PROBLEM 127-TRIANGLE MARATHON 101-200

MARIN CHIRCIU

1. In $\triangle A B C$

$$
\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2} \leq \frac{R}{2 r} \sqrt{\frac{2 R}{r}-1}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Proof.
Using the known identity in triangle $\sum \tan \frac{A}{2}=\frac{4 R+r}{p}$ we write the inequality:
$\frac{4 R+r}{p} \leq \frac{R}{2 r} \sqrt{\frac{2 R}{r}-1} \Leftrightarrow\left(\frac{4 R+r}{p}\right)^{2} \leq\left(\frac{R}{2 r}\right)^{2}\left(\frac{2 R}{r}-1\right) \Leftrightarrow p^{2} R^{2}(2 R-r) \geq 4 r^{3}(4 R+r)^{2}$
which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:
$\Leftrightarrow\left(16 R-5 r^{2}\right) \cdot R^{2}(2 R-r) \geq 4 r^{3}(4 R+r)^{2} \Leftrightarrow 34 R^{4}-26 R^{3} r-59 R^{2} r^{2}-32 R r^{3}-4 r^{4} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)\left(32 R^{3}+38 R r^{2}+17 R r^{2}+2 r^{3}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.

The equality holds if and only if the triangle is equilateral.

Remark

The inequality can be developed:

2. In $\Delta A B C$

$$
\begin{aligned}
\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2} \leq & \frac{R}{r} \sqrt{n \cdot \frac{R}{r}-2 n+\frac{3}{4}}, \text { where } n \geq 0 \\
& \text { Proposed by Marin Chirciu - Romania }
\end{aligned}
$$

Proof.
Using the known identity in triangle $\sum \tan \frac{A}{2}=\frac{4 R+r}{p}$ we write the inequality:

$$
\begin{gathered}
\frac{4 R+r}{p} \leq \frac{R}{r} \sqrt{n \cdot \frac{R}{r}-2 n+\frac{3}{4}} \Leftrightarrow\left(\frac{4 R+r}{p}\right)^{2} \leq\left(\frac{R}{r}\right)^{2}\left(n \cdot \frac{R}{r}-2 n+\frac{3}{4}\right) \Leftrightarrow \\
\Leftrightarrow p^{2} R^{2}[4 n R+(3-8 n) r] \geq 4 r^{3}(4 R+r)^{2} \text {, which follows from Gerretsen's inequality: } \\
p^{2} \geq 16 R r-5 r^{2} . \text { It remains to prove that: } \\
\Leftrightarrow\left(16 R r-5 r^{2}\right) \cdot R^{2}[4 n R+(3-8 n) r] \geq 4 r^{3}(4 R+r)^{2} \\
\Leftrightarrow 64 n R^{4}+(48-148 n) R^{3} r+(40 n-79) R^{2} r^{2}-32 R r^{3}-4 R^{4} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)\left[64 n R^{3}+(48-20 n) R r^{2}+17 R r^{2}+2 r^{3}\right] \geq 0
\end{gathered}
$$

obviously from Euler's inequality $R \geq 2 r$.

The equality holds if and only if the triangle is equilateral.

Remark

For $n=\frac{1}{2}$ in inequality 2. we obtain inequality 1., meaning Problem 127
from TRIANGLE MARATHON 101-200
proposed by George Apostolopoulos - Messolonghi - Greece.

Remark

> We can write the double inequality:

3. In $\Delta A B C$

$$
\sqrt{3} \leq \tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2} \leq \frac{R}{r} \sqrt{n \cdot \frac{R}{r}-2 n+\frac{3}{4}} \text {, where } n \geq 0
$$

Proof.
The first inequality follows from the identity $\sum \tan \frac{A}{2}=\frac{4 R+r}{p}$ and Doucet's inequality

$$
4 R+r \geq p \sqrt{3}, \text { the second inequality is } \mathcal{2} .
$$

The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

Remark

We can propose inequalities in the same format:

4. In $\Delta A B C$

$$
1 \leq \tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2} \leq\left(\frac{R}{2 r}\right)^{2}
$$

Proof.
The first inequality follows from the identity $\sum \tan ^{2} \frac{A}{2}=\frac{(4 R+r)^{2}-2 p^{2}}{p^{2}}$
and from Doucet's inequality: $(4 R+r)^{2} \geq 3 p^{2}$.
The second inequality, taking into account the above identity, can be written:
$\frac{(4 R+r)^{2}-2 p^{2}}{p^{2}} \leq\left(\frac{R}{2 r}\right)^{2} \Leftrightarrow 4 r^{2}(4 R+r)^{2}-8 r^{2} p^{2} \geq p^{2} R^{2} \Leftrightarrow p^{2}\left(R^{2}+8 r^{2}\right) \geq 4 r^{2}(4 R+r)^{2}$,
Which follows from Gerretsen's inequality: $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:
$\left(16 R r-5 r^{2}\right)\left(R^{2}+8 r^{2}\right) \geq 4 r^{2}(4 R+r)^{2} \Leftrightarrow 16 R^{3}-69 R^{2} r+96 R r^{2}-44 r^{3} \geq 0 \Leftrightarrow$
$(r-2 r)\left(16 R^{2}-37 R r+22 r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

5. In $\Delta A B C$:

$$
\frac{3 r}{p} \leq \tan ^{3} \frac{A}{2}+\tan ^{3} \frac{B}{2}+\tan ^{3} \frac{C}{2} \leq \frac{3 R}{2 p}\left[\left(\frac{3 R}{2 r}\right)^{2}-8\right]
$$

Proposed by Marin Chirciu - Romania

Proof.
First we prove the following identity:

Lemma

6. In $\triangle A B C$

$$
\sum \tan ^{3} \frac{A}{2}=\frac{(4 R+r)^{3}-12 p^{2} R}{p^{3}}
$$

Proof.
We use the identity $(x+y+z)^{3}=x^{3}+y^{3}+z^{3}+3(x+y)(y+z)(z+x)$
we put $x=\tan \frac{A}{2}, y=\tan \frac{B}{2}, z=\tan \frac{C}{2}$ and then we take into account that
$x+y+z=\sum \tan \frac{A}{2}=\frac{4 R+r}{p}$, $(x+y)(y+z)(z+x)=\prod\left(\tan \frac{B}{2}+\tan \frac{C}{2}\right)=\frac{4 R}{p}$.

Let's pass to solving the double inequality 5.:
We write the first inequality:
$\frac{(4 R+r)^{3}-12 p^{2} R}{p^{3}} \geq \frac{3 r}{p}$, which follows from Doucet's inequality: $(4 R+r)^{2} \geq 3 p^{2}$.
We obtain $\frac{(4 R+r)^{3}-12 p^{2} R}{p^{3}} \geq \frac{(4 R+r) \cdot 3 p^{2}-12 p^{2} R}{p^{3}}=\frac{3 r}{p}$
We write the second inequality:
$\frac{(4 R+r)^{3}-12 p^{2} R}{p^{3}} \leq \frac{3 R}{2 p}\left[\left(\frac{3 R}{2 r}\right)^{2}-8\right] \Leftrightarrow 8 r^{2}(4 R+r)^{3}-96 p^{2} R r^{2} \leq 3 p^{2} R\left(9 R^{2}-32 r^{2}\right) \Leftrightarrow$ $27 p^{2} R^{2} \geq 8 r^{2}(4 R+r)^{3}$, which follows from Gerretsen's inequality: $p^{2} \geq 16 R r-5 r^{2}$.

It remains to prove that:
$27\left(16 R r-5 r^{2}\right) R^{2} \geq 8 r^{2}(4 R+r)^{3} \Leftrightarrow 432 R^{4}-647 R^{3} r-384 R^{2} r^{2}-96 R r^{3}-8 r^{4} \geq 0 \Leftrightarrow$ $(R-2 r)\left(432 R^{3}+217 R^{2} r+50 R r^{2}+4 r^{3}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.

The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

