SOLUTION TO PROBLEM UP. 048 FROM ROMANIAN MATHEMATICAL MAGAZINE
 NUMBER 4, SPRING 2017

MARIN CHIRCIU

UP.048. Let a, b, c be non-negative real numbers such that $a+b+c=1$. Prove that:

$$
\begin{aligned}
& a^{4}+b^{4}+c^{4}+26 a b c \leq 1 \\
& \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

Proof.
Homogenising the inequality we obtain

$$
a^{4}+b^{4}+c^{4}+26 a b c(a+b+c) \leq(a+b+c)^{4}
$$

As $(a+b+c)^{4}=\sum a^{4}+4 \sum b c\left(b^{2}+c^{2}\right)+6 \sum b^{2} c^{2}+12 a b c(a+b+c)$, the above inequality
can be written:
$\sum a^{4}+4 \sum b c\left(b^{2}+c^{2}\right)+6 \sum b^{2} c^{2}+12 a b c(a+b+c) \geq \sum a^{4}+26 a b c(a+b+c) \Leftrightarrow$ $2 \sum b c\left(b^{2}+c^{2}\right)+3 \sum b^{2} c^{2} \geq 7 a b c(a+b+c)$, which follows from means inequality and the inequality $x^{2}+y^{2}+z^{2} \geq x y+y z+z x$, with $x=b c, y=c a, z=a b$.

Indeed:
$2 \sum b c\left(b^{2}+c^{2}\right)+3 \sum b^{2} c^{2} \geq 4 \sum b^{2} c^{2}+3 \sum b^{2} c^{2}=7 \sum b^{2} c^{2} \geq 7 \sum b c \cdot c a=7 a b c(a+b+c)$.
The equality holds if and only if $a=b=c=\frac{1}{3}$.

The problem can be developed:
If $a, b, c>0, a+b+c+1$ then $a^{4}+b^{4}+c^{4}+\lambda a b c \leq \frac{\lambda+1}{27}$, where $\lambda \geq 26$.
Proposed by Marin Chirciu - Romania
Proof.
Homogenising the inequality we obtain:

$$
a^{b}+b^{4}+c^{4}+\lambda a b c(a+b+c) \leq \frac{\lambda+1}{27}(a+b+c)^{4} .
$$

$A s(a+b+c)^{4}=\sum a^{4}+4 \sum b c\left(b^{2}+c^{2}\right)+6 \sum b^{2} c^{2}+12 a b c(a+b+c)$, the above inequality can be written:
$\frac{\lambda+1}{27} \cdot\left[\sum a^{4}+4 \sum b c\left(b^{2}+c^{2}\right)+6 \sum b^{2} c^{2}+12 a b c(a+b+c)\right] \geq \sum a^{4}+\lambda a b c(a+b+c) \Leftrightarrow$ $(\lambda-26) \sum a^{4}+(8 \lambda+8) \sum b c\left(b^{2}+c^{2}\right)+(6 \lambda+6) \sum b^{2} c^{2} \geq\left(15 \sum \lambda-12\right) a b c(a+b+c)$
which follows from the condition $\lambda \geq 26$, means inequality and the inequality
$x^{2}+y^{2}+z^{2} \geq x y+y z+z x$, with $x=a^{2}, y=b^{2}, z=c^{2}$, then $x=b c, y=c a, z=a b$.

$$
\begin{gathered}
\text { Indeed: } \\
\begin{array}{c}
(\alpha-26) \sum a^{4}+(4 \lambda+4) \sum b c\left(b^{2}+c^{2}\right)+(6 \lambda+6) \sum b^{2} c^{2} \geq \\
\geq(\lambda-26) \sum b^{2} c^{2}+(8 \lambda+8) \sum b^{2} c^{2}+(6 \lambda+6) \sum b^{2} c^{2}= \\
=(15 \lambda-12) \sum b^{2} c^{2} \geq(15 \lambda-12) \sum b c \cdot c a \\
=(15 \lambda-12) a b c(a+b+c) .
\end{array}
\end{gathered}
$$

The equality holds if and only if $a=b=c=\frac{1}{3}$.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

