Romanian Mathematical Magazine

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM 125 - TRIANGLE MARATHON 101 - 200

MARIN CHIRCIU

1. In $\triangle ABC$

$$\frac{a^2+b^2+c^2}{l_a^2+l_b^2+l_c^2} \geq \frac{8r}{3R}$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.

Using the known identity in triangle $\sum a^2 = 2(p^2 - r^2 - 4Rr)$ and the remarkable

inequality
$$\sum l_a^2 \leq p^2$$
, which follows from $l_a \leq \sqrt{p(p-a)}$, we obtain

$$\frac{a^2+b^2+c^2}{l_a^2+l_b^2+l_c^2} \geq \frac{2(p^2-r^2-4Rr)}{p^2} \geq \frac{8r}{3R}, \text{ where the last inequality is equivalent with:}$$

$$3R(p^2-r^2-4Rr) \ge p^2r \Leftrightarrow p^2(3R-4r) \ge 3R(r^2+4Rr)$$
, true from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$. It remains to prove that:

$$(16Rr-5r^2)(3R-4r) \ge 3R(r^2+4Rr) \Leftrightarrow 18R^2-41Rr+10r^2 \ge 0 \Leftrightarrow (R-2r)(18R-5r) \ge 0,$$

obviously from Euler's inequality $R > 2r$.

The equality holds if and only if the triangle is equilateral.

Remark

The inequality can be strengthened:

2. In $\triangle ABC$

$$\frac{a^2+b^2+c^2}{l_a^2+l_b^2+l_c^2} \geq \frac{18Rr}{p^2}.$$

Proof.

Using the known identity in triangle $\sum a^2 = 2(p^2 - r^2 - 4Rr)$, and the remarkable

inequality
$$\sum l_a^2 \le p^2$$
, which follows from $l_a \le \sqrt{p(p-a)}$, we obtain
$$\frac{a^2 + b^2 + c^2}{l_a^2 + l_b^2 + l_c^2} \ge \frac{2(p^2 - r^2 - 4Rr)}{p^2} \ge \frac{18Rr}{p^2},$$

where the last inequality is equivalent with: $p^2 \ge r^2 + 13Rr$, true from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$.

It remains to prove that:

$$16Rr - 5r^2 \ge r^2 + 13Rr \Leftrightarrow 3Rr \ge 6r^2 \Leftrightarrow R \ge 2r$$
, (Euler's inequality).

The equality holds if and only if the triangle is equilateral.

Remark

Inequality 2. is stronger then inequality 1.:

3. In $\triangle ABC$

$$\frac{a^2 + b^2 + c^2}{l_a^2 + l_b^2 + l_c^2} \ge \frac{18Rr}{p^2} \ge \frac{8r}{3R}$$

Proof.

See inequality 2. and Mitrinović's inequality: $p^2 \leq \frac{27R^2}{4}$. The equality holds if and only if the triangle is equilateral.

Remark

Also, inequality 2. can be strengthened:

4. In $\triangle ABC$

$$\frac{a^2+b^2+c^2}{l_a^2+l_b^2+l_c^2} \geq \frac{4}{3}.$$

Proof.

Using the known identity known in triangle $\sum a^2 = 2(p^2 - r^2 - 4Rr)$ and the remarkable inequality $\sum l_a^2 \leq p^2$, which follows from $l_a \leq \sqrt{p(p-a)}$, we obtain $\frac{a^2 + b^2 + c^2}{l_a^2 + l_b^2 + l_c^2} \geq \frac{2(p^2 - r^2 - 4Rr)}{p^2} \geq \frac{4}{3}$, where the last inequality is equivalent with:

$$3(p^2 - r^2 - 4Rr) \ge 2p^2 \Leftrightarrow p^2 \ge 3r^2 + 12Rr,$$

true from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$.

It remains to prove that:

$$16Rr - 5r^2 \ge 3r^2 + 12Rr \Leftrightarrow 4Rr \ge 8r^2 \Leftrightarrow R \ge 2r$$
, (Euler's inequality). The equality holds if and only if the triangle is equilateral.

Remark

Inequality 4. is stronger than inequality 2.:

5. In $\triangle ABC$

$$\frac{a^2+b^2+c^2}{l_a^2+l_b^2+l_c^2} \geq \frac{4}{3} \geq \frac{18Rr}{p^2}.$$

Proposed by Marin Chirciu - Romania

Proof.

See inequality 4. and inequality: $2p^2 \ge 27Rr$, true from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$. It remains to prove that: $2(16Rr - 5r^2) \ge 27Rr \Leftrightarrow 5Rr \ge 10r^2 \Leftrightarrow R \ge 2r$. Equality holds if and only if the triangle is equilateral.

We can write the triple inequality:

6. In ΔABC

$$\frac{a^2+b^2+c^2}{l_a^2+l_b^2+l_c^2} \geq \frac{4}{3} \geq \frac{18Rr}{p^2} \geq \frac{8r}{3R}$$

Proof.

See inequality 5. and inequality 3.

Equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E ext{-}mail\ address: dansitaru63@yahoo.com}$