ROMANIAN MATHEMATICAL MAGAZINE TRIANGLE MARATHON 101-200 PROBLEM 177

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\sqrt[3]{\frac{a}{b+c-a}}+\sqrt[3]{\frac{b}{c+a-b}}+\sqrt[3]{\frac{c}{a+b-c}} \leq \frac{3 R}{2 r}
$$

Proposed by George Apostolopoulos - Messolonghi - Grece
Proof.
Using Hölder's inequality, we obtain

$$
\begin{gathered}
\left(\sqrt[3]{\frac{a}{b+c-a}}+\sqrt[3]{\frac{b}{c+a-b}}+\sqrt[3]{\frac{c}{a+b-c}}\right)^{3} \leq \\
\leq(a+b+c)\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)(1+1+1)= \\
=2 p \cdot \frac{4 R+r}{2 p r} \cdot 3=3\left(1+\frac{4 R}{r}\right) \leq\left(\frac{3 R}{2 r}\right)^{3}, \text { where the last inequality is equivalent with } \\
9 R^{3} \geq 8 r^{2}(4 R+r) \Leftrightarrow 9 R^{3}-32 R r^{2}-8 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(9 R^{2}+18 R r+4 r^{2}\right) \geq 0
\end{gathered}
$$

true from Euler's inequality: $R \geq 2 r$.
The equality holds for an equilateral triangle.

Remark

Inequality 1. can be strengthened:
2. In $\Delta A B C$

$$
\sqrt[3]{\frac{a}{b+c-a}}+\sqrt[3]{\frac{b}{c+a-b}}+\sqrt[3]{\frac{c}{a+b-c}} \leq 1+\frac{R}{r}
$$

Proposed by Marin Chirciu - Romania
Proof.

$$
\begin{gathered}
\text { Using Hölder's inequality we obtain } \\
\left(\sqrt[3]{\frac{a}{b+c-a}}+\sqrt[3]{\frac{b}{c+a-b}}+\sqrt[3]{\frac{c}{a+b-c}}\right)^{3} \leq \\
\leq(a+b+c)\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)(1+1+1)= \\
=2 p \cdot \frac{4 R+r}{2 p r} \cdot 3=3\left(1+\frac{4 R}{r}\right) \leq\left(1+\frac{R}{r}\right)^{3} \text {, where the last inequality is equivalent with }
\end{gathered}
$$

$$
\begin{gathered}
(R+r)^{3} \geq 3 r^{2}(4 R+r) \Leftrightarrow R^{3}+3 R^{2} r-9 R r^{2}-2 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(R^{2}+5 r+r^{2}\right) \geq 0 \\
\text { true from Euler's inequality: } R \geq 2 r . \\
\text { The equality holds for an equilateral triangle. }
\end{gathered}
$$

Remark

Inequality 2. is stronger the inequality 1.

3. In $\Delta A B C$

$$
\sqrt[3]{\frac{a}{b+c-a}}+\sqrt[3]{\frac{b}{c+a-b}}+\sqrt[3]{\frac{c}{a+b-a}} \leq 1+\frac{R}{r} \leq \frac{3 R}{2 r}
$$

Proof.
See inequality 2. and $1+\frac{R}{r} \leq \frac{3 R}{2 r} \Leftrightarrow R \geq 2 r$ (Euler's inequality)
Equality holds for an equilateral triangle.

Inequality 2 can be developed

4. In $\Delta A B C$

$$
\sqrt[4]{\frac{a}{b+c-a}}+\sqrt[4]{\frac{b}{c+a-b}}+\sqrt[4]{\frac{c}{a+b-c}} \leq 1+\frac{R}{r}
$$

Proof.

$$
\begin{gathered}
\text { Using Hölder's inequality we obtain } \\
\left(\sqrt[4]{\frac{a}{b+c-a}}+\sqrt[4]{\frac{b}{c+a-b}}+\sqrt[4]{\frac{c}{a+b-c}}\right)^{4} \leq \\
\leq(a+b+c)\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)(1+1+1)(1+1+1)= \\
=2 p \cdot \frac{4 R+r}{2 p r} \cdot 3 \cdot 3=9\left(1+\frac{4 R}{r}\right) \leq\left(1+\frac{R}{r}\right)^{4}, \text { where the last inequality is equivalent with } \\
(R+r)^{4} \geq 9 r^{3}(4 R+r) \Leftrightarrow R^{4}+4 R^{3} r+6 R^{2} r^{2}-32 R r^{3}-8 r^{4} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)\left(R^{3}+6 R^{3} r+18 R r^{2}+4 r^{3}\right) \geq 0 \\
\text { which is true form Euler's inequality: } R \geq 2 r \\
\text { The equality holds for an equilateral triangle. }
\end{gathered}
$$

5. In $\Delta A B C$

$$
\sqrt[4]{\frac{a}{b+c-a}}+\sqrt[4]{\frac{b}{c+a-b}}+\sqrt[4]{\frac{c}{a+b-c}} \leq 1+\frac{R}{r} \leq \frac{3 R}{2 r}
$$

Proof.
See 4. and Euler's inequality $R \geq 2 r$.

Let's generalise inequality 1.

6. In $\triangle A B C$

$$
\sqrt[n]{\frac{a}{b+c-a}}+\sqrt[n]{\frac{b}{c+a-b}}+\sqrt[n]{\frac{c}{a+b-c}} \leq \frac{3 R}{2 r}, \text { where } n \in \mathbb{N}, n \geq 2
$$

Proposed by Marin Chirciu - Romania
Proof.

$$
\begin{gathered}
\text { Using Hölder's inequality we obtain } \\
\left(\sqrt[n]{\frac{a}{b+c-a}}+\sqrt[n]{\frac{b}{c+a-b}}+\sqrt[n]{\frac{c}{a+b-c}}\right)^{n} \leq \\
\leq(a+b+c)\left(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\right)(1+1+1) \ldots(1+1+1) \\
=2 p \cdot \frac{4 R+r}{2 p r} \cdot 3^{n-2}=3^{n-2} \cdot\left(1+\frac{4 R}{r}\right) \leq\left(\frac{3 R}{2 r}\right)^{n} \text {, where the last inequality is equivalent with } \\
9 R^{n} \geq 2^{n} r^{n-1}(4 R+r) \Leftrightarrow 9 R^{n}-2^{n+2} R r^{n-1}-2^{n} r^{n} \geq 0 \\
\text { Denoting } \frac{R}{r}=t \geq 2 \text { it remains to prove that } \\
9 t^{n}-2^{n+2} t-2^{n} \geq 0 \Leftrightarrow(t-2)\left(9 t^{n-1}+9 \cdot 2 t^{n-2}+9 \cdot 2^{2} \cdot t^{n-3}+\ldots+9 \cdot 2^{n-3} t^{2}+9 \cdot 2^{n-2} t+2^{n-1}\right) \geq 0,
\end{gathered}
$$ Obviously because $t \geq 2$.

The equality holds for an equilateral triangle.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

