Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEM 120

RMM TRIANGLE MARATHON
101-200

MARIN CHIRCIU

1. In $\triangle A B C$

$$
\frac{1}{r_{a}-r}+\frac{1}{r_{b}-r}+\frac{1}{r_{c}-r} \geq \frac{7}{R}-\frac{2}{r}
$$

Proposed by Mehmet Şahin - Ankara - Turkey

Remark.

Inequality 1 can be developed:
2. In $\triangle A B C$

$$
\frac{1}{r_{a}-r}+\frac{1}{r_{b}-r}+\frac{1}{r_{c}-r} \geq \frac{\alpha}{R}-\frac{\beta}{r}, \text { where } \alpha-2 \beta=3 \text { and } \beta \geq-2 .
$$

Proof.

$$
\text { Using the forumulas } r_{a}=\frac{S}{p-a} \text { and } r=\frac{S}{p} \text { we obtain }
$$

$$
\sum \frac{1}{r_{a}-r}=\frac{1}{r} \sum \frac{p-a}{a}=\frac{1}{r} \cdot \frac{p^{2}+r^{2}-8 R r}{4 R r}=\frac{p^{2}+r^{2}-8 R r}{4 R r^{2}} .
$$

The inequality can be written
$\frac{p^{2}+r^{2}-8 R r}{4 R r^{2}} \geq \frac{\alpha}{R}-\frac{\beta}{r} \Leftrightarrow p^{2}+r^{2}-8 R r \geq 4 r(\alpha r-\beta R)$, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that: $16 R r-5 r^{2}+r^{2}-8 R r \geq 4 r(\alpha r-\beta R) \Leftrightarrow(\beta+2) R \geq(\alpha+1) r \Leftrightarrow R \geq 2 r$, because $\alpha-2 \beta=3$ and $\beta \geq-2$.
The equality holds if and only if the triangle is equilateral.
For $\alpha=7$ and $\beta=2$ we obtain inequality 1, namely Problem 120 from $\boldsymbol{R M M}$ Triangle Marathon 101-200, proposed by Mehmet Şahin - Ankara - Turkey.

Remark.

$$
\text { Inequality } 1 \text { can be strengthened: }
$$

3. In $\triangle A B C$

$$
\frac{1}{r_{a}-r}+\frac{1}{r_{b}-r}+\frac{1}{r_{c}-r} \geq \frac{9}{4 R-2 r} .
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.
Using the proven inequality at 2: $\sum \frac{1}{r_{a}-r}=\frac{p^{2}+r^{2}-8 R r}{4 R r^{2}}$, inequality can be written: $\frac{p^{2}+r^{2}-8 R r}{4 R r^{2}} \geq \frac{9}{4 R-2 r}$, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that: $\frac{16 R r-5 r^{2}+r^{2}-8 R r}{4 R r^{2}} \geq \frac{9}{4 R-2 r} \Leftrightarrow \frac{2 R-r}{R r} \geq \frac{9}{4 R-2 r} \Leftrightarrow$ $\Leftrightarrow 8 r^{2}-17 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(8 R-r) \geq 0$, obviously from Euler's inequality: $R \geq 2 r$.

The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 3. is stronger then inequality 1.:

4. In $\Delta A B C$

$$
\frac{1}{r_{a}-r}+\frac{1}{r_{b}-r}+\frac{1}{r_{c}-r} \geq \frac{9}{4 R-2 r} \geq \frac{7}{R}-\frac{2}{r}
$$

Proof.
The first inequality is 3., and the second inequality is equivalent with:

$$
\begin{gathered}
\frac{9}{4 R-2 r} \geq \frac{7 r-2 R}{R r} \Leftrightarrow 8 R^{2}-23 R r+14 r^{2} \geq 0 \Leftrightarrow(R-2 r)(8 R-7 r) \geq 0 \\
\text { obviously from Euler's inequality: } R \geq 2 r .
\end{gathered}
$$

The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 3. can be developed:

5. In $\triangle A B C$

$$
\begin{array}{r}
\frac{1}{r_{a}-r}+\frac{1}{r_{b}-r}+\frac{1}{r_{c}-r} \geq \frac{1}{x R-y r}, \text { where } 2 x-y=\frac{2}{3} \text { and } x \geq 0 \\
\text { Proposed by Marin Chirciu - Romania }
\end{array}
$$

Proof.
Using the proven identity at 2.: $\sum \frac{1}{r_{a}-r}=\frac{p^{2}+r^{2}-8 R r}{4 R r^{2}}$, the inequality can be written: $\frac{p^{2}+r^{2}-8 R r}{4 R r^{2}} \geq \frac{1}{x R-y r}$, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and the observation that $x R-y r>0$, for $2 x-y=\frac{2}{3}$ and $x \geq 0$.
It remains to prove that: $\frac{16 R r-5 r^{2}+r^{2}-8 R r}{4 R r^{2}} \geq \frac{1}{x R-y r} \Leftrightarrow \frac{2 R-r}{R r} \geq \frac{1}{x R-y r} \Leftrightarrow$ $\Leftrightarrow(2 R-r)(x R-y r) \geq R r \Leftrightarrow 2 x R^{2}-(x+2 y+1) R r+y r^{2} \geq 0 \Leftrightarrow(R-2 r)(4 x R-y r) \geq 0$, obviously from Euler's inequality: $R \geq 2 r$ and $2 x-y=\frac{2}{3}, x \geq 0$.

The equality holds if and only if the triangle is equilateral.

For $x=\frac{4}{9}$ and $y=\frac{2}{3}$ we obtain inequality 3. proposed by George Apostolopoulos - Messolonghi - Greece

Remark.

> Inequality 5. is stronger than inequality 2.:

6. In $\Delta A B C$

$$
\frac{1}{r_{a}-r}+\frac{1}{r_{b}-r}+\frac{1}{r_{c}-r} \geq \frac{1}{x R-y r} \geq \frac{\alpha}{R}-\frac{\beta}{r}
$$

where $2 x-y=\frac{2}{3}, x \geq 0$ and $\alpha-2 \beta=3, \beta \geq 0$.

Proof.
First inequality is 5., and the second inequality is equivalent with:
$\frac{1}{x R-y r} \geq \frac{\alpha}{R}-\frac{\beta}{r} \Leftrightarrow R r \geq(x R-y r)(\alpha r-\beta R) \Leftrightarrow \beta x R^{2}+(1-\alpha x-\beta y) R r+\alpha y r^{2} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)(2 \beta x R-\alpha y r) \geq 0$, obviously from Euler's inequality: $R \geq 2 r$ and $2 x-y=\frac{2}{3}$, $x \geq 0$, and $\alpha-2 \beta=3, \beta \geq 0$, which lead to $(2 x-y)(\alpha-2 \beta)=2$, wherefrom $-\alpha y-4 \beta x=2(1-\alpha x-\beta y)$, thus motivating the last inequality.

The equality holds if and only if the triangle is equilateral.
For $x=\frac{4}{9}, y=\frac{2}{3}, \alpha=7$ and $\beta=2$ its obtained the double inequality 4.

Remark.

We can propose inequalities with sums having the form $\sum \frac{a^{n}}{r_{a}-r}$, where $n=1,2,3,4,5$.

7. In $\Delta A B C$

$$
3 \sqrt{3} \leq \sum \frac{a}{r_{a}-r} \leq 3 \sqrt{3} \cdot \frac{R}{2 r}
$$

Proof.
Using the formulas $r_{a}=\frac{S}{p-a}$ and $r=\frac{S}{p}$ we obtain $\sum \frac{a}{r_{a}-r}=\frac{1}{r} \sum(p-a)=\frac{p}{r}$.
The double inequality follows from Mitrinović's inequalities: $3 \sqrt{3} \cdot r \leq p \leq \frac{3 \sqrt{3}}{2} \cdot R$.
The equality holds if and only if the triangle is equilateral.
8. In $\Delta A B C$

$$
18 r \leq \sum \frac{a^{2}}{r_{a}-r} \leq 9 R
$$

Proof.
Using the formulas $r_{a}=\frac{S}{p-a}$ and $r=\frac{S}{p}$ we obtain

$$
\sum \frac{a^{2}}{r_{a}-r}=\frac{1}{r} \sum a(p-a)=\frac{1}{r} \cdot 2 r(4 R+r)=2(4 R+r)
$$

The double inequality follows from Euler's inequality $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

9. In $\Delta A B C$

$$
12 p r \leq \sum \frac{a^{3}}{r_{a}-r} \leq 6 p R
$$

Proof.
Using the formulas $r_{a}=\frac{S}{p-a}$ and $r=\frac{S}{p}$ we obtain
$\sum \frac{a^{3}}{r_{a}-r}=\frac{1}{r} \sum a^{2}(p-a)=\frac{1}{r} \cdot 4 p r(R+r)=4 p(R+r)$.
The double inequality follows from Euler's inequality $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

10. In $\Delta A B C$

$$
(6 r)^{3} \leq \sum \frac{a^{4}}{r_{a}-r} \leq(3 R)^{3}
$$

Proof.
Using the formulas $r_{a}=\frac{S}{p-a}$ and $r=\frac{S}{p}$ we obtain
$\sum \frac{a^{4}}{r_{a}-r}=\frac{1}{r} \cdot \sum a^{3}(p-a)=\frac{1}{r} \cdot 2 r\left[p^{2}(2 R+3 r)-r(4 R+r)^{2}\right]=2 p^{2}(2 R+3 r)-2 r(4 R+r)^{2}$.
The first inequality follows from the above identity, Gerretsen's inequality:
$p^{2} \geq 16 R r-5 r^{2}$ and Euler's inequality: $R \geq 2 r$.
We obtain $2 p^{2}(2 R+3 r)-2 r(4 R+r)^{2} \geq 2\left(16 R r-5 r^{2}\right)(2 R+3 r)-2 r(4 R+r)^{2}=$

$$
=4 r\left(8 R^{2}+15 R r-8 r^{2}\right) \geq 4 r \cdot 54 r^{2}=216 r^{3}=(6 r)^{3}
$$

For the second inequality we use the above identity, Gerretsen's inequality:

$$
p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { and Euler's inequality: } R \geq 2 r
$$

We obtain $2 p^{2}(2 R+3 r)-2 r(4 R+r)^{2} \leq 2\left(4 R^{2}+4 R r+3 r^{2}\right)(2 R+3 r)-2 r(4 R+r)^{2}=$
$=16 R^{3}+8 R^{2} r+20 R r^{2}+16 r^{3} \leq 16 R^{3}+4 R^{3}+5 R^{3}+2 R^{3}=27 R^{3}=(3 R)^{3}$.
The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

11. In $\triangle A B C$

$$
18 p \cdot(2 r)^{3} \leq \sum \frac{a^{5}}{r_{a}-r} \leq 18 p \cdot R^{3} .
$$

Proposed by Marin Chirciu - Romania

Proof.

$$
\text { Using the formulas } r_{a}=\frac{S}{p-a} \text { and } r=\frac{S}{r} \text { we obtain }
$$

$$
\begin{gathered}
\sum \frac{a^{5}}{r_{a}-r}=\frac{1}{r} \cdot \sum a^{4}(p-a)=\frac{1}{r} \cdot 4 p r\left[p^{2}(R+2 r)-r\left(12 R^{2}+11 R r+2 r^{2}\right)\right]= \\
=4 p\left[p^{2}(R+2 r)-r\left(12 R^{2}+11 R r+2 r^{2}\right)\right]
\end{gathered}
$$

The first inequality follows from the above identity, Gerretsen's inequality:

$$
p^{2} \geq 16 R r-5 r^{2} \text { and Euler's inequality: } R \geq 2 r .
$$

We obtain

$$
\begin{gathered}
4 p\left[p^{2}(R+2 r)-r\left(12 R^{2}+11 R r+2 r^{2}\right)\right] \geq 4 p r\left[\left(16 R r-5 r^{2}\right)(R+2 r)-r\left(12 R^{2}+11 R r+2 r^{2}\right)\right] \\
=16 p r\left(R^{2}+4 R r-3 r^{2}\right) \geq 16 p r \cdot\left(4 r^{2}+8 r^{2}-3 r^{2}\right)=16 p r \cdot 9 r^{2}=144 p r^{3}=18 p \cdot(2 r)^{3} . \\
=4 r\left(8 R^{2}+15 R r-8 r^{2}\right) \geq 4 r \cdot 54 r^{2}=216 r^{3}=(6 r)^{3} .
\end{gathered}
$$

For the second inequality we use the above identity, Gerretsen's inequality:

$$
p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { and Euler's inequality: } R \geq 2 r
$$

We obtain

$$
\begin{gathered}
4 p\left[p^{2}(R+2 r)-r\left(12 R^{2}+11 R r+2 r^{2}\right)\right] \leq 4 p\left[\left(4 R^{2}+4 R r+3 r^{2}\right)(R+2 r)-r\left(12 R^{2}+11 R r+2 r^{2}\right)\right]= \\
=16 p\left(R^{3}+r^{3}\right) \leq 16 p \cdot\left(R^{3}+\frac{R^{3}}{8}\right)=18 p \cdot R^{3}
\end{gathered}
$$

The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

Remark.

We can propose inequalities with sums having the form $\sum \frac{a^{n}(b+c)}{r_{a}-r}$, where $n=1,2,3,4$.
12. In $\triangle A B C$

$$
(6 r)^{2} \leq r \sum \frac{a(b+c)}{r_{a}-r} \leq(3 R)^{2} .
$$

Proof.

$$
\text { Using the formulas } r_{a}=\frac{S}{p-a} \text { and } r=\frac{S}{p} \text { we obtain }
$$

$$
\sum \frac{a(b+c)}{r_{a}-r}=\frac{1}{r} \sum(b+c)(p-a)=\frac{1}{r} \cdot 2\left(p^{2}-r^{2}-4 R r\right)=\frac{2\left(p^{2}-r^{2}-4 R r\right)}{r} .
$$

The first inequality follows from the above identity, Gerretsen's inequality: $p^{2} \geq 16 R r-5 r^{2}$ and Euler's inequality: $R \geq 2 r$.

We obtain
$r \sum \frac{a(b+c)}{r_{a}-r}=r \cdot \frac{2\left(p^{2}-r^{2}-4 R r\right)}{r}=2\left(p^{2}-r^{2}-4 R r\right) \geq 2\left(16 R r-5 r^{2}-r^{2}-4 R r\right)=$

$$
=12 r(2 R-r) \geq 12 R \cdot 3 r=(6 r)^{2} .
$$

For the second inequality we use the above identity, Gerretsen's inequality:

$$
p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { and Euler's inequality: } R \geq 2 r
$$

We obtain

$$
\begin{gathered}
r \sum \frac{a(b+c)}{r_{a}-r}=r \cdot \frac{2\left(p^{2}-r^{2}-4 R r\right)}{r}=2\left(p^{2}-r^{2}-4 R r\right) \geq 2\left(4 R^{2}+4 R r+3 r^{2}-r^{2}-4 R r\right)= \\
=8 R^{2}+4 r^{2} \leq 9 R^{2}=(3 R)^{2}
\end{gathered}
$$

The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

13. In $\Delta A B C$

$$
36 \sqrt{3} \cdot R r \leq \sum \frac{a^{2}(b+c)}{r_{a}-r} \leq 18 \sqrt{3} \cdot R^{2}
$$

Proof.

> Using the formulas $r_{a}=\frac{S}{p-a}$ and $r=\frac{S}{p}$ we obtain $\sum \frac{a^{2}(b+c)}{r_{a}-r}=\frac{1}{r} \sum a(b+c)(p-a)=\frac{1}{r} \cdot 12 p R r=12 p R$.

The double inequality follows from Mitrinović's inequalities: $3 \sqrt{3} \cdot r \leq p \leq \frac{3 \sqrt{3}}{2} \cdot R$.
The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

14. In $\Delta A B C$

$$
(6 r)^{4} \leq 3 \sum \frac{a^{3}(b+c)}{r_{a}-r} \leq(3 R)^{4}
$$

Proof.

$$
\begin{gathered}
\text { Using the formulas } r_{a}=\frac{S}{p-a} \text { and } r=\frac{S}{p} \text { we obtain } \\
\begin{array}{c}
\sum \frac{a^{3}(b+c)}{r_{a}-r}=\frac{1}{r} \sum a^{2}(b+c)(p-a)=\frac{1}{r} \cdot\left[2 p^{2}\left(2 R r+r^{2}\right)+2 r^{2}(4 R+r)^{2}\right]= \\
=\frac{2 p^{2}\left(2 R r+r^{2}\right)+2 r^{2}(4 R+r)^{2}}{r}
\end{array}
\end{gathered}
$$

The first inequality follows from the above identity, Gerretsen's inequality:

$$
p^{2} \geq 16 R r-5 r^{2} \text { and Euler's inequality: } R \geq 2 r \text {. }
$$

We obtain
$3 \sum \frac{a^{3}(b+c)}{r_{a}-r}=3 \cdot \frac{2 p^{2}\left(2 R r+r^{2}\right)+2 r^{2}(4 R+r)^{2}}{r} \geq 3 \cdot \frac{2\left(16 R r-5 r^{2}\right)\left(2 R r+r^{2}\right)+2 r^{2}(4 R+r)^{2}}{r}$ $=3 \cdot 4 r^{2}\left(24 R^{2}+7 R r-2 r^{2}\right) \geq 12 r^{2}\left(24 \cdot 4 r^{2}+7 r \cdot 2 r-2 r^{2}\right)=12 r^{2} \cdot 108 r^{2}=1296 r^{4}=(6 r)^{4}$.

For the second inequality we use the above identity, Gerretsen's inequality:

$$
p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { and Euler's inequality: } R \geq 2 r .
$$

We obtain

$3 \sum \frac{a^{3}(b+c)}{r_{a}-r}=3 \cdot \frac{2 p^{2}\left(2 R r+r^{2}\right)+2 r^{2}(4 R+r)^{2}}{r} \leq 3 \cdot \frac{2\left(4 R^{2}+4 R r+3 r^{2}\right)\left(2 R r+r^{2}\right)+2 r^{2}(4 R+r)^{2}}{r}$
$=3 \cdot r\left(16 R^{3}+56 R^{2} r+36 R r^{2}+8 r^{3}\right) \leq 3 r\left(16 R^{3}+28 R^{3}+9 R^{3}+R^{3}\right) \leq \frac{3 R}{2} \cdot 54 R^{3}=81 R^{4}=(3 R)^{4}$
The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

15. In $\Delta A B C$

$$
p(12 r)^{3} \leq 6 \sum \frac{a^{4}(b+c)}{r_{a}-r} \leq p(6 R)^{3}
$$

Proposed by Marin Chirciu - Romania

Proof.

$$
\text { Using the formulas } r_{a}=\frac{S}{p-a} \text { and } r=\frac{S}{p} \text { we obtain }
$$

$$
\begin{gathered}
\sum \frac{a^{4}(b+c)}{r_{a}-r}=\frac{1}{r} \sum \\
=a^{3}(b+c)(p-a)=\frac{1}{r} \cdot\left[4 p^{3}\left(R r+r^{2}\right)+4 p\left(-4 R^{2} r^{2}+3 R r^{3}+r^{4}\right)\right]= \\
=4 p^{3}(R+r)+4 p\left(-4 R^{2} r+3 R r^{2}+r^{3}\right)
\end{gathered}
$$

The first inequality follows from the above identity, Gerretsen's inequality:

$$
\begin{gathered}
p^{2} \geq 16 R r-5 r^{2} \text { and Euler's inequality: } R \geq 2 r . \\
\text { We obtain } \\
6 \sum \frac{a^{4}(b+c)}{r_{a}-r}=6\left[4 p^{3}(R+r)+4 p\left(-4 R^{2} r+3 R r^{2}+r^{3}\right)\right]=24 p\left[p^{2}(R+r)-4 R^{2} r+3 R r^{2}+r^{3}\right] \\
\geq 24 p\left[\left(16 R r-5 r^{2}\right)(R+r)-4 R^{2} r+3 R r^{2}+r^{3}\right]=48 p r\left(12 R^{2}+14 R r-4 r^{2}\right) \geq \\
\geq 48 p r\left(24 r^{2}+14 r^{2}-2 r^{2}\right)=48 p r \cdot 36 r^{2}=1728 p r^{3}=p(12 r)^{3}
\end{gathered}
$$

For the second inequality we use the above identity, Gerretsen's inequality:

$$
p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { and Euler's inequality: } R \geq 2 r
$$

We obtain

$$
\begin{aligned}
& 6 \sum \frac{a^{4}(b+c)}{r_{a}-r}=6\left[4 p^{3}(R+r)+4 p\left(-4 R^{2} r+3 R r^{2}+r^{3}\right)\right]=24 p\left[p^{2}(R+r)-4 R^{2} r+3 R r^{2}+r^{3}\right] \leq \\
& \leq 24 p\left[\left(4 R^{2}+4 R r+3 r^{2}\right)(R+r)-4 R^{2} r+3 R r^{2}+r^{3}\right]=12 p \cdot\left(8 R^{3}+8 R^{2} r+20 R r^{2}+8 r^{3}\right) \leq \\
& \quad \leq 12 p\left(8 R^{3}+4 R^{3}+5 R^{3}+R^{3}\right)=12 p \cdot 18 R^{3}=216 p R^{3}=p(6 R)^{3}
\end{aligned}
$$

The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

