SOLUTION TO PROBLEM JP.060. FROM ROMANIAN MATHEMATICAL MAGAZINE
 NUMBER 4, SPRING 2017

MARIN CHIRCIU

JP.060. Let a, b, c be the lengths of the sides of a triangle with circumradius R.
Prove that

$$
\frac{a b}{a+b}+\frac{a b}{a+b}+\frac{a b}{a+b} \leq \frac{3 \sqrt{3}}{2} R
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.

$$
\begin{gathered}
\text { We have } \sum \frac{b c}{b+c} \leq \sum \frac{b+c}{4}=p \leq \frac{3 \sqrt{3}}{2} R \text {, where the last inequality is } \\
\text { Mitrinović's inequality. } \\
\text { The equality holds if and only if the triangle is equilateral. }
\end{gathered}
$$

The inequality can be strengthened:

1. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that

$$
\frac{a b}{a+b}+\frac{a b}{a+b}+\frac{a b}{a+b} \leq p
$$

Proof.

$$
\sum \frac{b c}{b+c} \leq \sum \frac{b+c}{4}=p
$$

The equality holds if and only if the triangle is equilateral.
Inequality 1. is stronger then JP.060.
2. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that

$$
\frac{a b}{a+b}+\frac{a b}{a+b}+\frac{a b}{a+b} \leq p \leq \frac{3 \sqrt{3}}{2} R
$$

Proof.

> We have $\sum \frac{b c}{b+c} \leq \sum \frac{b+c}{4}=\leq \frac{3 \sqrt{3}}{2} R$, where the last inequality
> is Mitrinonvic's inequality.
> The equality holds if and only if the triangle is equilateral.

Inequality 1. can also be strengthened:
3. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that

$$
\frac{a b}{a+b}+\frac{a b}{a+b}+\frac{a b}{a+b} \leq \frac{3(a b+b c+c a)}{2(a+b+c)}
$$

Proof 1.

$$
\begin{gathered}
\text { We use the known identities in triangle } \\
\sum \frac{b c}{b+c}=\frac{p^{4}+2 p^{2}\left(8 R+r^{2}\right)+(4 R+r)^{3}}{2 p\left(p^{2}+r^{2}+2 R r\right)} \text { and } \sum b c=p^{2}+r^{2}+4 R r . \\
\text { We write the inequality: } \\
\frac{p^{4}+2 p^{2}\left(8 R+r^{2}\right)+(4 R+r)^{3}}{2 p\left(p^{2}+r^{2}+2 R r\right)} \leq \frac{3\left(p^{2}+r^{2}+4 R r\right)}{2 \cdot 2 p} \Leftrightarrow \\
p^{2}\left(p^{2}-14 R r+2 r^{2}\right) \geq r^{2}\left(8 R^{2}-2 R r-r^{2}\right)
\end{gathered}
$$

As $\left(p^{2}-14 R r+2 r^{2}\right)>0$, see Gerretsen's inquality $p^{2} \geq 16 R r-5 r^{2}$, using again
Gerretsen's inequality it suffices to prove that

$$
\begin{gathered}
\left(16 R r-5 r^{2}\right)\left(16 R r-5 r^{2}-14 R r+2 r^{2}\right) \geq r^{2}\left(8 R^{2}-2 r-r^{2}\right) \Leftrightarrow \\
(16 R-5 r)(2 R-3 r) \geq r^{2}\left(8 R^{2}-2 R r-r^{2}\right) \Leftrightarrow 3 R^{2}-7 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(3 R-r) \geq 0
\end{gathered}
$$

obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Proof 2.
The triplets $(a+b, b+c, c+a)$ and $\left(\frac{a b}{a+b}, \frac{b c}{b+c}, \frac{c a}{c+a}\right)$ are ordered the same.
With Chebyshev's inequality we obtain:

$$
\begin{gathered}
(a+b) \cdot \frac{a b}{a+b}+(b+c) \cdot \frac{b c}{b+c}+(c+a) \cdot \frac{c a}{c+a} \geq \frac{1}{3}[(a+b)+(b+c)+(c+a)]\left[\frac{a b}{a+b}+\frac{b c}{b+c}+\frac{c a}{c+a}\right] \\
\Leftrightarrow(a b+b c+c a) \geq \frac{1}{3} \cdot 2(a+b+c) \cdot\left(\frac{a b}{a+b}+\frac{b c}{b+c}+\frac{c a}{c+a}\right) \Leftrightarrow \\
\Leftrightarrow \frac{a b}{a+b}+\frac{a b}{a+b}+\frac{a b}{a+b} \leq \frac{3(a b+b c+c a)}{2(a+b+c)}
\end{gathered}
$$

The equality holds if and only if the triangle is equilateral.
Inequality 3. is stronger then Inequality 1.:
4. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

$$
\begin{gathered}
\text { Prove that } \\
\frac{a b}{a+b}+\frac{a b}{a+b}+\frac{a b}{a+b} \leq \frac{3(a b+b c+c a)}{2(a+b+c)} \leq p
\end{gathered}
$$

Proof.
We use inequality 3. and
$\frac{3(a b+b c+c a)}{2(a+b+c)} \leq p \Leftrightarrow \frac{3(a b+b c+c a)}{2(a+b+c)} \leq \frac{a+b+c}{2} \Leftrightarrow(a+b+c)^{2} \geq 3(a b+b c+c a)$.
The equality holds if and only if the triangle is equilateral.

We can write the series of inequalities:
5. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that

$\frac{a b}{a+b}+\frac{a b}{a+b}+\frac{a b}{a+b} \leq \frac{3(a b+b c+c a)}{2(a+b+c)} \leq \frac{a+b+c}{2} \leq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{2(a+b+c)}$.
Proof.
We use inequality 4. and $\frac{a+b+c}{2} \leq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{2(a+b+c)} \Leftrightarrow a^{2}+b^{2}+c^{2} \geq a b+b c+c a$.
6. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that

$$
\frac{a b}{a+b}+\frac{a b}{a+b}+\frac{a b}{a+b} \leq \frac{3(a b+b c+c a)}{2(a+b+c)} \leq p \leq \frac{3 \sqrt{3}}{2} R
$$

Proof.
We use inequality 4. and Mitrinović's inequality.
The equality holds if and only if the triangle is equilateral.

