INEQUALITY IN TRIANGLE - 242

MARIN CHIRCIU

Prove that in any triangle:

$$
\begin{array}{r}
\frac{R}{r} \geq \frac{r_{a}}{r_{b}+r_{c}}+\frac{r_{b}}{r_{c}+r_{a}}+\frac{r_{c}}{r_{a}+r_{b}}+\frac{1}{2} \\
\text { Proposed by Adil Abdulallayev-Baku-Azerbaidian }, \\
\text { Marian Ursarescu - Romania }
\end{array}
$$

Proof.
Using $r_{a}=\frac{S}{p-a}$ we obtain $\sum \frac{r_{a}}{r_{b}+r_{c}}=\sum \frac{(p-b)(p-c)}{a(p-a)}=\frac{(4 R+r)^{3}-p^{2}(8 R-r)}{4 p^{2} R}$
We write the inequality $\frac{R}{r} \geq \frac{(4 R+r)^{3}-p^{2}(8 R-r)}{4 p^{2} R}+\frac{1}{2} \Leftrightarrow p^{2}\left(4 R^{2}+6 R r-r^{2}\right) \geq r(4 R+r)^{3}$,
which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that

$$
\begin{gathered}
\Leftrightarrow\left(16 R r-5 r^{2}\right)\left(4 R^{2}+6 R r-r^{2}\right) \geq r(4 R+r)^{3} \Leftrightarrow 14 R^{2}-29 R r+2 r^{2} \geq 0 \Leftrightarrow \\
(R-2 r)(14 R-r) \geq 0, \text { obviously from Euler's inequality: } R \geq 2 r . \\
\text { The equality holds for an equilateral triangle }
\end{gathered}
$$

Remark

> The inequality can be devoloped

Prove that in any triangle:

$$
\frac{R}{r} \geq n\left(\frac{r_{a}}{r_{b}+r_{c}}+\frac{r_{b}}{r_{c}+r_{a}}+\frac{r_{c}}{r_{a}+r_{b}}\right)+\frac{4-3 n}{2}, \text { where } 0 \leq n \leq 1
$$

Proposed by Marin Chirciu - Romania
Proof.
Using $r_{a}=\frac{S}{p-a}$ we obtain $\sum \frac{r_{a}}{r_{b}+r_{c}}=\sum \frac{(p-b)(p-c)}{a(p-a)}=\frac{(4 R+r)^{3}-p^{2}(8 R-r)}{4 p^{2} R}$
We write the inequality:
$\frac{R}{r} \geq n \cdot \frac{(4 R+r)^{3}-p^{2}(8 R-r)}{4 p^{2} R}+\frac{4-3 n}{2} \Leftrightarrow p^{2}\left(4 R^{2}+14 n R r-8 R r-n r^{2}\right) \geq n r(4 R+r)^{3}$
which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$.
It remains to prove that:
$\Leftrightarrow\left(16 R r-5 r^{2}\right)\left(4 R^{2}+14 n R r-8 R r-n r^{2}\right) \geq n r(4 R+r)^{3}$
$\Leftrightarrow(32-32 n) R^{3}+(88 n-74) R^{2} r+(20-49 n) R r^{2}+2 n r^{2} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)\left[(32-32 n) R^{2}+(24 n-10) R r-n r^{2}\right] \geq 0$,
obviously from Euler's inequality: $R \geq 2 r$ and the condition from the hypothesis $0 \leq n \leq 1$

The equality holds for an equilateral triangle.

Remark

For $n=1$ we obtain INEQUALITY IN TRIANGLE - 242.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

