Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

INEQUALITY IN TRIANGLE 271

ROMANIAN MATHEMATICAL MAGAZINE

2017

MARIN CHIRCIU

1. In acute-angled $\triangle A B C$

$$
2\left(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}\right)+\tan A \tan B \tan C \geq 9 \sqrt{3}
$$

Proposed by Daniel Sitaru - Romania
Proof.
Using the known identities in triangle $\sum \cot \frac{A}{2}=\frac{p}{r}$ and $\prod \tan A=\frac{2 p r}{p^{2}-(2 R+r)^{2}}$,
the inequality we have to prove can be written: $2 \cdot \frac{p}{r}+\frac{2 p r}{p^{2}-(2 R+r)^{2}} \geq 9 \sqrt{3}$.
Using Mitrinović's inequality $p \geq 3 \sqrt{3} \cdot r$ we have $\frac{p}{r} \geq 3 \sqrt{3}$ and $p r \geq 3 \sqrt{3} \cdot r^{2}$
it's enough to prove that

$$
\frac{2 r^{2}}{p^{2}-(2 R+r)^{2}} \geq 1 \Leftrightarrow p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { (Gerretsen's inequality). }
$$

The inequality holds if and only if the triangle is equilateral.

Remark.

> The inequality can be developed:

2. In acute-angled $\triangle A B C$

$n\left(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}\right)+\tan A \tan B \tan C \geq(n+1) \cdot 3 \sqrt{3}$, where $n \geq 0$.

Proof.
We use the known inequalities in triangle $\sum \cot \frac{A}{2}=\frac{p}{r}$ and $\prod \tan A=\frac{2 p r}{p^{2}-(2 R+r)^{2}}$.
We have
(i) $\quad \sum \cot \frac{A}{2} \geq 3 \sqrt{3} \Leftrightarrow \frac{p}{r} \geq 3 \sqrt{3} \Leftrightarrow p \geq 3 \sqrt{3} \cdot r$ (Mitrinović's inequality);
(ii)
$\prod \tan A \geq 3 \sqrt{3} \Leftrightarrow \frac{2 p r}{p^{2}-(2 R+r)^{2}} \geq 3 \sqrt{3}$, which follows from $p r \geq 3 \sqrt{3} \cdot r^{2}$ and
$\frac{2 r^{2}}{p^{2}-(2 R+r)^{2}} \geq 1 \Leftrightarrow p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen's inequality).
From (i), (ii) and $n \geq 0$ the conclusion is obtained.
The inequality holds if and only if the triangle is equilateral.

3. In acute-angled $\triangle A B C$

$n\left(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}\right)+k \tan A \tan B \tan C \geq(n+k) \cdot 3 \sqrt{3}$, where $n \geq 0, k \geq 0$.
Proof.
We use the known identities in triangle $\sum \cot \frac{A}{2}=\frac{p}{r}$ and $\prod \tan A=\frac{2 p r}{p^{2}-(2 R+r)^{2}}$.
We have
(i) $\quad \sum \cot \frac{A}{2} \geq 3 \sqrt{3} \Leftrightarrow \frac{p}{r} \geq 3 \sqrt{3} \Leftrightarrow p \geq 3 \sqrt{3} \cdot r$ (Mitrinović's inequality);
(ii)
$\prod \tan A \geq 3 \sqrt{3} \Leftrightarrow \frac{2 p r}{p^{2}-(2 R+r)^{2}} \geq 3 \sqrt{3}$, which follows from $p r \geq 3 \sqrt{3} \cdot r^{2}$ and

$$
\frac{2 r^{2}}{p^{2}-(2 R+r)^{2}} \geq 1 \Leftrightarrow p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { (Gerretsen's inequality) }
$$

From (i), (ii) and $n \geq 0, k \geq 0$ the conclusion is obtained.
The inequality holds if and only if the triangle is equilateral or $n=k=0$.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

