Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author: This article is published with open access.

PROBLEM 120 RMM TRIANGLE MARATHON 101-200

MARIN CHIRCIU

1. In $\triangle ABC$

$$rac{1}{r_a-r}+rac{1}{r_b-r}+rac{1}{r_c-r}\geq rac{7}{R}-rac{2}{r}$$

Proposed by Mehmet Şahin - Ankara - Turkey

Remark.

Inequality 1 can be developed:

2. In $\triangle ABC$ $\frac{1}{r_a - r} + \frac{1}{r_b - r} + \frac{1}{r_c - r} \ge \frac{\alpha}{R} - \frac{\beta}{r}$, where $\alpha - 2\beta = 3$ and $\beta \ge -2$. *Proposed by Marin Chirciu - Romania*

Proof.

Using the forumulas
$$r_a = \frac{S}{p-a}$$
 and $r = \frac{S}{p}$ we obtain

$$\sum \frac{1}{r_a - r} = \frac{1}{r} \sum \frac{p-a}{a} = \frac{1}{r} \cdot \frac{p^2 + r^2 - 8Rr}{4Rr} = \frac{p^2 + r^2 - 8Rr}{4Rr^2}.$$
The inequality can be written

$$\frac{p^2 + r^2 - 8Rr}{4Rr^2} \ge \frac{\alpha}{R} - \frac{\beta}{r} \Leftrightarrow p^2 + r^2 - 8Rr \ge 4r(\alpha r - \beta R), \text{ which follows from Gerretsen's inequality } p^2 \ge 16Rr - 5r^2.$$
 It remains to prove that:
 $16Rr - 5r^2 + r^2 - 8Rr \ge 4r(\alpha r - \beta R) \Leftrightarrow (\beta + 2)R \ge (\alpha + 1)r \Leftrightarrow R \ge 2r,$
because $\alpha - 2\beta = 3$ and $\beta \ge -2.$
The equality holds if and only if the triangle is equilateral.

For $\alpha = 7$ and $\beta = 2$ we obtain inequality 1, namely **Problem 120** from **RMM** Triangle Marathon 101-200, proposed by Mehmet Sahin - Ankara - Turkey.

Remark.

Inequality 1 can be strengthened:

3. In $\triangle ABC$

$$rac{1}{r_a-r}+rac{1}{r_b-r}+rac{1}{r_c-r}\geq rac{9}{4R-2r}.$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.

Using the proven inequality at $2: \sum \frac{1}{r_a - r} = \frac{p^2 + r^2 - 8Rr}{4Rr^2}$, inequality can be written: $\frac{p^2 + r^2 - 8Rr}{4Rr^2} \ge \frac{9}{4R - 2r}$, which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$. It remains to prove that: $\frac{16Rr - 5r^2 + r^2 - 8Rr}{4Rr^2} \ge \frac{9}{4R - 2r} \Leftrightarrow \frac{2R - r}{Rr} \ge \frac{9}{4R - 2r} \Leftrightarrow \Rightarrow 8r^2 - 17Rr + 2r^2 \ge 0 \Leftrightarrow (R - 2r)(8R - r) \ge 0$, obviously from Euler's inequality: $R \ge 2r$. The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 3. is stronger then inequality 1.:

4. In $\triangle ABC$

$$\frac{1}{r_a - r} + \frac{1}{r_b - r} + \frac{1}{r_c - r} \ge \frac{9}{4R - 2r} \ge \frac{7}{R} - \frac{2}{r}.$$

Proof.

The first inequality is 3., and the second inequality is equivalent with:

$$\frac{9}{4R-2r} \geq \frac{7r-2R}{Rr} \Leftrightarrow 8R^2 - 23Rr + 14r^2 \geq 0 \Leftrightarrow (R-2r)(8R-7r) \geq 0,$$
obviously from Euler's inequality: $R \geq 2r$.
The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 3. can be developed:

5. In
$$\Delta ABC$$

 $\frac{1}{r_a - r} + \frac{1}{r_b - r} + \frac{1}{r_c - r} \ge \frac{1}{xR - yr}$, where $2x - y = \frac{2}{3}$ and $x \ge 0$.
Proposed by Marin Chirciu - Romania

Proof.

Using the proven identity at 2.: $\sum \frac{1}{r_a - r} = \frac{p^2 + r^2 - 8Rr}{4Rr^2}, \text{ the inequality can be written:}$ $\frac{p^2 + r^2 - 8Rr}{4Rr^2} \ge \frac{1}{xR - yr}, \text{ which follows from Gerretsen's inequality } p^2 \ge 16Rr - 5r^2 \text{ and}$ $\text{the observation that } xR - yr > 0, \text{ for } 2x - y = \frac{2}{3} \text{ and } x \ge 0.$ $\text{It remains to prove that: } \frac{16Rr - 5r^2 + r^2 - 8Rr}{4Rr^2} \ge \frac{1}{xR - yr} \Leftrightarrow \frac{2R - r}{Rr} \ge \frac{1}{xR - yr} \Leftrightarrow$ $\Leftrightarrow (2R - r)(xR - yr) \ge Rr \Leftrightarrow 2xR^2 - (x + 2y + 1)Rr + yr^2 \ge 0 \Leftrightarrow (R - 2r)(4xR - yr) \ge 0,$ $\text{obviously from Euler's inequality: } R \ge 2r \text{ and } 2x - y = \frac{2}{3}, x \ge 0.$ The equality holds if and only if the triangle is equilateral.

 $\mathbf{2}$

WWW.SSMRMH.RO

For
$$x = \frac{4}{9}$$
 and $y = \frac{2}{3}$ we obtain inequality 3. proposed by George Apostolopoulos - Messolonghi - Greece

Remark.

Inequality 5. is stronger than inequality 2.:

6. In $\triangle ABC$

$$rac{1}{r_a-r}+rac{1}{r_b-r}+rac{1}{r_c-r}\geq rac{1}{xR-yr}\geq rac{lpha}{R}-rac{eta}{r},$$
 where $2x-y=rac{2}{3},x\geq 0$ and $lpha-2eta=3,eta\geq 0.$

Proof.

First inequality is 5., and the second inequality is equivalent with:

$$\frac{1}{xR-yr} \ge \frac{\alpha}{R} - \frac{\beta}{r} \Leftrightarrow Rr \ge (xR-yr)(\alpha r - \beta R) \Leftrightarrow \beta xR^2 + (1-\alpha x - \beta y)Rr + \alpha yr^2 \ge 0 \Leftrightarrow$$
$$\Leftrightarrow (R-2r)(2\beta xR - \alpha yr) \ge 0, \text{ obviously from Euler's inequality: } R \ge 2r \text{ and } 2x-y = \frac{2}{3}$$
$$x \ge 0, \text{ and } \alpha - 2\beta = 3, \beta \ge 0, \text{ which lead to } (2x-y)(\alpha - 2\beta) = 2, \text{ wherefrom}$$
$$-\alpha y - 4\beta x = 2(1-\alpha x - \beta y), \text{ thus motivating the last inequality.}$$
$$The equality \text{ holds if and only if the triangle is equilateral.}$$
$$For \ x = \frac{4}{9}, y = \frac{2}{3}, \alpha = 7 \text{ and } \beta = 2 \text{ its obtained the double inequality } 4.$$

Remark.

We can propose inequalities with sums having the form $\sum \frac{a^n}{r_a - r}$, where n = 1, 2, 3, 4, 5.

7. In $\triangle ABC$

$$3\sqrt{3} \leq \sum rac{a}{r_a-r} \leq 3\sqrt{3} \cdot rac{R}{2r}$$

Proof.

Using the formulas $r_a = \frac{S}{p-a}$ and $r = \frac{S}{p}$ we obtain $\sum \frac{a}{r_a - r} = \frac{1}{r} \sum (p-a) = \frac{p}{r}$. The double inequality follows from Mitrinović's inequalities: $3\sqrt{3} \cdot r \le p \le \frac{3\sqrt{3}}{2} \cdot R$. The equality holds if and only if the triangle is equilateral.

8. In $\triangle ABC$

$$18r \leq \sum rac{a^2}{r_a-r} \leq 9R.$$

3

MARIN CHIRCIU

Proof.

4

Using the formulas
$$r_a = \frac{S}{p-a}$$
 and $r = \frac{S}{p}$ we obtain

$$\sum \frac{a^2}{r_a - r} = \frac{1}{r} \sum a(p-a) = \frac{1}{r} \cdot 2r(4R+r) = 2(4R+r).$$
The double inequality follows from Euler's inequality $R \ge 2r$.
The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

9. In $\triangle ABC$

$$12pr \leq \sum rac{a^3}{r_a - r} \leq 6pR.$$

Proof.

Using the formulas
$$r_a = \frac{S}{p-a}$$
 and $r = \frac{S}{p}$ we obtain

$$\sum \frac{a^3}{r_a - r} = \frac{1}{r} \sum a^2(p-a) = \frac{1}{r} \cdot 4pr(R+r) = 4p(R+r).$$
The double inequality follows from Euler's inequality $R \ge 2r$.

The abuse inequality follows from Euler's inequality $R \ge 2r$ The equality holds if and only if the triangle is equilateral. We've obtained a refinement of Euler's inequality.

10. In ΔABC

$$(6r)^3 \le \sum rac{a^4}{r_a - r} \le (3R)^3.$$

Proof.

Using the formulas
$$r_a = \frac{S}{p-a}$$
 and $r = \frac{S}{p}$ we obtain

$$\sum \frac{a^4}{r_a - r} = \frac{1}{r} \cdot \sum a^3(p-a) = \frac{1}{r} \cdot 2r \Big[p^2 (2R+3r) - r(4R+r)^2 \Big] = 2p^2 (2R+3r) - 2r(4R+r)^2.$$

The first inequality follows from the above identity, Gerretsen's inequality:

 $p^2 \ge 16Rr - 5r^2$ and Euler's inequality: $R \ge 2r$.

We obtain
$$2p^2(2R+3r) - 2r(4R+r)^2 \ge 2(16Rr-5r^2)(2R+3r) - 2r(4R+r)^2 =$$

= $4r(8R^2 + 15Rr - 8r^2) \ge 4r \cdot 54r^2 = 216r^3 = (6r)^3.$

For the second inequality we use the above identity, Gerretsen's inequality:

 $p^2 \leq 4R^2 + 4Rr + 3r^2$ and Euler's inequality: $R \geq 2r$.

We obtain
$$2p^2(2R+3r) - 2r(4R+r)^2 \le 2(4R^2 + 4Rr + 3r^2)(2R+3r) - 2r(4R+r)^2 = 16R^3 + 8R^2r + 20Rr^2 + 16r^3 \le 16R^3 + 4R^3 + 5R^3 + 2R^3 = 27R^3 = (3R)^3.$$

The equality holds if and only if the triangle is equilateral.

We've obtained a refinement of Euler's inequality.

11. In ΔABC

$$18p\cdot(2r)^3\leq \sum rac{a^5}{r_a-r}\leq 18p\cdot R^3.$$

Proposed by Marin Chirciu - Romania

Proof.

Using the formulas
$$r_a = \frac{S}{p-a}$$
 and $r = \frac{S}{r}$ we obtain

$$\sum \frac{a^5}{r_a - r} = \frac{1}{r} \cdot \sum a^4(p-a) = \frac{1}{r} \cdot 4pr \Big[p^2(R+2r) - r(12R^2 + 11Rr + 2r^2) \Big] = 4p \Big[p^2(R+2r) - r(12R^2 + 11Rr + 2r^2) \Big].$$

The first inequality follows from the above identity, Gerretsen's inequality: $p^2 \ge 16Rr - 5r^2$ and Euler's inequality: $R \ge 2r$.

$$We \ obtain$$

$$\begin{split} &4p\Big[p^2(R+2r)-r(12R^2+11Rr+2r^2)\Big] \geq 4pr\Big[(16Rr-5r^2)(R+2r)-r(12R^2+11Rr+2r^2)\Big] \\ &= 16pr(R^2+4Rr-3r^2) \geq 16pr\cdot(4r^2+8r^2-3r^2) = 16pr\cdot9r^2 = 144pr^3 = 18p\cdot(2r)^3. \\ &= 4r(8R^2+15Rr-8r^2) \geq 4r\cdot54r^2 = 216r^3 = (6r)^3. \end{split}$$

For the second inequality we use the above identity, Gerretsen's inequality: $p^2 \leq 4R^2 + 4Rr + 3r^2$ and Euler's inequality: $R \geq 2r$.

$$\begin{aligned} & We \ obtain \\ 4p \Big[p^2 (R+2r) - r(12R^2 + 11Rr + 2r^2) \Big] \leq 4p \Big[(4R^2 + 4Rr + 3r^2)(R+2r) - r(12R^2 + 11Rr + 2r^2) \Big] = \\ &= 16p(R^3 + r^3) \leq 16p \cdot \Big(R^3 + \frac{R^3}{8} \Big) = 18p \cdot R^3 \\ & \text{The equality holds if and only if the triangle is equilateral.} \\ & We've \ obtained \ a \ refinement \ of \ Euler's \ inequality. \end{aligned}$$

Remark.

We can propose inequalities with sums having the form $\sum \frac{a^n(b+c)}{r_a-r}$, where n = 1, 2, 3, 4. 12. In $\triangle ABC$

$$(6r)^2 \le r \sum rac{a(b+c)}{r_a-r} \le (3R)^2.$$

Proof.

Using the formulas
$$r_a = \frac{S}{p-a}$$
 and $r = \frac{S}{p}$ we obtain

$$\sum \frac{a(b+c)}{r_a-r} = \frac{1}{r} \sum (b+c)(p-a) = \frac{1}{r} \cdot 2(p^2 - r^2 - 4Rr) = \frac{2(p^2 - r^2 - 4Rr)}{r}.$$
The first inequality follows from the above identity, Gerretsen's inequality:
 $p^2 \ge 16Rr - 5r^2$ and Euler's inequality: $R \ge 2r$.

We obtain

$$r\sum \frac{a(b+c)}{r_a-r} = r \cdot \frac{2(p^2 - r^2 - 4Rr)}{r} = 2(p^2 - r^2 - 4Rr) \ge 2(16Rr - 5r^2 - r^2 - 4Rr) = 2(16Rr - 5r^2 - 5Rr) = 2(16Rr - 5Rr) = 2(16$$

MARIN CHIRCIU

$$= 12r(2R - r) \ge 12R \cdot 3r = (6r)^2.$$

For the second inequality we use the above identity, Gerretsen's inequality: $p^2 \leq 4R^2 + 4Rr + 3r^2$ and Euler's inequality: $R \geq 2r$.

$$\begin{aligned} & We \ obtain \\ r\sum \frac{a(b+c)}{r_a-r} = r \cdot \frac{2(p^2-r^2-4Rr)}{r} = 2(p^2-r^2-4Rr) \geq 2(4R^2+4Rr+3r^2-r^2-4Rr) = \\ & = 8R^2+4r^2 \leq 9R^2 = (3R)^2. \end{aligned}$$

$$The \ equality \ holds \ if \ and \ only \ if \ the \ triangle \ is \ equilateral. \end{aligned}$$

We've obtained a refinement of Euler's inequality.

13. In $\triangle ABC$

$$36\sqrt{3} \cdot Rr \leq \sum rac{a^2(b+c)}{r_a-r} \leq 18\sqrt{3} \cdot R^2.$$

Proof.

Using the formulas
$$r_a = \frac{S}{p-a}$$
 and $r = \frac{S}{p}$ we obtain

$$\sum \frac{a^2(b+c)}{r_a-r} = \frac{1}{r} \sum a(b+c)(p-a) = \frac{1}{r} \cdot 12pRr = 12pR.$$

The double inequality follows from Mitrinović's inequalities: $3\sqrt{3} \cdot r \leq p \leq \frac{3\sqrt{3}}{2} \cdot R$.

The equality holds if and only if the triangle is equilateral. We've obtained a refinement of Euler's inequality.

14. In $\triangle ABC$

$$(6r)^4 \le 3\sum rac{a^3(b+c)}{r_a-r} \le (3R)^4.$$

Proof.

Using the formulas
$$r_a = \frac{S}{p-a}$$
 and $r = \frac{S}{p}$ we obtain

$$\sum \frac{a^3(b+c)}{r_a-r} = \frac{1}{r} \sum a^2(b+c)(p-a) = \frac{1}{r} \cdot \left[2p^2(2Rr+r^2) + 2r^2(4R+r)^2 \right] = \frac{2p^2(2Rr+r^2) + 2r^2(4R+r)^2}{r}.$$

The first inequality follows from the above identity, Gerretsen's inequality: $p^2 \ge 16Rr - 5r^2$ and Euler's inequality: $R \ge 2r$.

$$3\sum \frac{a^{3}(b+c)}{r_{a}-r} = 3 \cdot \frac{2p^{2}(2Rr+r^{2})+2r^{2}(4R+r)^{2}}{r} \ge 3 \cdot \frac{2(16Rr-5r^{2})(2Rr+r^{2})+2r^{2}(4R+r)^{2}}{r} = 3 \cdot 4r^{2}(24R^{2}+7Rr-2r^{2}) \ge 12r^{2}(24 \cdot 4r^{2}+7r \cdot 2r-2r^{2}) = 12r^{2} \cdot 108r^{2} = 1296r^{4} = (6r)^{4}.$$

For the second inequality we use the above identity, Gerretsen's inequality: $p^2 \leq 4R^2 + 4Rr + 3r^2$ and Euler's inequality: $R \geq 2r$.

WWW.SSMRMH.RO

$$\begin{aligned} & We \ obtain \\ 3\sum \frac{a^3(b+c)}{r_a-r} = 3 \cdot \frac{2p^2(2Rr+r^2) + 2r^2(4R+r)^2}{r} \leq 3 \cdot \frac{2(4R^2 + 4Rr + 3r^2)(2Rr+r^2) + 2r^2(4R+r)^2}{r} \\ &= 3 \cdot r(16R^3 + 56R^2r + 36Rr^2 + 8r^3) \leq 3r(16R^3 + 28R^3 + 9R^3 + R^3) \leq \frac{3R}{2} \cdot 54R^3 = 81R^4 = (3R)^4 \\ & \text{The equality holds if and only if the triangle is equilateral.} \\ & We've \ obtained \ a \ refinement \ of \ Euler's \ inequality. \end{aligned}$$

15. In $\triangle ABC$

$$p(12r)^3 \leq 6\sum rac{a^4(b+c)}{r_a-r} \leq p(6R)^3.$$

Proposed by Marin Chirciu - Romania

Proof.

Using the formulas
$$r_a = \frac{S}{p-a}$$
 and $r = \frac{S}{p}$ we obtain

$$\sum \frac{a^4(b+c)}{r_a-r} = \frac{1}{r} \sum a^3(b+c)(p-a) = \frac{1}{r} \cdot \left[4p^3(Rr+r^2) + 4p(-4R^2r^2 + 3Rr^3 + r^4) \right] = 4p^3(R+r) + 4p(-4R^2r + 3Rr^2 + r^3).$$

The first inequality follows from the above identity, Gerretsen's inequality: $p^2 \ge 16Rr - 5r^2$ and Euler's inequality: $R \ge 2r$.

We obtain

$$6\sum \frac{a^4(b+c)}{r_a-r} = 6\Big[4p^3(R+r) + 4p(-4R^2r + 3Rr^2 + r^3)\Big] = 24p\Big[p^2(R+r) - 4R^2r + 3Rr^2 + r^3\Big]$$

$$\geq 24p\Big[(16Rr - 5r^2)(R+r) - 4R^2r + 3Rr^2 + r^3\Big] = 48pr(12R^2 + 14Rr - 4r^2) \geq$$

$$\geq 48pr(24r^2 + 14r^2 - 2r^2) = 48pr \cdot 36r^2 = 1728pr^3 = p(12r)^3.$$

For the second inequality we use the above identity, Gerretsen's inequality: $p^2 \leq 4R^2 + 4Rr + 3r^2$ and Euler's inequality: $R \geq 2r$.

 $We \ obtain$

$$6\sum \frac{a^4(b+c)}{r_a-r} = 6\Big[4p^3(R+r) + 4p(-4R^2r + 3Rr^2 + r^3)\Big] = 24p\Big[p^2(R+r) - 4R^2r + 3Rr^2 + r^3\Big] \leq 24p\Big[(4R^2 + 4Rr + 3r^2)(R+r) - 4R^2r + 3Rr^2 + r^3\Big] = 12p \cdot (8R^3 + 8R^2r + 20Rr^2 + 8r^3) \leq 212p(8R^3 + 4R^3 + 5R^3 + R^3) = 12p \cdot 18R^3 = 216pR^3 = p(6R)^3.$$

The equality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E\text{-}mail\ address: \texttt{dansitaru63@yahoo.com}$

 $\overline{7}$