reduces to

a2

p(p− a)
+

b2

p(p− b)
+

c2

p(p− c)
≥ 4

Consider the function f(x) = x2

p−x , f
′(x) = 2xp

(p−x)2 > 0 and f ′′(x) = 2p(p+x)
(p−x)3 < 0 for

x ∈ (0, p). Thus the function is convex on (0, p). Keeping p fixed, we may apply
Jensen’s inequality:

a2

p(p− a)
+

b2

p(p− b)
+

c2

p(p− c)
≥

(a+b+c3 )2

p(p− a+b+c
3 )

= 3
( 2p

3 )2

p(p− 2p
3 )

= 3 · 4

9
· 3

1
= 4.

The problem form the Math Phenomenon has been posted at the CutTheNotMath
page by Dan Sitaru, along with a solution (Solution 1) by Leo Giugiuc and Dan
Sitaru. Solution 2 is by Kunikiko Chikaya. �

83. An Inequality with Exponents

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted a problem form his book ”Math Phenomenon” at the
CutTheKnotMath page. He also posted a solution (Solution 1)

If a, b, c ∈ (0, 1], then

e
4
e

(
b · a2

√
2 + c · b2

√
b + a · c2

√
c
)
≥ 3

3
√
abc.

When does the equality hold?

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru - Romania).

Define f(x) : (0, 1]→ R with f(x) = x2
√
x.f ′(x) = x2

√
x− 1

2 (2 + lnx).

lim
x→0+

x2
√
x = lim

x→0+
e2
√
x ln x = e2 limx→0+

√
x ln x = e0 = 1.

f ′(x) has the only root that can be found from 2 + lnx = 0, giving x = e−2.
Thus f(x) is monotone decreasing on (0, e−2] and monotone increasing on
(e−2, 1].f(1) = 1. It follows that

e−
4
e ≤ a2

√
a < 1, e−

4
e ≤ b2

√
b < 1, e−

4
e ≤ x2

√
c < 1.

And, subsequently,

b · e− 4
e ≤ ba2

√
a < 1, c · e− 4

e ≤ cb2
√
b < 1, a · e− 4

e ≤ ac2
√
c < 1.
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Adding up and using the AM - GM inequality,

b · e− 4
e + c · e− 4

e + a · e− 4
e ≥ (a+ b+ c)e−

4
e ≥ 3

√
abc · e− 4

e .

In other words,

e
4
e

(
b · e− 4

e + c · e− 4
e + a · e− 4

e

)
≥ 3
√
abc.

�

Proof 2 (by Alexander Bogomolny - USA).
This solution is much the same as the first one, with a few simplifications. First,
replace a = x2, b = y2, c = z2 to reduce the required inequality to

e
4
e (y2x4x + z2y4y + x2z4z) ≥ 3 3

√
x2y2z2.

With the AM-GM inequality we obtain

1

3
(y2x4x + z2y4y + x2z4z) ≥ 3

√
x4xy4yz4z · 3

√
x2y2z2

≥ 3
√
x2y2z2

3

√√√√[[1

e

1
e
]]4·3

= 3
√
x2y2z2·

(1

e

) 4
e

.

The latter inequality is the consequence of the properties of function f(x) = xx,
defined for x > 0. Its derivative f ′(x) = xx(1 + lnx) vanishes only at x = 1

e , where
the function attains its minimum:

Indeed, the derivative f ′(x) = xx(1 + lnx) is negative for x < 1
e and positive for

x > 1
e . Thus the required inequality hods for a, b, c > 0.

The equality is attained when x = y = z = 1
e , i.e., when a = b = c = 1

e2 , in which

case both sides of the inequality are equal to 3e−2. �
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84. Parallelogram in Trapezoid

In trapezoid ABCD,BC ‖ AD,P ∈ CD satisfies AP = BP ;M ∈ AB, with
∠AMD = ∠BMC;N = BP ∩ CM and Q = AP ∩DM .

Prove that the quadrilateral MNPQ is a parallelogram.

Proposed by Miguel Ochoa Sanchez - Peru

Proof 1 (by Leonard Giugiuc - Romania).
Choose A = (1, 0), B = (−1, 0), and P = (0, a) with a > 0. Since P ∈ CD does
not cross the interior of ∆APB, there is m ∈ (−a, a) such that CD is defined by
the equation −mx+ y = a. Also, since BC ‖ AD, and neither passes through the

interior of ∆APB, there is n ∈
(
− 1

a ,
1
a

)
such that BC and AD are defined by

x− ny = −1 and x− ny = 1, respectively.

These gives us C =
(
na−1
1−mn ,

a−m
1−mn

)
and D =

(
na+1
1−mn ,

a+m
1−mn

)
. Assume M = (k, 0).

Since ∠BMC = ∠AMD, the lines MC and MD have opposite antislopes.
Thus

k − na−1
1−mn

a−m
1−nm

=
−k + na+1

1−mn
a+m
1−mn

,

implying k = na2−n
a(1−mn) . Using this, we can easily check that MC ‖ AP and

MD ‖ BP . Thus MNPQ is indeed a parallelogram. �

Proof 2 (by Alexander Bogomolny - USA).
Find point M ′ on AB such that ∠BM ′C = 90◦ − 1

2∠APB. From M ′ draw a ray
M ′D′, with D′ on line CP such that ∠CM ′D′ = ∠APB. Then, as we know ,
AD′ ‖ BC, so, since also AD ‖ BC, we see that D′ = D. Thus M ′ solves Heron’s
problem for C and D and, as such, is unique on AB with the property that
∠BM ′C = ∠AM ′D. It follows that M = M ′.
From the construction of M ′, the quadrilateral MNPQ is a parallelogram. �

85. A Cyclic Inequality in Three Variables II

Let a, b, c > 0. Prove that

10a3

3a2 + 7bc
+

10b3

3b2 + 7ca
+

10c3

3a2 + 7ab
≥ a+ b+ c

Proposed by Daniel Sitaru - Romania
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Proof 1 (by Anas Adlany - Morroco).
Since the inequality is homogeneous, we may assume WLOG, a2 + b2 + c2 = 1.
First using the GM - QM inequality and then Chebyshev’s inequality twice,
we get ∑

cycl

10a3

3a2 + 7bc
≥
∑
cycl

(
10a3

3a2 + 7( b
2+c2

2 )

)

= 20
∑
cycl

a3

6a2 + 7b2 + 7c2
= 20

∑
cycl

( a3

7− a2
)

≥ 20

9

(∑
cycl

a
)(∑

cycl

a2
)(∑

cycl

1

7− a2
)
≥ 20

9

(∑
cycl

a
)( 9∑

cycl(7− a2)

)
=
∑
cycl

a,

as desired. �

Solution 2 (by Imad Zak - Lebanon).
Since the inequality is homogeneous, we may assume WLOG, abc = 1. The in-
equality is then rewritten as

∑
cycl f(a) ≥ 0, where

f(x)
10x4

3x3 + 7
− x =

7x(x3 − 1)

3x3 + 7

The function is convex, so that f(x) ≥ g(x) = 21
10 (x − 1), which is its tangent at

x = 1.
Thus ∑

cycl

f(a) ≥
∑
cycl

g(a) =
63

10
− 63

10
= 0,

which is the required inequality. �

Proof 3 (by Soumitra Mandal - India).
By Hölder’s inequality,

(a+ b+ c)3 ≤
∑
cycl

a3

3a2 + 7bc
·
∑
cycl

(3a2 + 7bc) ·
∑

1.

Thus, suffice it to prove that∑
cycl

(3a2 + 7bc) ≤ 10(a+ b+ c)2

3
,

or, in other words, that a2 + b2 + c2 ≥ a+ b+ c. But then∑
cycl

10a3

3a2 + 7bc
≥ 10(a+ b+ c)3

3
∑
cycl(3a

2 + 7bc)
≥ 10(a+ b+ c)3

10(a+ b+ c)2
= a+ b+ c.

�

Proof 4 (by Soumava Chakraborty - India).
We have a series of equivalent inequalities:

10a3

3a2 + 7bc
+

10b3

3b2 + 7ca
+

10c3

3a2 + 7ab
≥ a+ b+ c,

∑
cycl

( 10a3

3a2 + 7bc
− a
)
≥ 0,
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7

2

∑
cycl

a(a+ b)(a− c) + a(a− b)(a+ c)

3a2 + 7bc
≥ 0,

7

2

∑
cycl

[a(a− b)(a+ c)

3a2 + 7bc
+
a(a+ b)(a− c)

3a2 + 7bc

]
≥ 0,

7

2

∑
cycl

[a(a− b)(a+ c)

3a2 + 7bc
+
b(b+ c)(b− a)

3b2 + 7ca

]
≥ 0,

7

2

∑
cycl

(a− b)
[ a(a+ c)

3a2 + 7bc
− b(b+ c)

3b2 + 7ca

]
≥ 0,

7

2

∑
cycl

(a− b)2
[7c(a2 + b2) + 7c2(a+ b) + 4abc

(3a2 + 7bc)(3b2 + 7ca)

]
≥ 0.

The latter is obviously true and, so, the rest are also true. �

Acknowledgment (by Alexander Bogomolny - USA)
The problem above (from the Romanian Mathematical Magazine) has been
kindly communicated to me by Dan Sitaru, along with four solutions. Solution 1
is by Anas Adlany (Morroco); Solution 2 is by Imad Zak (Lebanon); Solution 3 is
by Kevin Soto Palacios (Peru); Solution 3 is by Soumitra Mandal (India); Solution
4 is by Soumava Chakraborty (India).

86. A Cyclic Inequality in Three Variables IV

Let a, b, c > 0. Prove that

2
∑
cycl

(a+ b)3 + 5
∑
cycl

a3 ≥ 21
∑
cycl

a2b

Proposed by Daniel Sitaru - Romania

Proof 1 (by Kevin Soto Palacios - Peru).

The required inequality is equivalent to 9
∑
cycl

a3 + 6
∑
cycl

ab2 ≥ 15
∑
cycl

a2b.

Using AM - GM inequality,

6a3 + 6b2a ≥ 12a2b

6b3 + 6c2b ≥ 12b2c

6c3 + 6a2c ≥ 12c2a.

Summing the three up gives

(10) 6
∑
cycl

a3 + 6
∑
cycl

ab2 ≥ 12
∑
cycl

a2b.

On the other hand, again, by the AM - GM inequality,

3(a3 + b3 + c3) = (a3 + a3 + b3) + (b3 + b3 + c3) + (c3 + c3 + a3)

≥ 3a2b+ 3b2c+ 3c2a.

Adding this to (10) proves the required inequality. �
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Proof 2 (by Soumava Chakraborty - India).
The required inequality reduces to,

3
∑
cycl

a3 + 2
∑
cycl

a2b+ 2
∑
cycl

ab2 ≥ 7
∑
cycl

a2b.

Bu the AM - GM inequality,

a3 + a2b+ ab2 ≥ 3a2b

b3 + b2c+ bc2 ≥ 3b2c

c3 + ca + ca2 ≥ 3c2a.

Summing up we get

(1)
∑
cycl

a3 +
∑
cycl

a2b+
∑
cycl

ab2 ≥ 3
∑
cycl

a2b.

On the other hand,

3(a3 + b3 + c3) = (a3 + a3 + b3) + (b3 + b3 + c3) + (c3 + c3 + a3)

≥ 3a2b+ 3b2c+ 3c2a

So that
∑
cycl a

3 ≥
∑
cycl a

2b. adding this to twice (1) gives

3
∑
cycl

a3 + 2
∑
cycl

a2b+ 2
∑
cycl

ab2 ≥ 7
∑
cycl

a2b

as expected. �

Proof 3 (by Seyran Ibrahimov - Azerbaidian).
By the AM - GM inequality,

a3 + a3 + ab2 + ab2 ≥ 4a2b

b3 + b3 + bc2 + bc2 ≥ 4b2c

c3 + c3 + ca2 + ca2 ≥ 4c2a.

Summing up gives
∑
cycl

a3 +
∑
cycl

ab2 ≥ 2
∑
cycl

a2b. Denotes the left - hand side X.

Further, the required inequality reduces to

9
∑
cycl

a3 + 6
∑
cycl

ab2 ≥ 15
∑
cycl

a2b

which can be written as
∑
cycl

a3 + 2X ≥ 5
∑
cycl

a2b. It will proved correct if∑
cycl

a3 ≥
∑
cycl

a2b

But this is true due to the Rearrangement inequality . �

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem at the CutTheKnotMath page ,
followed by three solutions. Solution 1 is by Kevin Soto Palacios (Peru); Solution
2 is by Soumava Chakraborty (India); Solution 3 is by Seyran Ibrahimov
(Azerbaijan).
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87. A Cyclic Inequality in Three Variables IX

Let x, y, z > 0. Prove that

9

(∑
cycl

x2

y2

)2

≥ 8

(∑
cycl

x

y

)(∑
cycl

x3

y3
− 3

)

Proposed by Daniel Sitaru - Romania

Proof 1 (by Saptak Bhattacharya - India).
Let x = x

y , b = y
z , a = z

x . Note that abc = 1. The given inequality rewrites as

9(a2 + b2 + c2)2 ≥ 8(a+ b+ c)(a3 + b3 + c3 − 3abc).

Using a3 + b3 + c3− 3abc = (a+ b+ c)(a2 + b2 + c2− ab− bc− ca) and rearranging,
this reduces to

(∑
cycl

a2

)2

−8

(∑
cycl

ab

)(∑
cycl

a2

)
+16

(∑
cycl

ab

)2

≥ 0,

or, (a2 + b2 + c2 − 4ab− 4bc− 4ca)2 ≥ 0 which is obviously true. �

Proof 2 (Nassim Nicholas Taleb - USA).

Set f = 9
∑
cycl

x2

y2
− 8

(∑
cycl

x

y

)(
−3
∑
cycl

x3

y3

)
. We need to prove that f ≥ 0.

Factoring we get

f =
9(
∑
cycl x

2y4)2

x4y4z4
−

8(
∑
cycl xy

2)2(
∑
cycl x

2y4 −
∑
cycl x

3y2z)

x4y4z4

The numerator reduces to

(∑
cycl

x2y4 − 4
∑
cycl

x3y2z

)2

≥ 0
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�
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Illustration (by Gary Davis - USA)

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem (from his book ”Math Accent”)
at the CutTheKnotMath page , along with a solution (Solution 1) by Saptak
Bhattacharya. Solution 2 is by Nassim Nicholas Taleb. The illustration is by Gary
Davis.

88. A Cyclic Inequality in Three Variables VI

Let a, b, c > 0. Prove that

2(a+ b+ c)

abc
≥
∑
cycl

(√
a+ b

2ac
+

√
2a

c(a+ b)

)
Proposed by Daniel Sitaru - Romania

Proof 1 (by Kevin Soto Palacios - Peru).

∑
cycl

√
a+ b

2ac
+
∑
cycl

√
2a

c(a+ b)
≤
∑
cycl

√
(a+ b)b

2abc
+
∑
cycl

√
(a+ b)a

2abc
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≤
∑
cycl

√
a+ b(

√
a+
√
b)

√
abc

≤
∑
cycl

√
2(
√
a+ b)2

√
2abc

.

It follows that ∑
cycl

√
a+ b

2ac
+
∑
cycl

√
2a

c(a+ b)
≤
∑
cycl

√
2(
√
a+ b)2

√
abc

=
2
√

2(a+ b+ c)√
2abc

=
2(a+ b+ c)√

abc
,

as required. �

Proof 2 (by Soumava Chakraborty - India).
Using the Cauchy - Schwarz inequality ,

∑
cycl

√
a+ b

2ac
≤
∑
cycl

√
(a+ b)b

2abc
≤

√∑
cycl a

√
2
∑
cycl a

√
2abc

=
a+ b+ c√

abc
Again, using the Cauchy - Schwarz inequality ,∑

cycl

√
2a

c(a+ b)
≤
√

2
∑
cycl

a

√∑
cycl

1

c(a+ b)
≤
√

2
∑
cycl

a

√∑
cycl

1

c(2
√
ab)

=

√∑
cycl

a

√
1√
abc

∑
cycl

1√
a

=

√∑
cycl

a

√
1√
abc

∑
cycl

bc√
abc

=

=

√∑
cycl a

abc

√∑
cycl

√
ab ≤

√∑
cycl a

abc

√√√√√∑
cycl

a

√∑
cycl

b ≤
∑
cycl a√
abc

Now it only remains to add the two inequalities.
Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the problem from his book, Math Accent, with two
solutions, at the CutTheKnotMath page . Solution 1 is by Kevin Soto Palacios;
Solution 2 is by Soumava Chakraborty. �

89. A Cyclic Inequality in Three Variables VIII

Let x, y, z > 0 . Prove that∑
cycl

(x2 + y2)z +
∑
cycl

xy

(x+ y)2
≥ 27xyz

Proposed by Daniel Sitaru - Romania

Proof (by Mihalcea Andrei Ştefan - Romania).
Dividing by xyz throughout, we get an equivalent inequality:

4
∑
cycl

(x
y

+
y

x

)
+ 4

∑
cycl

1
x
y + y

x + 2
≥ 27.
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We’ll show that

4
(x
y

+
y

x

)
+ 4

1
x
y + y

x + 2
≥ 9.

Denote α = x
y + y

x ≥ 2 (by the AM - GM inequality). In terms of α the latter

inequality becomes 4α+ 4
α+2 ≥ 9, which reduces to

4α2 − α+ 14 = (α− 2)(4α+ 7) ≥ 0,

which is true because α ≥ 2. �

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem (from the Romanian Mathe-
matical Magazine) at the CutTheKnotMath page , along with a solution by
Mihalcea Andrei Ştefan.

90. A Cyclic Inequality in Three Variables X

Let a, b, c > 0 satisfy a2 + b2 + c2 = 3. Prove that∑
cycl

1

(a+ 1)3
+ 4

∑
cycl

1

(a+ 1)4
≥ 9

8

Proposed by Daniel Sitaru - Romania

Proof 1 (by Leonard Giugiuc - Romania).

First note that from AM - QM inequality,
(
a+b+c

3

)2
≤ a2+b2+c2

3 = 1 so that

a+ b+ c ≤ 3.
Now, both functions, y = 1

(x+1)3 and y = 1
(x+1)4 are convex on (0,∞), so that by

Jensen’s inequality ∑
cycl

1

(a+ 1)3
≥ 3

(a+b+c3 + 1)3
≥ 3

8

and ∑
cycl

4

(a+ 1)4
≥ 3 · 4

(a+b+c3 + 1)4
≥ 3

4
.

�

Proof 2 (by Alexander Bogomolny - USA).
We obtain the same result by using Radon’s inequality∑

cycl

1

(a+ 1)3
≥ (1 + 1 + 1)4

(a+ b+ c+ 3)3
≥ 3

8

and ∑
cycl

4

(a+ 1)4
≥ 4(1 + 1 + 1)5

(a+ b+ c+ 3)4
≥ 3

4

�

Proof 3 (by Imad Zak - Lebanon).
Define (x) = 1

(x+1)3 + 4
(x+1)4 . We have

f(x)−
(17

16
− 11

16

)
=

(x− 1)2(11x3 + 49x2 + 85x+ 63)

16(x+ 1)4
≥ 0,
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implying ∑
cycl

f(a) ≥
∑
cycl

(17

16
− 11a

16

)
= 3 · 17

16
− (a+ b+ c) · 11

16
.

But from ∑
cycl

a2 = 3

it follows that a+ b+ c ≤ 3. Thus,∑
cycl

f(a) ≥ 51

16
− 33

16
=

9

8
.

�

Proof 4 (by Amit Itagi).
Let define x = a2, y = b2, z = c2. The problem becomes

Let x, y, z > 0 satisfy x+ y + z = 3. Prove that∑
cycl

√
x+ 5

(
√
x+ 1)4

≥ 9

8

Note that the function f(u) =
√
u+5

(
√
u+1)4

is convex on (0,∞) and thus the problem

lends itself to Jensen’s inequality:

∑
cycl

√
x+ 5

(
√
x+ 1)4

≥ 3

√
3
3 + 5

(
√

3
3 + 1)4

=
9

8
.

�

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem (from his book ”Math Accent”)
at the CutTheKnotMath page to which Leo Giugiuc responded with Solution 1.
Solution 3 is by Imad Zak; Solution 4 is by Amit Itagi.

91. A Cyclic Inequality in Three Variables XII

Prove that, for all a, b, c > 0(∑
cycl

1

(a2 − ab+ b2)6

)2

≤ 3
∑
cycl

( a+ b

a2 + b2

)24
Proposed by Daniel Sitaru - Romania

Proof (by Leonard Giugiuc - Romania).
By Cauchy - Schwarz inequality, (a2 + b2)2 ≤ (a+ b)(a3 + b3) , so that

1
a2−ab+b2 ≤

(
a+b
a2+b2

)2
. From here, 1

(a2−ab+b2)6 ≤
(

a+b
a2+b2

)12
.

Summing up and, subsequently, applying the AM - QM inequality ,(∑
cycl

1

(a2 − ab+ b2)6

)6
≤
( a+ b

a2 + b2

)12
≤ 3

∑
cycl

( a+ b

a2 + b2

)24
�
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Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem (from his book ”Math Accent”)
at the CutTheKnotMath page . The solution is by Leo Giugiuc.

92. A Cyclic Inequality in Three Variables XIII

Prove that, for all a, b, c > 0∑
cycl

a2 + b2

a+ b
+ 11

∑
cycl

ab

a+ b
> 6

∑
cycl

√
ab

Proposed by Daniel Sitaru - Romania

Proof 1.
The inequality is equivalent to∑

cycl

(a+ b)2 + 9ab− 6(a+ b)
√
ab

a+ b
> 0

This simplifies to ∑
cycl

(a+ b− 3
√
ab)2

a+ b
> 0,

which is obvious. �

Proof 2 (by Seyran Ibrahimov - Azerbaidian).
Using the AM - GM inequality ,

a2 + b2

a+ b
+

11ab

a+ b
=

(a+ b)2

a+ b
+

9ab

a+ b
≥ 6
√
ab

and similar for the other terms. �

Proof 3.
Set a+ b = s, ab = r. The required inequality becomes

s2 − 6s
√
r + r > 0.

Since s2 − 6s
√
r + r = (s − 3

√
r)2 ≥ 0. We only need to show that the equality

is not possible. The equality would mean s − 3
√
r = 0, i.e., a + b = 3

√
ab, or,

√
a =

√
b(7±3

√
5)

2 . Similarly,
√
b =

√
c(7±3

√
5)

2 and
√
c =

√
a(7±3

√
5)

2 .
The product of the three equates a rational number 1 to an irrational number(

7±3
√
5

2

)3
which is impossible. Thus, the required inequality is indeed strict. �

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem (from his book ”Math Accent”) at
the CutTheKnotMath page , with solutions by Soumitra Mandal, Ravi Prakash
(India, Solution 1), Seyran Ibrahimov (Azerbaijan, Solution 2), Mihalcea Andrei
Ştefan (Romania) and Abdallah El Farissi (Algeria) Solution 3.
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93. A Cyclic Inequality in Three Variables XV

Prove that for positive a, b, c

a(a2 + b2)

a3 + b3
+
b(b2 + c2)

b3 + c3
+
c(c2 + a2)

c3 + a3
≤
√
a

b
+

√
b

c
+

√
c

a

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).
Consider function f : (0,∞)→ R; defined as

f(x) =
x2 + x6

1 + x6
− x =

x2 + x6 − x− x7

1 + x6

=
x6(1− x)− x(1− x)

1 + x6
=
x(1− x)(x5 − 1)

x6 + 1

=
−x(x− 1)(x5 − 1)

x6 + 1
=
−x(x− 1)2(x4 + x3 + x2 + x+ 1)

x6 + 1
≤ 0.

Now,

f
(√a

b

)
=

a
b + a3

b3

1 + a3

b3

−
√
a

b
=
a(a2 + b2)

a3 + b3
−
√
a

b
.

It follows that f
(√

a
b

)
≤ 0 is equivalent to

a(a2 + b2)

a3 + b3
−
√
a

b
≤ 0,

i.e., a(a2+b2)
a3+b3 ≤

√
a
b . The required inequality in nothing but

f

(√
a

b

)
+f

(√
b

c

)
+f

(√
c

a

)
≤ 0.

�

Challenge (by Alexander Bogomolny - USA)

Prove that, for x, y > 0,

1 + x2

1 + x3
+

1 + y2

1 + y3
+
xy(1 + x2y2)

1 + x3y3
≤ 3.
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Visual support:
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and contour plot:

This problem with the solution has been kindly communicated to me by Dan Sitaru.
Wolframalpha was instrumental in obtaining the 3d plots.

94. A Cyclic Inequality in Three Variables XVI

Prove that for a, b, c ∈ R∑
cycl

|(a+ b)(1− ab)| < 3

2
+
∑
cycl

a2 +
1

2

∑
cycl

a4

Proposed by Daniel Sitaru - Romania

Proof (by Daniel Sitaru - Romania).

[(1 + a) + b(1− a)]2 ≥ 0

(1 + a)2 + 2b(1− a2) + b2(1− a2) ≥ 0⇔
1 + 2a+ a2 + 2b− 2ba2 + b2 − 2b2a+ b2a2 ≥ 0⇔
1 + a2 + b2 + a2b2 + 2(a+ b− a2b− ab2) ≥ 0⇔

(1 + a2)(1 + b2) ≥ 2
(
ab(a+ b)− a(a+ b)

)
⇔

2(a+ b)(ab− 1) ≤ (1 + a2)(1 + b2)⇔

(1) 2(a+ b)(1− ab) ≥ −1(1 + a2)(1 + b2)

Further,
[(1− a)− b(1 + a)]2 ≥ 0⇔

(1− a)2 − 2b(1− a2) + b2(1 + a)2 ≥ 0⇔
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1− 2a+ a2 − 2b+ 2ba2 + b2 + 2ab2 + a2b2 ≥ 0⇔
1 + a2 + b2 + a2b2 − 2(a+ b− ab2 − a2b) ≥ 0⇔

(1 + a2)(1 + b2) ≥ 2
(
a+ b− ab(a+ b)

)
⇔

(2) 2(a+ b)(1− ab) ≤ (1 + a2)(1 + b2)

From (1), (2) it follows that

(3) 2|(a+ b)(1− ab)| ≤ (1 + a2)(1 + b2)

Similarly,

(4) 2|(b+ c)(1− bc)| ≤ (1 + b2)(1 + c2)

(5) 2|(c+ a)(1− ca)| ≤ (1 + c2)(1 + a2)

In (3) equality is attained for a = 0; b = 1 or a = 1; b = 0; similarly, for (4) and (5)

Thus,
∑
cycl

A of three inequality is strict:

2
∑
cycl

|(a+ b)(1− ab)| <
∑
cycl

(1 + a2 + b2 + a2b2)

3 + 2(a2 + b2 + c2) +
∑
cycl

a2b2 < 3 + 2(a2 + b2 + c2) +
∑
cycl

a4

Dividing by 2,∑
cycl

|(a+ b)(1− ab)| < 3

2
+ a2 + b2 + c2 +

1

2

∑
cycl

a4

�

Acknowledgment (by Alexander Bogomolny - USA)
This problem with the solution has been kindly communicated to me by Dan Sitaru,
all on a tex file.

95. A Cyclic Inequality with Many Sums

Let a, b, c > 0, abc = 1, prove that(∑
cycl

a4

)(∑
cycl

a

b

)(∑
cycl

a3

)(∑
cycl

a

c

)(∑
cycl

a2

)
≥

(∑
cycl

a

)3(∑
cycl

1

a

)2

Proposed by Daniel Sitaru - Romania

Proof 1 (by Daniel Sitaru - Romania).
If n ∈ N,

an+1 + bn+1 + cn+1 = an · a+ bn · b+ cn · c
Chebyshev︷︸︸︷
≥ 1

3
(an + bn + cn)(a+ b+ c)

AM−GM︷︸︸︷
≥ 1

3
(an + bn + cn) · 3 3

√
abc

=
1

3
(an + bn + cn) · 3 = an + bn + cn.

It follows that

a4 + b4 + c4 ≥ a3 + b3 + c3 ≥ a2 + b2 + c2 ≥ a+ b+ c
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In particular,

(1)
∑
cycl

a4 ≥
∑
cycl

a

and

(2)
∑
cycl

a2 ≥
∑
cycl

a

Further, ∑
cycl

a3 = a3 + b3 + c3 = a2 · a+ b2 · a+ c2 · c

Chebyshev︷︸︸︷
≥ 1

3
(a2 + b2 + c2)(a+ b+ c)

AM−GM︷︸︸︷
≥ 1

3
(a2 + b2 + c2) · 3 3

√
abc =

1

3
(a2 + b2 + c2) · 3 = a2 + b2 + c2

≥ ab+ bc+ ca =
1

a
+

1

b
+

1

c
=
∑
cycl

1

a
,

(3) So that
∑
cycl

a3 ≥
∑
cycl

1

a

By the AM-GM inequality,

(4) a =
3

√
a

b
· a
b
· b
c
≤

a
b + a

b + b
c

3

(5) b =
3

√
b

c
· b
c
· c
a
≤

b
c + b

c + c
a

3

(6) c = 3

√
c

a
· c
a
· a
b
≤

c
a + c

a + a
b

3

(7) By adding (4), (5), (6)

cycl∑ a

b
≥
∑
cycl

a and, by analogy with (4) - (6),

(8)
1

a
=

3

√
b

a
· b
a
· a
c
≤

b
a + b

a + a
c

3

(9)
1

b
=

3

√
c

b
· c
b
· b
a
≤

c
b + c

b + c
b

3

(10)
1

c
= 3

√
a

c
· a
c
· c
b
≤

a
c + a

c + c
b

3

(11) By adding the relationships (8), (9); (10),
∑
cycl

a

c
≥
∑
cycl

1

a
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The product of (1), (2), (3), (7), (11) is exactly(∑
cycl

a4

)(∑
cycl

a

b

)(∑
cycl

a3

)(∑
cycl

a

c

)(∑
cycl

a2

)
≥

(∑
cycl

a

)3(∑
cycl

1

a

)2

�

Proof 2 (by Leonard Giugiuc - Romania).
By the AM - GM inequality ,

∑
cycl a ≥ 3, so that (

∑
cycl a)3 ≥ 9(

∑
cycl a). But

9

(∑
cycl

a3

)
≥

(∑
cycl

a

)3

.

Combining all these gives ∑
cycl

a3 ≥
∑
cycl

a.

By Hölder’s inequality,(∑
cycl

a4

)(∑
cycl

a3

)(∑
cycl

a2

)
≥

(∑
cycl

a3

)3

.

implying (∑
cycl

a4

)(∑
cycl

a3

)(∑
cycl

a2

)
≥

(∑
cycl

a3

)3

On the other hand, (∑
cycl

1

a

)2

=

(∑
cycl

ab

)2

As in (11) of Solution 1, ∑
cycl

1

a
≥
∑
cycl

1

a

so that (∑
cycl

a

b

)(∑
cycl

a

c

)
≥

(∑
cycl

1

a

)2

which completes the proof. �

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the problem from this book Math Accent at the
CutTheKnotMath page and supplied his solution (Solution 1) on a tex file.
Solution 2 is by Leo Giugiuc.

96. A Triple Integral Inequality

Prove that, for all a, b, c ∈
(

0,
π

4

)
0 ≤

∫ a

0

(∫ b

0

(∫ c

0

(∑
cycl

(tanx− 2 tan y tan z) + 4
∏
cycl

tanx

)
dx

)
dy

)
dz ≤ abc

Proposed by Daniel Sitaru - Romania
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Proof 1 (by Leonard Giugiuc - Romania).

T =
∑
cycl

(tanx− 2 tan y tan z) + 4
∏
cycl

tanx =
1

2

(
1−

∏
cycl

(1− 2 tanx)

)
.

Assuming a, b, c ∈
(

0, π4

)
, 0 ≤ T ≤ 1. Thus,

0 ≤
∫ a

0

(∫ b

0

(∫ c

0

(∑
cycl

(tanx− 2 tan y tan z) + 4
∏
cycl

tanx

)
dx

)
dy

)
dz

≤
∫ a

0

∫ b

0

∫ c

0

1dxdydz = abc.

�

Proof 2 (by Soumitra Mandal - India).

Let f : [0, c]→ R+ defined by

f(x) = tanx(4 tan y tan z − 2 tan y − 2 tan z + 1) + tan y + tan z − 2 tan y tan z

for all x ∈ [0, c]. Now,

f ′(x) = sec2 x(4 tan y tan z − 2 tan y − 2 tan z + 1) ≥ 0 since

x ∈ (0, c) ⊆
(

0,
π

4

)
and y, z ∈

(
0,
π

4

)
. So, f is continuous on [0, c] and

f ′(x) ≥ 0 hence f is increasing on [0, c]. So, f
(π

4

)
≥ f(x) ≥ f(x) ≥ f(0)

⇒ 4 tan y tan z − 2 tan y − 2 tan z + 1 ≥ f(x) ≥ tan y + tan z − 2 tan y tan z

⇒ (2 tan y − 1)(2 tan z − 1) ≥ f(x) ≥ 1

2
− 1

2
(2 tan y − 1)(2 tan z − 1)

⇒ (2 tan y − 1)(2 tan z − 1) ≥ f(x) ≥ 1

2
− 1

2
(2 tan y − 1)(2 tan z − 1)

⇒ 1 ≥ f(x) ≥ 0 for all, y, z ∈
(

0,
π

4

)
∴ 0 ≤

∫ a

0

(∫ b

0

(∫ c

0

∑
cyc

(tanx− 2 tan y tan z) + 4
∏
cyc

tanxdx

)
dy

)
dz ≤ abc

(proved)

�

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem (from the Romanian
Mathematical Magazine at the CutTheKnotMath page . Solution 1 is by Leo
Giugiuc. Solution 2 is by Soumitra Mandal - Chandar Nagore - India.

97. An Inequality in Triangle and in General

In any acute ∆ABC,∑
cycl

cotA cot3B

cot2B + 2 cot2A
+ 2

∑
cycl

cot2A+ cotB

cotA+ 2 cotB
≥ 1

Proposed by Daniel Sitaru - Romania
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Remark (by Alexander Bogomolny - USA)
Both solutions below use the fact that in any triangle

cotA cotB + cotB cotC + cotC cotA = 1

Thus, using the substitutions a = cotA, b = cotB, c = cotC the problem reduces
to proving that

Prove that for positive a, b, csuch that ab+ bc+ ca = 1,∑
cycl

ab3

b2 + 2a2
+ 2

∑
cycl

a2b

a+ 2b
≥ 1.

Proof 1 (by Dung Thanh Tùng - Vietman).
The required inequality is equivalent to∑

cycl

ab− 2
∑
cycl

a3b

b2 + 2a2
+ 2

∑
cycl

a2b

a+ 2b
≥ 1,

reducing the task to proving

(1)
∑
cycl

a2b

a+ 2b
≥
∑
cycl

a3b

b2 + 2a2

We’ll prove a2b
a+2b ≥

a3b
b2+2a2 which is equivalent to 2a2 + b2 ≥ a(a+ 2b), i.e.,

(a− b)2 ≥ 0, implying (1).
Equality holds when a = b = c = 1√

3
, i.e., when A = B = C = 60◦. �

Proof 2 (by Myagmarsuren Yadamsuren - Mongolia).

ab3

b2 + 2a2
+ 2

a2b

a+ 2b
= ab

( b2

b2 + 2a2
+

(2a)(2a)

(a+ 2b)(2a)

)
= ab

( b2

b2 + 2a2
+

(2a)2

2a2 + 4ab

)
≥ ab

( (b+ 2a)2

(b+ 2a)2

)
= ab,

where, on the penultimate step, we used Bergström’s inequality . Summing up
and using ab+ bc+ ca = 1, delivers the required inequality. �

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem (from his book ”Math Accent”)
at the CutTheKnotMath page . Solution 1 is by Dung Tùng; Solution 2 is by
Myagmarsuren Yadamsuren.

98. An Inequality in Triangle with Differences of Medians

Prove tha in a scalene ∆ABC :

8(ma −mb)(mb −mc)(mc −ma)

(b− a)(c− b)(a− c)
>

27abc

(a+ 2s)(b+ 2s)(c+ 2s)

Proposed by Daniel Sitaru - Romania



63

Proof 1.
(ma −mb)(ma +mb) = m2

a −m2
b

=
1

2
(b2 + c2)− 1

4
a2 − 1

2
(a2 + c2) +

1

4
b2

=
2b2 + 2c2 − a2 − 2a2 − 2c2 + b2

4
=

3(b2 − a2)

4
=

3(b− a)(b+ a)

4
ma −mb

b− a
=

3(b+ a)

4(ma +mb)
>

3(b+ a)

4( b+c2 + a+c
2 )

=

=
3(b+ a)

2(a+ b+ 2c)
=

3(b+ a)

2(2s+ c)
≥ 3 · 2

√
ab

2(2s+ c)

It follows that
2(ma −mb)

b− a
>

3
√
ab

2s+ c

Similarly, 2(mb−mc)
c−b > 3

√
bc

2s+a and 2(mc−ma)
a−c > 3

√
ca

2s+b . Multiplying the three relation-
ship yields

8(ma −mb)(mb −mc)(mc −ma)

(b− a)(c− b)(a− c)
>

27abc

(a+ 2s)(b+ 2s)(c+ 2s)

�

Proof 2.

First we note a > b⇒ ma < mb. Indeed, from m2
a = b2+c2

2 − a2

4 and

m2
b = a2+c2

2 − b2

4 we obtain m2
a −m2

b = 3
4 (b2 − a2).

Now, using mamb ≤ 2c2+ab
4 ,

(ma −mb)
2 = m2

a +m2
b − 2mamb

≥ a2 + b+ 2 + 4c2

4
− 2c2 + ab

2

=
(b− a)2

4
,

sucht that 2(ma−mb)
b−a ≥ 1. Similarly, 2(mb−mc)

c−b ≥ 1 and 2(mc−ma)
a−c ≥ 1 the product

of which leads to
8(ma −mb)(mb −mc)(mc −ma)

(b− a)(c− b)(a− c)
≥ 1.

Suffice it to prove that 1 > 27abc
(a+2s)(b+2s)(c+2s) . But, by the AM - GM inequality ,

a+ b+ c ≥ 3 3
√
abc. Thus, we continue

27abc

(a+ 2s)(b+ 2s)(c+ 2s)
<

27abc

(2s)(2s)(2s)
=

27abc

(a+ b+ c)3
≤ 27abc

27abc
= 1.

This completes the proof. �

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted at the CutTheKnotMath page the above problem
of his that was published in the Romanian Mathematical Magazine . Dan
messaged me his solution in a tex file an later added two more solutions. Solution
2 is by Soumava Chakraborty. Şerban George Florin and independently Athina
Kalampolka and Chris Kyriazis gave solutions very similar to that of Dan Sitaru.
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99. An Inequality in Triangle with Roots and Circumradius

Prove that in any ∆ABC,

a
√
b+ b

√
c+ c

√
a ≤ 3R

√
2s,

where s is the semiperimeter of ∆ABC,R its circumradius.

Proposed by Daniel Sitaru - Romania

Proof (by Mihalcea Andrei Ştefan - Romania).
Use Hölder’s inequality followed by the rearrangement inequality,

(a
√
b+ b

√
c+ c

√
a)2 ≤ (a+ b+ c)(ab+ bc+ ca)

≤ 2s(a2 + b2 + c2)

But we know that a2 + b2 + c2 ≤ 9R2. A combination of the two gives desired
result. �

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted the above problem from his book Math Accent, with
a solution, at the CutTheKnotMath page . The solution is by Mihalcea Andrei
Ştefan, a grade 9 student.

100. An Inequality in Triangle with the Sines of Half - Angles and
Cube Roots

Prove that in an acute-angled triangle ∆ABC:

2
∑
cycl

(a
b

+
b

a

)
sin2 C

2
≥ 3
√
abc
(1

a
+

1

b
+

1

c

)
Proposed by Daniel Sitaru - Romania

Proof 1(by Daniel Sitaru - Romania).

2
∑
cycl

(a
b

+
b

a

)
sin2 C

2
=
∑
cycl

(a
b

+
b

a

)
2 sin2 C

2
=

= 2
∑
cycl

(a
b

+
b

a

)
(1− cosC) =

∑
cycl

(a
b

+
b

a

)
−
∑
cycl

(a
b

+
b

a

)
cosC

(1) 2
∑
cycl

(a
b

+
b

a

)
sin2 C

2
=
∑
cycl

a

b
+
∑
cycl

b

a
−
∑
cycl

(a
b

+
b

a

)
cosC

∑
cycl

(a
b

+
b

a

)
cosC =

∑
cycl

a2 + b2

ab
· a

2 + b2 − c2

2ab

=
1

2a2b2c2

∑
cycl

c2(a2 + b2)(a2 + b2 − c2) =
1

2a2b2c2

∑
cycl

[c2(a2 + b2)2 − c4(a2 + b2)]

=
1

2a2b2c2

∑
cycl

(
c2(a4 + b4 + 2a2b2)− c4a2 − c4b2

)
=

1

2a2b2c2

∑
cycl

(c2a4 + c2b4 + 2a2b2c2 − c4b2 − c4a2)
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=
1

2a2b2c2

(∑
cycl

a4c2 −
∑
cycl

a4c2 +
∑
cycl

b4c2 −
∑
cycl

b4c2 + 6a2b2c2

)

=
6a2b2c2

6a2b2c2
= 3

We continue:

(2) 2
∑
cycl

(a
b

+
b

a

)
sin2 C

2
=
∑
cycl

a

b
+
∑
cycl

b

a
− 3

(3)
a

b
+
a

b
+
b

c
≥ 3

3

√
a

b
· a
b
· b
c

= 3
3

√
a2

bc
= 3

a
3
√
abc

(4)
b

c
+
b

c
+
c

a
≥ 3

3

√
b

c
· b
c
· c
a

= 3
3

√
b2

ac
= 3

b
3
√
abc

(5)
c

a
+
c

a
+
a

b
≥ 3 3

√
c

a
· c
a
· a
b

= 3
3

√
c2

ab
= 3

c
3
√
abc

Further, (a
b

+
b

c
+
c

a

)
≥ 3

a+ b+ c
3
√
abc

a

b
+
b

c
+
c

a
≥ a+ b+ c√

abc
≥ 3 3
√
abc

3
√
abc

= 3

From (2) it follows that

2
∑
cycl

(a
b

+
b

a

)
sin2 C

2
=
∑
cycl

a

b
+
∑
cycl

b

a
− 3 ≥ 3 +

∑
cycl

b

a
− 3 =

∑
cycl

b

a
,

i.e.,

(6) 2
∑
cycl

(a
b

+
b

a

)
sin2 C

2
≥
∑
cycl

b

a

a

c
+
a

c
+
b

a
≥ 3

3

√
a

c
· a
c
· b
a

=
3 3
√
abc

c

b

a
+
b

a
+
c

b
≥ 3

3

√
b

a
· b
a
· c
b

= 3
3
√
abc

a

c

b
+
c

b
+
a

c
≥ 3 3

√
c

b
· c
b
· a
c

= 3
3
√
abc

b

(7)
∑
cycl

b

a
≥ 3
√
abc
(1

a
+

1

b
+

1

c

)
From (6) and (7),

2
∑
cycl

(a
b

+
b

a

)
sin2 C

2
≥ 3
√
abc
(1

a
+

1

b
+

1

c

)
�
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Proof 2 (by Kevin Soto Palacios - Peru).
We’ll prove instead a stronger inequality∑

cycl

(a
b

+
b

a

)
(1− cosC) ≥ a+ b+ c

3

(1

a
+

1

b
+

1

c

)
Or, equivalently,

A−B ≥ a+ b+ c

3

(1

a
+

1

b
+

1

c

)
,

where

A =
∑
cycl

(a
b

+
b

a

)
and B =

∑
cycl

(a
b

+
b

a

)
cosC

B =
∑
cycl

(a
b

+
b

a

)
cosC =

∑
cycl

(a2 + b2

ab

)(a2 + b2 − c2

2ab

)

=
∑
cycl

(
(a2 + b2)2

2a2b2

)
−

(
c2(a2 + b2)

2a2b2

)

=
∑
cycl

a2

2b2
+
∑
cycl

b2

2a2
+
∑
cycl

1−
∑
cycl

c2

2b2
−
∑
cycl

c2

2a2
= 3.

A =
∑
cycl

(a
b

+
b

a

)
=
∑
cycl

b+ c

a
.

We need to prove that

A−B =
∑
cycl

b+ c

a
− 3 ≥

(a+ b+ c

3

)(1

a
+

1

b
+

1

c

)
This is equivalent to(∑

cycl

a

)(∑
cycl

1

a

)
−6 ≥

(a+ b+ c

3

)(1

a
+

1

b
+

1

c

)
,

i.e.,

2

3

(∑
cycl

a

)(1

a

)
≥ 6,

which is true because, by the AM - GM inequality ,(∑
cycl

a

)(1

a

)
≥ 3

3
√
abc · 3 1

3
√
abc

= 9.

�

Solution 3 (by Soumava Chakraborty - India).
First observe that

LHS = 2
∑
cycl

(a
b

+
b

a

)
sin2 C

2
= 2

∑
cycl

(
a2 + b2

ab

)
(s− a)(s− b)

ab

=
∑
cycl

c2(a2 + b2)(b+ c− a)(c+ a− b)
2a2b2
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Let’s prove that

LHS =
∑
cycl

c2(a2 + b2)(b+ c− a)(c+ a− b)
2a2b2

≥
(a+ b+ c

3

)(ab+ bc+ ca

abc

)
(1) LHS =

∑
cycl

c2(a2 + b2)(b+ c− a)(c+ a− b)
2a2b2

≥
(a+ b+ c

3

)(ab+ bc+ ca

abc

)
This is equivalent to

3
∑
cycl

c2(a2 + b2)(b+ c− a)(c+ a− b) ≥ 2abc
∑
cycl

a
∑
cycl

ab⇔

4(a3b2c+ a3bc2 + b3c2a+ b3ca2 + c3a2b+ c3ab2) ≥ 24a2b2c2 ⇔
(a2b+ a2c+ b2c+ b2a+ c2a+ c2b) ≥ 6abc,

which is the same as

(2) b(a2 + c2) + c(a2 + b2) + a(b2 + c2) ≥ 6abc.

But, by the AM - GM inequality, b(a2 + c2) ≥ 2abc, c(a2 + b2) ≥ 2abc,
a(b2 + c2) ≥ 2abc, so that (2) holds and so is (1).
This is stronger that the required inequality. �

Acknowledgment (by Alexander Bogomolny - USA)
Dan Sitaru has kindly posted at the CutTheKnotMath page the above problem
of his that was published in the Romanian Mathematical Magazine . Dan
messaged me his solution (Solution 1) in a tex file. Solution 2 is by Kevin Soto
Palacios; Solution 3 is by Soumava Chakraborty.
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Its nice to be important but more
important its to be nice.

At this paper works a TEAM.

This is RMM TEAM.

To be continued!

Daniel Sitaru
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