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JP.060. Let a,b,c be the lengths of the sides of a triangle with circumradius R.

Prove that

ab ab ab 3v3

< R.
a+b+a+b+a+b_ 2
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Proof.

be b+c 3V3 . .
< =p < —
We have E e s 1 p < 5 R, where the last inequality is

Mitrinovicé’s inequality.

The equality holds if and only if the triangle is equilateral.

The inequality can be strengthened:
1. Let a,b,c be the lengths of the sides of a triangle with circumradius R.

Prove that
ab ab ab

a—l—b+a+b+a—{—

be b+c
< =
b+c™ Z 4 P
The equality holds if and only if the triangle is equilateral.
Inequality 1. is stronger then JP.060.

<p.
b_P

Proof.

2. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
b b b 3v3
ab_, ab | ab _ V3,
a+b a+b a+bd 2
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Proof.

b b
We have Z 5 —fc < Z IC =< 37\/313, where the last inequality

18 Mitrinonvicé’s inequality.
The equality holds if and only if the triangle is equilateral.

Inequality 1. can also be strengthened:
3. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
ab n ab " ab 3(ab + bc + ca)
a+b a+b a+b~ 2(a+b+c)

Proof 1.
We use the known identities in triangle
4 2 2 3
MR o T s
We write the inequality:
pt+2p*(8R +1?) + (4R + 1)3 < 3(p? + 12 + 4Rr)
2p(p? + r2 + 2Rr) - 2-2p
p*(p® — 14Rr + 2r?) > r?(8R? — 2Rr — r?).
As (p2 — 14Rr + 2r2) > 0, see Gerretsen’s inquality p> > 16Rr — 512, using again
Gerretsen’s inequality it suffices to prove that
(16Rr — 5r2)(16Rr — 5r* — 14Rr + 2r%) > r*(8R* — 2r — 1?) &
(16R—57)(2R—3r) > r2(8R*~2Rr—r?) < 3R*~TRr4+2r°> > 0 < (R—2r)(3R—r) > 0.
obviously from Fuler’s inequality R > 2r.
Equality holds if and only if the triangle is equilateral.

Proof 2.

b b
The triplets (a + b, b+ ¢,c + a) and( a4 , c ) “
a+b b+c ct+a

With Chebyshev’s inequality we obtain:

) are ordered the same.

ab be ca
+—t
a+b b+c c+a

ab be ca
D) —— - (bte) —— .
(a+b) a+b+( +e) b+c+(c+a) c+a

> %[(a+b)+(b+c)+(c+a)}

< (ab+ be + ca) >

ab be ca
.9 b .
(a+btc) (a—i—bJr b—i—cJr c+a) <
ab ab ab 3(ab+ be + ca)
<
< a+b+ a+b+ a+b~ 2(a+b+c)
The equality holds if and only if the triangle is equilateral.

Inequality 3. is stronger then Inequality 1.:
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4. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
ab ab ab < 3(ab + bc + ca)

a+b+a+b+a+b_ 2(a+b+c) =P

Proof.
We use inequality 3. and
3(ab + be + ca) <po 3(ab + be + ca) < a+b+ec
2(a+b+c¢) 2(a+b+c) 2
The equality holds if and only if the triangle is equilateral.

& (a+b+c)? > 3(ab+bc+ca).
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We can write the series of inequalities:
5. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
2 2 2
ab n ab " ab S3(ab—|—bc—+—ca)Sa—l—b—l—cg3(a + b2 + ¢?)
a+b a+b a+b 2(a+b+c) 2 2(a+b+c)

Proof.
a+b+ec _ 3(a®+b2+c?)

2,12, .2
b > ab-+b .
5 S atbto S a”+b"+c” > ab+be+ca

We use inequality 4. and

]

6. Let a,b,c be the lengths of the sides of a triangle with circumradius R.

Prove that
ab n ab n ab < 3(ab + bc + ca) <p< 3\/§R.
a+b a+b a+bdb 2(a+b+c) 2

Proof.
We use inequality 4. and Mitrinovic’s inequality.

The equality holds if and only if the triangle is equilateral.
O

MATHEMATICS DEPARTMENT, ” THEODOR COSTESCU” NATIONAL EcoNoMIC COLLEGE, DROBETA
TURNU - SEVERIN, MEHEDINTI.
E-mail address: dansitaru63@yahoo.com



