Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author: This article is published with open access.

INEQUALITY IN TRIANGLE 271 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In acute-angled ΔABC

$$2\left(\cotrac{A}{2}+\cotrac{B}{2}+\cotrac{C}{2}
ight)+ an A an B an C\geq 9\sqrt{3}.$$

Proposed by Daniel Sitaru - Romania

Proof.

Using the known identities in triangle $\sum \cot \frac{A}{2} = \frac{p}{r}$ and $\prod \tan A = \frac{2pr}{p^2 - (2R+r)^2}$, the inequality we have to prove can be written: $2 \cdot \frac{p}{r} + \frac{2pr}{p^2 - (2R+r)^2} \ge 9\sqrt{3}$. Using Mitrinović's inequality $p \ge 3\sqrt{3} \cdot r$ we have $\frac{p}{r} \ge 3\sqrt{3}$ and $pr \ge 3\sqrt{3} \cdot r^2$ it's enough to prove that $\frac{2r^2}{p^2 - (2R+r)^2} \ge 1 \Leftrightarrow p^2 \le 4R^2 + 4Rr + 3r^2$ (Gerretsen's inequality). The inequality holds if and only if the triangle is equilateral.

 \geq 0.

Remark.

The inequality can be developed:

2. In acute-angled
$$\Delta ABC$$

 $n\left(\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2}\right) + \tan A \tan B \tan C \ge (n+1)\cdot 3\sqrt{3}$, where n

Proof.

We use the known inequalities in triangle $\sum \cot \frac{A}{2} = \frac{p}{r}$ and $\prod \tan A = \frac{2pr}{p^2 - (2R+r)^2}$. We have

(i) $\sum \cot \frac{A}{2} \ge 3\sqrt{3} \Leftrightarrow \frac{p}{r} \ge 3\sqrt{3} \Leftrightarrow p \ge 3\sqrt{3} \cdot r$ (Mitrinović's inequality); (ii) $\prod \tan A \ge 3\sqrt{3} \Leftrightarrow \frac{2pr}{p^2 - (2R + r)^2} \ge 3\sqrt{3}$, which follows from $pr \ge 3\sqrt{3} \cdot r^2$ and

MARIN CHIRCIU

$$\frac{2r^2}{p^2 - (2R+r)^2} \ge 1 \Leftrightarrow p^2 \le 4R^2 + 4Rr + 3r^2 \text{ (Gerretsen's inequality)}.$$

From (i), (ii) and $n \ge 0$ the conclusion is obtained.
The inequality holds if and only if the triangle is equilateral.

3. In acute-angled ΔABC

$$n \Biggl(\cot rac{A}{2} + \cot rac{B}{2} + \cot rac{C}{2} \Biggr) + k an A an B an C \ge (n+k) \cdot 3\sqrt{3}, ext{ where } n \ge 0, k \ge 0.$$

Proof.

We use the known identities in triangle $\sum \cot \frac{A}{2} = \frac{p}{r}$ and $\prod \tan A = \frac{2pr}{p^2 - (2R+r)^2}$. We have

(i) $\sum \cot \frac{A}{2} \ge 3\sqrt{3} \Leftrightarrow \frac{p}{r} \ge 3\sqrt{3} \Leftrightarrow p \ge 3\sqrt{3} \cdot r$ (Mitrinović's inequality);

(ii) $\prod \tan A \ge 3\sqrt{3} \Leftrightarrow \frac{2pr}{p^2 - (2R + r)^2} \ge 3\sqrt{3}, \text{ which follows from } pr \ge 3\sqrt{3} \cdot r^2 \text{ and}$ $\frac{2r^2}{p^2 - (2R + r)^2} \ge 1 \Leftrightarrow p^2 \le 4R^2 + 4Rr + 3r^2 \text{ (Gerretsen's inequality)}$ From (i), (ii) and $n \ge 0, k \ge 0$ the conclusion is obtained. The inequality holds if and only if the triangle is equilateral or n = k = 0.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com