Some Relations On Triangles Whose Centers Are On Its Incircle

Abdilkadir Altintaş
Afyonkarahisar, Emirdağ, Turkey
e-mail: kadiraltintas1977@gmail.com

Abstract

In this work we present a collection of some relations on triangles whose centers are on its incircle .

Keywords. Geometry, Incircle

1. Problems

First problem is an exercise problem in reference [1] on page 76.
Problem 1.1. Let $A B C$ be a triangle with side lengths are a, b, c and centroid G. Show that the centroid of triangle $A B C$ lies on the incircle if and only if:

$$
5\left(a^{2}+b^{2}+c^{2}\right)=6(a b+b c+c a)
$$

Proof. In homogenous barycentric coordinates respect to triangle $A B C$, incircle has equation;

$$
a^{2} y z+b^{2} z x+c^{2} x y-(x+y+z)\left((s-a)^{2} x+(s-b)^{2} y+(s-c)^{2} z\right)=0
$$

Putting centroid $G=(1: 1: 1)$ in this equation we get;

$$
\frac{1}{4}\left(-5 a^{2}-5 b^{2}+6 b c-5 c^{2}+6 a(b+c)\right)=0
$$

Hence desired results follows.

Second problem is an exercise problem in reference [2].
Problem 1.2. Let $A B C$ be a triangle with side lengths are a, b, c and Nagel point $N a$. Show that the nagel point of triangle $A B C$ lies on the incircle if one its sides length is $1 / 4$ of its perimeter.

Proof. Nagel point has coordinates $N a=(s-a: s-b: s-c)$. Putting this point in the equation of incircle we get;

$$
\begin{gathered}
(s-a)^{4}+(s-b)^{4}+(s-c)^{4}-2(s-b)^{2}(s-c)^{2}-2(s-c)^{2}(s-a)^{2}-2(s-a)^{2}(s-b)^{2}=0 \\
s(s+a-b-c)(s-a+b-c)(s-a-b+c)=0 \\
(3 a-b-c)(3 b-c-a)(3 c-a-b)=0
\end{gathered}
$$

The desired triangles are therefore those where the sum of two of the sides is three times the third side. In other words one side length is $1 / 4$ of its perimeter.

Third problem is in reference [3].

Problem 1.3. Let $A B C$ be a triangle with side lengths are a, b, c and Spieker point Sp. Show that the Spieker point of triangle $A B C$ lies on the incircle if:

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{10}{a+b+c}
$$

Proof. Spieker point has coordinates $S p=(b+c: c+a: a+b)$. Putting this point in the equation of incircle we get;

$$
2\left(b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right)+a^{3}(b+c)+b^{3}(c+a)+c^{3}(a+b)=5 a b c(a+b+c)
$$

leads to the well-earned final result

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{10}{a+b+c}
$$

Its simple example is triangle $a=1, b=c=2$.

Problem 1.4. Let $A B C$ be a triangle with side lengths are a, b, c and circumcenter O. Show that O lies on the incircle if:

$$
\cos A+\cos B+\cos C=\sqrt{2}
$$

Proof.

$$
\begin{gathered}
O I^{2}=R(R-2 r) \\
R^{2}-2 R r=r^{2} \\
r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
\end{gathered}
$$

So $R^{2}-2 R r=r^{2}$ is equivalent to

$$
1-8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}-16 \sin ^{2} \frac{A}{2} \sin ^{2} \frac{B}{2} \sin ^{2} \frac{C}{2}=0
$$

which becomes

$$
\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{1}{4}(\sqrt{2}-1)
$$

We discard the solution $-(\sqrt{2}+1) / 4$, since all the sines are necessarily positive.) We can also write last equation as

$$
\cos A+\cos B+\cos C=\sqrt{2}
$$

the Law of Cosines, and a bit of clean-up, then provides this form of the relation:

$$
(-a+b+c)(a-b+c)(a+b-c)=2 a b c(\sqrt{2}-1)
$$

Problem 1.5. [31 st Indian N.M.O, Jan. 2016] Let $A B C$ be an isosceles triangle with $A B=A C$ and orthocenter H. If orthocenter of triangle $A B C$ lies on the incircle, compute $\frac{A B}{B C}$.

References

[1] P.Yiu, Introduction to the Geometry of the Triangle, Department of Mathematics, Florida Atlantic University, 2013.
[2] W.Gallatly, Modern Geometry of Triangle, 1910.
[3] O.Bottema, Topics in Elementary Geometry, Springer, 2007.
[4] https://math.stackexchange.com

