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Proposed by George Apostolopoulos - Messolonghi - Grece

Proof.
Using Hölder’s inequality, we obtain(
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(3R
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, where the last inequality is equivalent with

9R3 ≥ 8r2(4R+ r)⇔ 9R3 − 32Rr2 − 8r3 ≥ 0⇔ (R− 2r)(9R2 + 18Rr + 4r2) ≥ 0

true from Euler’s inequality: R ≥ 2r.

The equality holds for an equilateral triangle.

�

Remark
Inequality 1. can be strengthened:
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Proof.
Using Hölder’s inequality we obtain(
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(R+r)3 ≥ 3r2(4R+r)⇔ R3+3R2r−9Rr2−2r3 ≥ 0⇔ (R−2r)(R2+5r+r2) ≥ 0

true from Euler’s inequality: R ≥ 2r.

The equality holds for an equilateral triangle.
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Remark
Inequality 2. is stronger the inequality 1.

3. In ∆ABC
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Proof.

See inequality 2. and 1 +
R

r
≤ 3R

2r
⇔ R ≥ 2r (Euler’s inequality)

Equality holds for an equilateral triangle.

�

Inequality 2 can be developed
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Proof.
Using Hölder’s inequality we obtain(
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, where the last inequality is equivalent with

(R+ r)4 ≥ 9r3(4R+ r)⇔ R4 + 4R3r + 6R2r2 − 32Rr3 − 8r4 ≥ 0⇔
⇔ (R− 2r)(R3 + 6R3r + 18Rr2 + 4r3) ≥ 0

which is true form Euler’s inequality: R ≥ 2r

The equality holds for an equilateral triangle.
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5. In ∆ABC
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Proof.
See 4. and Euler’s inequality R ≥ 2r.
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Let’s generalise inequality 1.

6. In ∆ABC
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Proof.
Using Hölder’s inequality we obtain(
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, where the last inequality is equivalent with

9Rn ≥ 2nrn−1
(
4R+ r)⇔ 9Rn − 2n+2Rrn−1 − 2nrn ≥ 0

Denoting
R

r
= t ≥ 2 it remains to prove that

9tn−2n+2t−2n ≥ 0⇔ (t−2)(9tn−1+9·2tn−2+9·22·tn−3+. . .+9·2n−3t2+9·2n−2t+2n−1) ≥ 0,

Obviously because t ≥ 2.

The equality holds for an equilateral triangle.
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