Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

INEQUALITY IN TRIANGLE 295

MARIN CHIRCIU

1. Prove that in any triangle $A B C$

$$
\sum \frac{1}{\left(I I_{a}\right)^{2}}+\sum \frac{1}{\left(I_{b} I_{c}\right)^{2}} \leq \frac{1}{4 r^{2}}
$$

Proposed by Daniel Sitaru - Romania

Proof.
Using the formulas $I I_{a}=4 R \sin \frac{A}{2}, I_{b} I_{c}=4 R \cos \frac{A}{2}$ and the known identities in triangle:

$$
\begin{gathered}
\sum \frac{1}{\sin ^{2} \frac{A}{2}}=\frac{p^{2}+r^{2}-8 R r}{r^{2}}, \sum \frac{1}{\cos ^{2} \frac{A}{2}}=\frac{p^{2}+(4 R+r)^{2}}{p^{2}}, \text { we obtain: } \\
\sum \frac{1}{\left(I I_{a}\right)^{2}}=\frac{p^{2}+r^{2}-8 R r}{16 R^{2} r^{2}} \text { and } \sum \frac{1}{\left(I_{b} I_{c}\right)^{2}}=\frac{p^{2}+(4 R+r)^{2}}{16 R^{2} p^{2}}
\end{gathered}
$$

We write the inequality:
$\frac{p^{2}+r^{2}-8 R r}{16 R^{2} r^{2}}+\frac{p^{2}+(4 R+r)^{2}}{16 R^{2} p^{2}} \leq \frac{1}{4 r^{2}} \Leftrightarrow p^{2}\left(4 R^{2}+8 R r-2 r^{2}-p^{2}\right) \geq r^{2}(4 R+r)^{2}$, which follows from Gerretsen's inequality $16 R r-5 r^{2} \leq p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.

It remains to prove that:

$$
\begin{gathered}
\left(16 R r-5 r^{2}\right)\left(4 R^{2}+8 R r-2 r^{2}-4 R^{2}-4 R r-3 r^{2}\right) \geq r^{2}(4 R+r)^{2} \Leftrightarrow \\
\Leftrightarrow(16 R-5 r)(4 R-5 r) \geq(4 R+r)^{2} \Leftrightarrow 4 R^{2}-9 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(4 R-r) \geq 0
\end{gathered}
$$

obviously from Euler's inequality $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.

Remark.

It can also be shown an inequality having an opposite sense for the above sum:
2. Prove that in any triangle $A B C$

$$
\sum \frac{1}{\left(I I_{a}\right)^{2}}+\sum \frac{1}{\left(I_{b} I_{c}\right)^{2}} \geq \frac{1}{R^{2}}
$$

Proposed by Marin Chirciu - Romania

Proof.
Using the above identities $\sum \frac{1}{\left(I I_{a}\right)^{2}}=\frac{p^{2}+r^{2}-8 R r}{16 R^{2} r^{2}}$ and $\sum \frac{1}{\left(I_{b} I_{c}\right)^{2}}=\frac{p^{2}+(4 R+r)^{2}}{16 R^{2} p^{2}}$,

$$
\begin{gathered}
\sum \frac{1}{\left(I I_{a}\right)^{2}}=\frac{p^{2}+r^{2}-8 R r}{16 R^{2} r^{2}} \geq \frac{16 R r-5 r^{2}+r^{2}-8 R r}{16 R^{2} r^{2}}=\frac{8 R r-4 r^{2}}{16 R^{2} r^{2}}= \\
=\frac{2 R-r}{4 R^{2} r} \geq \frac{3 r}{4 R^{2} r}=\frac{3}{4 R^{2}}
\end{gathered}
$$

where the first inequality follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$, and the second from Euler's inequality $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.
We've obtained the helpful result:

Lemma 1.

Prove that in any triangle $A B C$

$$
\begin{gathered}
\sum \frac{\mathbf{1}}{\left(\boldsymbol{I} \boldsymbol{I}_{\boldsymbol{a}} \mathbf{)}^{\mathbf{2}}\right.} \geq \frac{\mathbf{3}}{\mathbf{4 \boldsymbol { R } ^ { \mathbf { 2 } }}} \\
\text { Then } \sum \frac{1}{\left(I_{b} I_{c}\right)^{2}}=\frac{p^{2}+(4 R+r)^{2}}{16 R^{2} p^{2}} \geq \frac{p^{2}+3 p^{2}}{16 R^{2} p^{2}}=\frac{1}{4 R^{2}}
\end{gathered}
$$

which follows from Doucet's inequality: $(4 R+r)^{2} \geq 3 p^{2}$.
The equality holds if and only if the triangle is equilateral.
We've obtained the following helpful result:

Lemma 2.

Prove that in any triangle $A B C$

$$
\sum \frac{1}{\left(I_{b} I_{c}\right)^{2}} \geq \frac{1}{4 R^{2}}
$$

Adding the inequality obtained from Lemma 1 and Lemma 2 we obtain conclusion 2.

Remark.

> Finally it can be written the double inequality:

Prove that in any triangle $A B C$

$$
\frac{1}{R^{2}} \leq \sum \frac{1}{\left(I I_{a}\right)^{2}}+\sum \frac{1}{\left(I_{b} I_{c}\right)^{2}} \leq \frac{1}{4 r^{2}}
$$

Proof.
See 1 and 2.
The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

