PROBLEM 125-TRIANGLE MARATHON 101-200

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{l_{a}^{2}+l_{b}^{2}+l_{c}^{2}} \geq \frac{8 r}{3 R}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Proof.
Using the known identity in triangle $\sum a^{2}=2\left(p^{2}-r^{2}-4 R r\right)$ and the remarkable
inequality $\sum l_{a}^{2} \leq p^{2}$, which follows from $l_{a} \leq \sqrt{p(p-a)}$, we obtain $\frac{a^{2}+b^{2}+c^{2}}{l_{a}^{2}+l_{b}^{2}+l_{c}^{2}} \geq \frac{2\left(p^{2}-r^{2}-4 R r\right)}{p^{2}} \geq \frac{8 r}{3 R}$, where the last inequality is equivalent with: $3 R\left(p^{2}-r^{2}-4 R r\right) \geq p^{2} r \Leftrightarrow p^{2}(3 R-4 r) \geq 3 R\left(r^{2}+4 R r\right)$, true from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:
$\left(16 R r-5 r^{2}\right)(3 R-4 r) \geq 3 R\left(r^{2}+4 R r\right) \Leftrightarrow 18 R^{2}-41 R r+10 r^{2} \geq 0 \Leftrightarrow(R-2 r)(18 R-5 r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.

Remark

The inequality can be strengthened:

2. In $\triangle A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{l_{a}^{2}+l_{b}^{2}+l_{c}^{2}} \geq \frac{18 R r}{p^{2}}
$$

Proof.
Using the known identity in triangle $\sum a^{2}=2\left(p^{2}-r^{2}-4 R r\right)$, and the remarkable
inequality $\sum l_{a}^{2} \leq p^{2}$, which follows from $l_{a} \leq \sqrt{p(p-a)}$, we obtain

$$
\frac{a^{2}+b^{2}+c^{2}}{l_{a}^{2}+l_{b}^{2}+l_{c}^{2}} \geq \frac{2\left(p^{2}-r^{2}-4 R r\right)}{p^{2}} \geq \frac{18 R r}{p^{2}}
$$

where the last inequality is equivalent with: $p^{2} \geq r^{2}+13 R r$, true from Gerretsen's

$$
\text { inequality } p^{2} \geq 16 R r-5 r^{2}
$$

It remains to prove that:
$16 R r-5 r^{2} \geq r^{2}+13 R r \Leftrightarrow 3 R r \geq 6 r^{2} \Leftrightarrow R \geq 2 r$, (Euler's inequality).
The equality holds if and only if the triangle is equilateral.

Remark

Inequality 2. is stronger then inequality 1.:
3. In $\triangle A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{l_{a}^{2}+l_{b}^{2}+l_{c}^{2}} \geq \frac{18 R r}{p^{2}} \geq \frac{8 r}{3 R}
$$

Proof.
See inequality 2. and Mitrinović's inequality: $p^{2} \leq \frac{27 R^{2}}{4}$.
The equality holds if and only if the triangle is equilateral.

Remark

Also, inequality 2. can be strengthened:

4. In $\triangle A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{l_{a}^{2}+l_{b}^{2}+l_{c}^{2}} \geq \frac{4}{3}
$$

Proof.
Using the known identity known in triangle $\sum a^{2}=2\left(p^{2}-r^{2}-4 R r\right)$ and the remarkable inequality $\sum l_{a}^{2} \leq p^{2}$, which follows from $l_{a} \leq \sqrt{p(p-a)}$, we obtain $\frac{a^{2}+b^{2}+c^{2}}{l_{a}^{2}+l_{b}^{2}+l_{c}^{2}} \geq \frac{2\left(p^{2}-r^{2}-4 R r\right)}{p^{2}} \geq \frac{4}{3}$, where the last inequality is equivalent with:

$$
3\left(p^{2}-r^{2}-4 R r\right) \geq 2 p^{2} \Leftrightarrow p^{2} \geq 3 r^{2}+12 R r
$$

true from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$.
It remains to prove that:

$$
16 R r-5 r^{2} \geq 3 r^{2}+12 R r \Leftrightarrow 4 R r \geq 8 r^{2} \Leftrightarrow R \geq 2 r, \text { (Euler's inequality). }
$$

The equality holds if and only if the triangle is equilateral.

Remark

Inequality 4. is stronger than inequality 2.:

5. In $\triangle A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{l_{a}^{2}+l_{b}^{2}+l_{c}^{2}} \geq \frac{4}{3} \geq \frac{18 R r}{p^{2}}
$$

Proposed by Marin Chirciu - Romania
Proof.
See inequality 4. and inequality: $2 p^{2} \geq 27 R r$, true from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that: $2\left(16 R r-5 r^{2}\right) \geq 27 R r \Leftrightarrow 5 R r \geq 10 r^{2} \Leftrightarrow R \geq 2 r$.

Equality holds if and only if the triangle is equilateral.

We can write the triple inequality:
6. In $\Delta A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{l_{a}^{2}+l_{b}^{2}+l_{c}^{2}} \geq \frac{4}{3} \geq \frac{18 R r}{p^{2}} \geq \frac{8 r}{3 R}
$$

Proof.
See inequality 5. and inequality 3.
Equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

