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101. Dan Sitaru’s Inequality with Tangents II

Prove that in any acute ∆ABC,∑
cycl

tanA tanB + 45 ≤ 2 tan2A tan2B tan2 C

Proposed by Daniel Sitaru

Solution 1(by proposer).
Let be x = cotA cotB; y = cotB cotC; z = cotC cotA. It follows that
x+ y + z = 1. Further,

45 +
∑
cycl

tan tanB = 45 +
1

x
+

1

y
+

1

z
=
xy + yz + zx+ 45xyz

xyz

=
(1− (x+ y + z) + xy + yz + zx− xyz) + 46xyz

xyz

=
(1− x)(1− y)(1− z) + 46xyz

xyz

AM−GM︷︸︸︷
≤

1
27 (1− x+ 1− y + 1− z)3 + 46

27 (x+ y + z)

xyz

=
1
27 · 8 + 46

27

xyz
=

2

xyz
=

2∏
cycl cot2A

= 2
∏
cycl

tan2A

�
Solution 2 (by Kevin Soto Palacios).

Set x = tanA > 0, y = tanB > 0, z = tanC > 0. Recollect that
x+ y + z = xyz. The required inequality is equivalent to

xy + yz + zx+ 45 ≤ 2(x+ y + z)2,

which, in turn, is equivalent to

2(x2 + y2 + z2) + 3(xy + yz + zx) ≥ 45.

Since, by the rearrangement inequality , x2 + y2 + z2 ≥ xy + yz + zx, suffice
it to prove that 5(xy + yz + zx) ≥ 45, i.e., that xy + yz + zx ≥ 9, which follows
from 1

xy + 1
yz + 1

zx = 1, by the Cauchy - Schwarz inequality . �

Solution 3 (by Soumava Chakraborty).

2

(∏
cycl

tanA

)2

= 2

(∑
cycl

tanA

)2

≥ 6
∑
cycl

tanA tanB

because (x+ y+ z)2 ≥ 3(xy+ yz+ zx). To continue, by the AM-GM inequality,∑
cycl

tanA tanB ≥ 3
3
√

tan2A tan2B tan2 C

= 3 3

√√√√(∑
cycl

tanA

)2

≥ 3
3

√
(3
√

3)2 = 9,
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because tan(x), being a convex function on(
0,
π

2

)
,
∑
cycl

tanA ≥ 3 tan
(A+B + C

3

)
Finally.

2

(∏
cycl

tanA

)2

≥ 6
∑
cycl

tanA tanB

=
∑
cycl

tanA tanB + 5
∑
cycl

tanA tanB ≥
∑
cycl

tanA tanB + 5 · 9.

�
Acknowledgment (by Alexander Bogomolny)

The problem from the Romanian Mathematical Magazine has been kindly
posted by Dan Sitaru at the CutTheKnotMath page. Dan also has communicated
his solution (Solution 1) in a latex file. Solution 2 is by Kevin Soto Palacios; Solution
3 is by Soumava Chakraborty.

102. A Cyclic Inequality in Three Variables XVII

Prove that, for x, y, z > 0,(∑
cycl

x2

y2

)5

≥ 9

(∑
cycl

x3

y2z

)(∑
cycl

x
√
yz

)(∑
cycl

y

z

)
Proposed by Daniel Sitaru

Solution 1 (by Leonard Giugiuc).
Let x

y = a2, yz = b2, zx = c2. Then abc = 1 and the required inequality becomes(∑
cycl

a4

)5

≥ 9

(∑
cycl

a4

c2

)(∑
cycl

a

c

)(∑
cycl

a2b2

)
But, since a + b + c ≥ 3, Hölder’s inequality gives

∑
cycl a

4 ≥
∑
cycl a

3. Also,∑
cycl

a
c =

∑
cycl a

2b and
∑
cycl a

3 ≥
∑
cycl a

2b , so that
∑
cycl a

4 ≥
∑
cycl

a
c .

By the Rearrangement inequality ,
∑
cycl a

4 ≥
∑
cycl a

2b2.

On the other hand,
∑
cycl

a4

c2 =
∑
cycl a

6b2 and, according to an inequality by

Vasile Cı̂rtoaje , (
∑
cycl a

4)2 ≥ 3
∑
cycl a

6b2. Finally,
∑
cycl a

4 ≥ 3, by the
AM-GM inequality. The required inequality results as the product of∑

cycl

a4 ≥
∑
cycl

a

c
,

∑
cycl

a4 ≥
∑
cycl

a2b2,

(∑
cycl

a4

)2

≥

[
3
∑
cycl

a6b2

]
= 3

∑
cycl

a4

c2
,

∑
cycl

a4 ≥ 3.

�
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Solution 2 (by Nassim Nicholas Taleb).

Prove that, for x, y, z > 0,(∑
cycl

x2

y2

)5

≥ 9

(∑
cycl

x3

y2z

)(∑
cycl

x
√
yz

)(∑
cycl

y

z

)

1)

(∑
cycl

x2

y2

)
≥

(∑
cycl

x

y

)
since

∑
cycl

x2y4 ≥
∑
cycl

xy2z3 (rearrangement inequality)

2)

(∑
cycl

x2

y2

)
≥

(∑
cycl

x
√
yz

)
(variant of the rearrangement)

3)

(∑
cycl

x2

y2

)
≥ 3 (AM-GM) since

1

3

(x2

y2
+
y2

z2
+
z2

x2

)
≥
(x2

y2
· y

2

z2
· z

2

x2

) 1
3

,
x2

y2
· y

2

z2
· z

2

x2
= 1

4) Finally we need to prove that

(∑
cycl

x2

y2

)2

≥ 3
∑
cycl

x3

y2z∑
cycl

x4y8 + 2
∑
cycl

x2y6z4 ≥ 3
∑
cycl

x3y7z2

by some mysterious inequality theorem I failed miseraaaably to find but that

we can show via calculus or some expansion of the rearrangement inequality.

Postscript. Finnally found the mysterious inequality with help from Maestro

Alexander Bogomolny (it necessitates a minor change of variable)

1. If x, y, z are real numbers, then

(x2 + y2 + z2)2 ≥ 3(x3y + y3z + z3x)

(Vasile Cı̂rtoaje, GM-B, 7-8, 1992)

�
Acknowledgment (by Alexander Bogomolny)

This problem has been kindly posted at the CutTheKnotMath page by Leo
Giugiuc, along with his solution. The problem by Daniel Sitaru has been previously
posted at the Romanian Mathematical Magazine. Solution 2 is by N. N. Taleb.

103. A Cyclic Inequality in Three Variables XVIII

Prove that, for a, b, c ≥ 0,(∑
cycl

√
ab

)6

≤ 27
∏
cycl

(a2 + ab+ b2).

Proposed by Daniel Sitaru
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Solution 1 (by Kevin Soto Palacios).
First note that
1. a2 + ab+ b2 ≥ 3

4 (a+ b)2 ≥ 0⇔ (a− b)2 ≥ 0,

2. a, b, c > 0⇒ 9
8

∏
cycl(a+ b) ≥ (

∑
cycl a)(

∑
cycl ab),

3. a, b, c ∈ R⇒ (a+ b+ c)2 ≥ 3(ab+ bc+ ca).
It follows that ∏

cycl

(a2 + ab+ b2) ≥ 27
(3

4

)2 ∏
cycl

(a+ b)2

≥ 9(a+ b+ c)2(ab+ bc+ ca)2.

However,

9(a+ b+ c)2(ab+ bc+ ca)2 ≥ 27(ab+ bc+ ca)3.

Thus, suffice it to prove that

27(ab+ bc+ ca)3 ≥ (
√
ab+

√
bc+

√
ca)6.

But, by the Cauchy - Schwarz inequality,

27(ab+ bc+ ca)3 ≥ 28

(
(
√
ab+

√
bc+

√
ca)2

3

)3

≥ (
√
ab+

√
bc+

√
ca)6.

�
Solution 2 (by Soumitra Mandal).

We know that a2 + ab+ b2 ≥ 3
4 (a+ b)2 + (a−b)2

4 ≥ 3
4 (a+ b)2. Similarly,

b2 + bc+ c2 ≥ 3
4 (b+ c)2 and c2 + ca+ a2 ≥ 3

4 (c+ a)2, implying

27
∏
cycl

(a2 + ab+ b2) ≥ 27·
(3

4

)3 ∏
cycl

(a+ b)2

≥ 27·
(3

4

)3 64

81

(∑
cycl

a

)2(∑
cycl

ab

)2

≥ 27

(∏
cycl

ab

)3

≥

(∑
cycl

√
ab

)6

,

where we used the following inequalities:
1. 9

∑
cycl(a+ b) ≥ 8(

∑
cycl a)(

∑
cycl ab),

2. (a+ b+ c)2 ≥ 3(ab+ bc+ ca),

3. ab+bc+ca
3 ≥

(√
ab+
√
bc+
√
ca

3

)2

. �

Solution 3 (by Daniel Sitaru).
Lemma 1
For x, y, z > 0,

(1)
(∑
cycl

xy
)3

≤
∏

(x2 + xy + y2)

Indeed, from Hölder’s inequality:∏
cycl

(x2 + xy + y2) = (xy + y2 + x2)(y2 + yz + z2)(x2 + z2 + xz)

≥ ( 3
√
xy · y2 · x2 + 3

√
y2 · yz · z2 +

3
√
x2 · z2 · xz)3 = (xy + yz + zx)3.
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Lemma 2
For x, y ≥ 0,

(2)

(∑
cycl

xy

)3

≤ 27
∏
cycl

(x2 − xy + y2).

Indeed,

(x− y)2 ≥ 0⇒ 2(x− y)2 ≥ 0⇒ 2x2 − 4xy + 2y2 ≥ 0

and, finally,

3x2 − 3xy + 3y2 ≥ x2 + xy + y2.

or,

x2 − xy + y2 ≥ 1

3
(x2 + xy + y2)

Similarly,

y2 − yz + z2 ≥ 1

3
(y2 + yz + z2) and

z2 − zx+ x2 ≥ 1

3
(z2 + zx+ x2)

By multiplying the last three relationships,

(3)
∏
cycl

(x2 + xy + y2) ≤ 27
∏
cycl

(x2 − xy + y2).

Multiplying by (1) and (2),(∑
cycl

xy

)6

≤ 27
∏
cycl

(x2 + xy + y2) ·
∏
cycl

(x2 − xy + y2)

= 27
∏
cycl

(
(x2 + y2)2 − x2y2

)
= 27

∏
cycl

(x4 + y4 + x2y2).

Thus,

(4)

(∑
cycl

xy

)6

= 27
∏
cycl

(x4 + y4 + x2y2)

Setting now in (4) x =
√
a; y =

√
b; z =

√
c, we get(∑

cycl

√
ab

)6

≤ 27
∏
cycl

(a2 + ab+ b2)

The equality holds if a = b = c. �

Solution 4 (by Soumava Chakraborty).
Case 1: Exactly one of a, b, c = 0
With a = 0, the given inequality reduces to 27b2c2(b2 + bc+ c2) ≥ b3c3, which is
obvious. Cases b = 0 and c = 0 are handled similarly.
Case 2: At least two of 0 ≥ 0.
Case 3: a, b, c > 0
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Using Wu’s inequality , RHS ≥ 27(ab + bc + ca)3. Thus, suffice it to prove
that

27(ab+ bc+ ca)3 ≥ (
√
ab+

√
bc+

√
ca)6 ⇔

3(ab+ bc+ ca) ≥ (
√
ab+

√
bc+

√
ca)2 ⇔ 3

∑
cycl

x2 ≥

(∑
cycl

x

)2

,

where x =
√
ab, y =

√
bc, z =

√
ca. The latter is true by Hölder’s inequality. �

Solution 5 (by Nassim Nicholas Taleb).

We have, by the Power – Mean Inequality,
(

1
3 (
∑
cycl(ab))

1
2

)2

≤ 1
3

∑
cycl ab.

Hence

LHS =

(∑
cycl

(ab)
1
2

)6

≤ 33

(∑
cycl

ab

)3

and we need to prove that 33(
∑
cycl ab)

3 ≤ RHS, or(∑
cycl

a4b2 +
∑
cycl

a2b4 +
∑
cycl

a4bc

)
−

(∑
cycl

ab2c3 +
∑
cycl

a2b2c+
∑
cycl

a2b2c2

)
≥ 0,

which is true by rearrangement . �

Acknowledgment (by Alexander Bogomolny)
This problem has been kindly posted at the CutTheKnotMath page by Daniel
Sitaru and then again by Kevin Soto Palacios, along with his solution (Solution 1).
Solution 2 is by Soumitra Mandal; Solution 3 is by Daniel Sitaru; Solution 4 is by
Soumava Chakraborty; Solution 5 is by Nassim Nicholas Taleb. The problem is by
Dan Sitaru and has been previously published at the Romanian Mathematical
Magazine.

104. A Cyclic Inequality in Three Variables XXI

Prove that, for a, b, c > 0,

abc

7
√

7
≤
∏
cycl

a2 − ab+ b2√
a2 + 5ab+ b2

.

Proposed by Daniel Sitaru

Solution 1 (by Leonard Giugiuc).

Note that
√

ab
7 ≤

a2−ab+b2√
a2+5ab+b2

. Indeed, that is equivalent to

(a− b)2(7a2 − ab+ 7b2) ≥ 0, which is true, with equality for a = b.
Taking the product of three such inequalities we obtain the required one.
Equality when a = b = c. �
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Solution 2 (Kevin Soto Palacios).
Observe that

a2 − ab+ b2 =
3

4
(a− b)2 +

1

4
(a+ b)2 ≥ 1

4
(a+ b)2, and

a2 + 5ab+ b2 = −3

4
(a− b)2 +

7

4
(a+ b)2 ≤ 7

4
(a+ b)2.

Also, for a, b, c > 0, (a+ b)(b+ c)(c+ a) ≥ 8abc. Combining that

∏
cycl

a2 − ab+ b2√
a2 + 5ab+ b2

≥

(
1
4

)3∏
cycl(a+ b)2(√

7
2

)3∏
cycl(a+ b)

=
1

56
√

7
(a+ b)(b+ c)(c+ a) ≥ abc

7
√

7
�

Solution 3 (by Soumava Chakraborty).

a2 − ab+ b2 =
3

4
(a− b)2 +

1

4
(a+ b)2 ≥ 1

4
(a+ b)2. Similarly,

b2 − bc+ c2 ≥ (b+ c)2

4
and c2 − ca+ a2 ≥ (c+ a)2

4
. Thus,∏

cycl

(a2 − ab+ b2) ≥ (a+ b)2(b+ c)2(c+ a)2

64

=

∏
cycl(a+ b) ·

∏
cycl(a+ b)

64
≥ 8abc

64
(a+ b)(b+ c)(c+ a)

=
(a+ b)(b+ c)(c+ a)

8
Suffice it to prove that

abc
∏
cycl(a+ b)

8
≥ abc

7
√

7

∏
cycl

√
a2 + 5ab+ b2

which is the same as

(a)
∏
cycl

√
7(a+ b)

2
≥
∏
cycl

√
a2 + 5ab+ b2

Suffice it to prove that
√

7(a+b)
2 ≥

√
a2 + 5ab+ b2, which is equivalent to

7(a2 + b2 + 2ab) ≥ 4(a2 + 5ab+ b2)⇔ 3(a− b)2 ≥ 0,

which is true. �

Solution 4 (by Soumitra Mandal).
The required inequality is equivalent to

73
∏
cycl

(a2 − ab+ b2)2 ≥ (abc)2
∏
cycl

(a2 + 5ab+ b2).

Now,
7(a2 − ab+ b2)2 − ab(a2 + 5ab+ b2)
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= 7(a2 + b2)2 − 15ab(a2 + b2) + 2(ab)2 = (a− b)2(7a2 + 7b2 − ab) ≥ 0,

so 7(a2 − ab+ b2)2 ≥ ab(a2 + 5ab+ b2). Rotating a, b, c and taking the product
yields the required inequality. �

Solution 5 (by Ravi Prakash).
Consider

7(a2 − ab+ b2)2 − ab(a2 + 5ab+ b2)

= 7(a2 − ab+ b2)2 − ab(a2 − ab+ b2)− 6a2b2

= 7(a2 − ab+ b2)2 − 7ab(a2 − ab+ b2) + 6ab(a2 − ab+ b2)− 6a2b2

= 7(a2 − ab+ b2)(a2 − ab+ b2 − ab) + 6ab(a2 − ab+ b2 − ab)
= (a− b)2[(a2 − ab+ b2) + 6(a2 + b2)] ≥ 0

Hence, a2−ab+b2√
a2+5ab+b2

≥
√
ab√
7

. Rotating a, b, c and taking the product yields the

required inequality. �
Acknowledgment (by Alexander Bogomolny)

This problem form the Romanian Mathematical Magazine, has been kindly
posted at the CutTheKnotMath page by Daniel Sitaru. Solution 1 is by Leo
Giugiuc; Solution 2 is by Kevin Soto Palacios; Solution 3 by Soumava Chakraborty;
Solution 4 by Soumitra Mandal; Solution 5 by Ravi Prakash.

105. A Cyclic Inequality in Three Variables XXIII

Prove that, for a, b, c > 0,

3(a2 + b2 + c2)2 ≥ 8abc(a+ b+ c) +
∑
cycl

(a2 + b2 − c2)2

Proposed by Daniel Sitaru

Solution 1 (by Abdul Aziz).

(ab− bc) ≥ 0⇔
a2b2 + b2c2 ≥ 2ab2c. Similarly,

b2c2 + c2a2 ≥ 2abc2 and c2a2 + a2b2 ≥ 2a2bc.

Adding up, a2b2 + b2c2 + c2a2 ≥ abc(a + b + c). It’s not hard to see that this
inequality is equivalent to the original one (just carry out the implied arithmetic
and cancel similar terms.) �

Solution 2 (by Alexander Bogomolny).
We’ll start with a2b2 + b2c2 + c2a2 ≥ abc(a+ b+ c). This is equivalent to

ab

c
+
bc

a
+
ca

b
≥ a+ b+ c.

Assume, WLOG, that a ≥ b ≥ c. Then ab ≥ ac ≥ bc and 1
c ≥

1
b ≥

1
a . By the

Rearrangement inequality , it then follows that

ab

c
+
bc

a
+
ca

b
= (ab) · 1

c
+ (bc) · 1

a
+ (ac) · 1

b
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= (ab) · 1

c
+ (ac) · 1

b
+ (bc) · 1

a
≥ (ab) · 1

b
+ (ac) · 1

a
+ (bc) · 1

c

= a+ b+ c.

�
Solution 3 (by Kevin Soto Palacios , Soumava Chakraborty).

In simplification of the above argument, observe that
x2 + y2 + z2 ≥ xy + yz + zx and let x = bc, y = ca, z = ab to obtain
a2b2 + b2c2 + c2a2 ≥ abc(a+ b+ c). �

Solution 4 (by Amit Itagi).
Another way of looking at a2b2 + b2c2 + c2a2 ≥ abc(a+ b+ c): This is true due
to Muirhead’s theorem because the triple (2, 2, 0) majorizes (2, 1, 1). �

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has kindly posted the problem from the Romanian Mathematical
Magazine at the CutTheKnotMath page and later added the solution
(Solution 1) by Abdul Aziz. Solution 3 has been posted independently by Kevin
Soto Palacios and Soumava Chakraborty; Solution 4 is by Amit Itagi.

106. A Cyclic Inequality in Three Variables XXIV

Prove that, for a, b, c > 0,∑
cycl

a2b2(1 + a2)(1 + b2)

(1 + a)(1 + b)
≥ 4(3− 2

√
2)abc(a+ b+ c).

Proposed by Daniel Sitaru

Lemma

For x > 0,

1 + x2

1 + x
≥ 2(
√

2− 1)

Proof by algebra (by Daniel Sitaru).(
x− (

√
2− 1)

)2

≥ 0⇔

x2 − 2(
√

2− 1)(
√

2− 1)2 ≥ 0⇔ x2 − 2(2
√

2− 1)(3− 2
√

2) ≥ 0⇔

1 + x2 ≥ 2
√

2 + 2x
√

2− 2− 2x⇔ 1 + x2 ≥ (1 + x)(2
√

2− 2)⇔

1 + x2

1 + x
≥ 2(
√

2− 1).

�
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Proof by calculus (by Alexander Bogomony).

If (x) = 1+x2

1+x , f
′(x) = x2+2x−1

(1+x)2 , with the only positive zero x =
√

2− 1,

where f(
√

2− 1) = 2(
√

2− 1). Furthere, f ′′(x) = 4
(1+x)3 ≥ 0, implying

f(x) ≥ 2(
√

2− 1)

�
Solution( by Daniel Sitaru).

Be Lemma,
(1 + a2)b2

1 + a
≥ 2b2(

√
2− 1) and

(1 + b2)a2

1 + b
≥ 2a2(

√
2− 1)

so that, given the sequence (2, 2, 0) majorizes (2, 1, 1),

a2b2(1 + a2)(1 + b2)

(1 + a)(1 + b)
≥ 4(
√

2− 1)a2b2 and, subsequently,

∑
cycl

a2b2(1 + a2)(1 + b2)

(1 + a)(1 + b)
≥ 4(
√

2− 1)2
∑
cycl

a2b2

Muirhead︷︸︸︷
≥ 4(2 + 1− 2

√
2)
∑
cycl

a2bc = 4(3− 2
√

2)abc(a+ b+ c)

Inequality is attained for a = b = c =
√

2− 1.

�
Acknowledgment (by Alexander Bogomolny)

Dan Sitaru has kindly posted the problem from the Romanian Mathematical
Magazine at the CutTheKnotMath page and later communicated the above
proof in a LaTeX file.

107. A Partly Cyclic Inequality in Four Variables

Prove that, for x ≤ y ≤ −2 ≤ z ≤ t,∑
cycl

xex ≥ (x+ y + 2)ex+y+2 + (z + t− 2)
3
√
ez+t−2

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
Let f(x) = xex, f ′′(x) = (x + 2)ex. Thus for x ≥ −2, f is convex so that, by
Jensen’s inequality ,

f(z) + f(t) + f(−2)

3
≥ f

(z + t− 2

3

)
.

i.e.,

(1) f(z) + f(t) + f(−2) ≥ 3f
(z + t− 2

3

)
For x ≤ −2, f(x) is concave. x + y = −2 + (x + y + 2). Thus, by Karamata’s
inequality,

(2) f(x) + f(y) + f(−2) ≥ f(−2) + f(x+ y + 2)
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Adding up (1) and (2) gives

f(z) + f(t) + f(−2) + f(x) + f(y) ≥ f(−2) + f(x+ y + 2) + 3f
(z + t− 2

3

)
,

i.e.,
∑
cycl f(t) ≥ f(x+ y + 2) + 3f

(
z+t−2

3

)
or more explicitly,

zez + tet + xex + yey ≥ (x+ y + 2)ex+y+2 + 3
z + t− 2

3

3
√
ez+t−2.

and, finally,

zez + tet + xex + yey ≥ (x+ y + 2)ex+y+2 + (z + t− 2)
3
√
ez+t−2.

�
Acknowledgment (by Alexander Bogomolny)

Dan Sitaru has kindly posted the problem from the Romanian Mathematical
Magazine at the CutTheKnotMath page and later communicated the above
solution in a LaTeX file.

108. A Problem From a Mongolian Olympiad for Grade 11

Prove that, for a, b, c > 0, subject to a2 + b2 + c2 = 3,

a

3a+ 2b3
+

b

2b+ 2c3
+

b

2b+ 2c3
+

c

3c+ 2a3
≤ 1

5

( 1
1
a2 + 1

b2 + 1
c2

)
Solution (by Daniel Sitaru).

By the AM-GM inequality ,

3a+ 2b3 = (a2 + b2 + c2)a+ 2b3

= a3 + ab2 + ac2 + b3 + b3 ≥ 5(a5b8c2)
1
5 ,

and similar for the other two fractions, so that, by the Rearrangement
inequality , ∑

cycl

a

3a+ 2b3
≤
∑
cycl

a

5(a5b8c2)
1
5

=
∑
cycl

1

5(b8c2)
1
5

≤
∑
cycl

1

5(b8b2)
1
5

=
∑
cycl

1

5(a10)
1
5

=
1

5

∑
cycl

1

a2
.

�
Acknowledgment (by Alexander Bogomolny)

Dan Sitaru has kindly posted at the CutTheKnotMath page the above problem
from the Mongolian Mathematical Olympiad , Grade 11.

109. An Acyclic Inequality in Three Variables

Assuming a, b, c > 0, prove that

(a2 − bc)2 + (b2 − ca)2 + (c2 − ab)2

a2 + b2 + c2 + ab+ bc+ ca
≥ 3(a− b)(b− c).

Proposed by Daniel Sitaru
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Solution (by Daniel Sitaru).(∑
cycl

a2 −
∑
cycl

ab

)(∑
cycl

a2 +
∑
cycl

ab

)
=

(∑
cycl

a2

)2

−

(∑
cycl

ab

)2

= a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2−
−a2b2 − a2c2 − b2c2 − 2abc(a+ b+ c)

= (a4 − 2a2bc+ b2c2) + (b4 − 2b2ac+ a2c2)

+(c4 − 2c2ab+ b2a2) =
∑
cycl

(a2 − bc)2

It follows that
(a2 − bc)2 + (b2 − ca)2 + (c2 − ab)2

a2 + b2 + c2 + ab+ bc+ ca

=
(
∑
cycl a

2 −
∑
cycl ab)(

∑
cycl a

2 +
∑
cycl ab)∑

cycl a
2 +

∑
cycl ab

=
∑
cycl

a2 −
∑
cycl

ab

Suffice it to prove that∑
cycl

a2 −
∑
cycl

ab ≥ 3(a− b)(b− c)⇔

a2 + b2 + c2 − ab− bc− ca ≥ 3ab− 3ac− 3b2 + 3bc⇔
a2 + 4b2 + c2 − 4ab− 4bc+ 2ca ≥ 0⇔ (a− 2b+ c)2 ≥ 0

Equality is attained for b = a+c
2 . �

Remark (by Alexander Bogomolny)
It may be worth noting that the inequality at hand is not cyclic, and, in this sense,
the appearance of the cyclic sums may lead the reader to think otherwise. The fact
is that the three variables do not occur in the inequality in a symmetric manner,
so that an argument that relies on th “WLOG” reasoning may not be valid. For
example, if we assume – apparently WLOG – that a ≥ c ≥ b, then the proof
becomes immediate because

(a2 − bc)2 + (b2 − ca)2 + (c2 − ab)2

a2 + b2 + c2 + ab+ bc+ ca
≥ 0 ≥ 3(a− b)(b− c).

However, such a proof is faulty.

Acknowledgment (by Alexander Bogomolny)
The problem above has been posted on the CutTheKnotMath page and the
solution above communicated to me by Daniel Sitaru. Originally, the problem has
been published at the Romanian Mathematical Magazine.
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110. An Identity with Inradius and Circumradii

If I is the incenter of ∆ABC, with r,R the inradius and circumradius, andRa, Rb, Rc
the circumradii of triangles IBC, ICA, IAB.

Prove that Ra ·Rb ·Rc = 2R2r

Proposed by Mehmet Şahin

Solution 1 (by Daniel Sitaru).
In every triangle with side lengths a, b, c area S and circumradius R,
abc = 4RS. So, in ∆IAB,

Rc =
AI ·BI ·AB

4[∆IAB]
=

r
sin A

2

· r
sin B

2

· c

4 rc2
=

r

2 sin A
2 · sin

B
2

etc. So that ∏
cycl

Ra =
r3

8
∏
cycl sin

2 A
2

=
r3

8
∏
cycl

(s−b)(s−c)
bc

=
r3a2b2c2s2

8S4
=

16S2r3s2

8S4
=

16r3s2

8S2
= 2R2r

�
Solution 2 (by Marian Dincă).

BC = 2Ra sin∠BIC = 2Ra sin
(
π − B + C

2

)
= 2Ra sin

B + C

2
On the other hand,

BC = 2R sinA = 2R sin(A+B) = 4R sin
B + C

2
cos

B + C

2

It follows that Ra = 2R sin
A

2
, etc. We conclude that

Ra ·Rb ·Rc = 8R3 sin
A

2
· sin B

2
· sin C

2
= 2R2r.
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�
Solution 3 (by Miquel Ochoa Sanchez).

If Oa is the circumcenter of ∆IBC then OaB = OaI = OaC = Ra.

In ∆AOaB,OaB = 2R sinα, implying Ra = 2R sin A
2 . Similarly, Rb = 2R sin B

2

and Rc = 2R sin C
2 .

Ra ·Rb ·Rc = 2R2
(

4R sin
A

2
· sin B

2
· sin C

2

)
= 2R2r.

Hence, Ra ·Rb ·Rc = 2R2r. �
Acknowledgment (by Alexander Bogomolny)

The problem by Mehmet Şahin (Turkey) has been posted to the site of the
Romanian Mathematical Magazine and communicated to me by Daniel Sitaru.
Solution 1 is by Daniel Sitaru (Romania); Solution 2 is by Marian Dincă (Romania);
Solution 3 is by Miguel Ochoa Sanchez (Peru).

111. An Inequality In Triangle and Without II

In ∆ABC, a, b, c are the side lengths and R, r are the circumradius and inradius,

respectively. Prove that:√√
a

c
+

√
b

c
+

√√
b

a
+

√
c

a
+

√√
c

b
+

√
a

b
≥ 6r

√
2

R

Proposed by Daniel Sitaru

Remark (by Alexander Bogomolny)

All solvers have observed that, due to Euler’s inequality R ≥ 2r, 6r
√

2
R ≤ 3

√
2,

and went to prove√√
a

c
+

√
b

c
+

√√
b

a
+

√
c

a
+

√√
c

b
+

√
a

b
≥ 3
√

2

Thus, this is the inequality that is proved below without additional comments.
All solutions employ the AM-GM inequality .
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Solution 1 (by Seyran Ibrahimov).
Set a

c = x2, bc = y2, ba = z2. The required inequality becomes
√
x+ y +

√
z + 1

x +
√

1
y + 1

z ≥ 3
√

2. We have

√
x+ y +

√
z +

1

x
+

√
1

y
+

1

z
≥ 3 6

√
(x+ y)

(
z +

1

x

)(1

y
+

1

z

)
≥ 3 6

√
2
√
xy · 2

√
z√
x
· 2
√
yz

= 3
√

2.

�
Solution 2 (by Daniel Sitaru).

First off, for all x, y, z > 0,

(
√
x+
√
y +
√
z)2 = x+ y + z + 2(

√
xy +

√
yz +

√
zx)

≥ x+ y + z + 2 · 3 · 3

√√
xy
√
yz
√
zx = x+ y + z + 6 3

√
xyz

Thus,

(1) (
√
x+
√
y+
√
z)2 ≥ x+ y+ z+ 6 3

√
xyz. Set x =

u+ v

w
, y =

u+ w

u
, z =

w + u

v

Then (1) gives (∑
cycl

u+ v

w

)2

≥
∑
cycl

u+ v

w
+ 6 3

√∏
cycl

u+ v

w

≥
∑
cycl

u+ v

w
+ 6

6

√
2
√
uv · 2

√
vw · 2

√
wu

uvw

=
∑
cycl

u+ v

w
+ 6

3
√

8 =
(u+ v)(v + w)(w + u)

uvw
− 2 + 12

≥ 2
√
uv · 2

√
vw · 2

√
wu

uvw
+ 10 = 8 + 10 = 18.

It follows that

(2)

√
u+ v

w
+

√
v + w

u
+

√
w + u

v
≥ 3
√

2.

With u =
√
a, v =

√
b, w =

√
c (2) becomes the required inequality. �

Solution 3 (by Soumava Chakraborty).

LHS ≥ 3
3

√√√√√√a+
√
b√

c
·

√√
b+
√
c√

a
·

√√
c+
√
a√

b

= 3 6

√
(x+ y)(y + z)(z + x)

xyz
, where x =

√
a, etc.

≥ 3
6

√
2
√
xy · 2√yz · 2

√
zx

xyz
= 3

6
√

8 = 3
√

2

�
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Acknowledgment (by Alexander Bogomolny)
This is a problem form the Romanian Mathematics Magazine ; it was kindly
communicated to me by Daniel Sitaru, along with his solution (Solution 2). Solution
1 is by Seyran Ibrahimov; Solution 3 is by Soumava Chakraborty.

112. An Inequality in Triangle, Mostly with the Medians

Prove that in any ∆ABC,∏
cycl

(5ma + 3mb)(3ma + 5mb) < 64
∏
cycl

(2s+ a)2.

where 2s = a+ b+ c.

Proposed by Daniel Sitaru

Proof 1 (by Soumava Chakraborty).

By the AM-GM inequality,√
(5ma + 3mb)(3ma + 5mb) ≤

8(ma +mb)

2
, so that

(5ma + 3mb)(3ma + 5mb) ≤ 16(ma +mb)
2. Now, obviously,

ma <
b+ c

2
,mb <

c+ a

2
,mc <

a+ b

2
, implying

16(ma +mb)
2 < 4(a+ b+ 2c)2 = 4(2s+ c)2. It follows that

(5ma + 3mb)(3ma + 5mb) ≤ 4(2s+ c)2.

We similarly obtain

(5mb + 3mc)(3mb + 5mc) < 4(2s+ a)2 and

(5mc + 3ma)(3mc + 5ma) < 4(2s+ b)

The product of the three gives the required inequality.

�
Proof 2 (by Soumitra Mandal).

First off, 2s+ a = (b+ a) + (c+ a) > c+ b ≥ 2
√
bc so that∏

cycl

(2s+ a)2 >
∏
cycl

(2
√
bc)2 = 43(abc)2.

On the other hand,

(5ma + 3mb)(3ma + 5mb) = 15(m2
a +m2

b) + 34mamb

≤ 15

4
(4c2 + a2 + b2) +

34

2
(2c2 + ab),

because m2
a =

2b2 + 2c2 − a2

4
,m2

b =
2a2 + 2c2 − b2

4
and mamb ≤

2c2 + ab

4
We need to prove that

32c2 +
15

4
(a2 + b2) +

17

2
ab < 4(2s+ c)2

This is equivalent to 16c2 +
ab

2
<
a2 + b2

4
+ 16c(a+ b), which is true because

c < a+ b and 2ab < a2 + b2. We only need to take the product of this and

the two analogous inequalities to obtain the result.
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�
Acknowledgment (by Alexander Bogomolny)

Daniel Sitaru has kindly posted at the CutTheKnotMath page the above
problem of his that was published in the Romanian Mathematical Magazine.
Proof 1 is by Soumava Chakraborty; Proof 2 is by Soumitra Mandal.

113. An Inequality in Triangle, with Integrals

For a, b, c ∈
[
0,
π

2

]
, a+ b+ c = π, prove that

4
∑
cycl

sin2 a

2
+ π

∑
cycl

∫ a

0

cos(sinx)dx ≥ π2.

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
By Kober’s inequality , cosx ≥ 1− 2x

π . It follows that cos(sinx) ≥ 1− 2 sin x
π

such that, say∫ a

0

cos(sinx)dx ≥
∫ a

0

(
1− 2 sinx

π

)
dx = a+

2

π
cosx

∣∣∣a
0

= a+
2

π
(cos a− 1)

= a+
2

π

(
1− 2 sin2 a

2
− 1
)

= a =
4

π
sin2 a

2
Thus, altogether,

4
∑
cycl

sin2 a

2
+ π

∑
cycl

∫ a

0

cos(sinx)dx

≥ 4
∑
cycl

sin2 a

2
+
∑
cycl

(
πa− 4 sin2 a

2

)
= π

∑
cycl

a = π2

�

Refinement (by Leonard Giugiuc)

For a, b, c ∈
[
0, π2

]
, a+ b+ c = π , prove that

π

3

∑
cycl

sin2 a

2
+
∑
cycl

∫ a

0

cos(sinx)dx ≥ π

It’s known that
∑
cycl sin

2 a
2 ≥

3
4 and cos t ≥ 1− t2

2 , t > 0 . From the latter,

cos(sinx) ≥ 1− sin2 x
2 , for x ∈

[
0, π2

]
.

Suffice it to show that
∑
cycl

∫ a
0

(
1− sin2 x

2

)
dx ≥ 3π

4 . But∑
cycl

∫ a

0

(
1− sin2 x

2

)
dx = π −

∑
cycl

∫ a

0

( sin2 x

2

)
dx

= π +
∑
cycl

(
− a

4
+

sin 2a

8

)
≥ π − π

4
=

3π

4
.
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Acknowledgment (by Daniel Sitaru)
This is Daniel Sitaru’s problem for the Romanian Mathematical Magazine .
Solution is by Daniel Sitaru. Leo Giugiuc came up with an essential refinement
above.

114. An Inequality in Triangle, with Sides and Medians

Given ∆ABC, with centroid G; side lengths a, b, c and the medians ma,mb,mc.

Prove that

16
∑(ma

mc
+
mb

mc

)4

> 81

(( a

ma

)4

+
( b

mb

)4

+
( c

mc

)4
)
.

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
We have a self – explanatory sequence of steps:

GB +GC > BC

GB +GC > a⇒ GB +GC

GA
>

a

GA(GB +GC

GA

)4

>
( a

GA

)4

(GB
GA

+
GC

GA

)4

>

(
a

2
3ma

)4

(
2
3mb

2
3ma

+
2
3mc

2
3ma

)4

>
81

16

( a

ma

)4

(mb

ma
+
mc

mc

)4

>
81

16

( a

ma

)4

16
(mb

ma
+
mc

ma

)4

> 81
( a

ma

)4

16
∑(ma

mc
+
mb

mc

)4

> 81

(( a

ma

)4

+
( b

mb

)4

+
( c

mc

)4
)

�
Acknowledgment (by Alexander Bogomolny)

The problem form the Romanian Mathematical Magazine has been kindly
posted by Dan Sitaru at the CutTheKnotMath page . Dan also has communi-
cated his solution in a latex file.
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115. An Inequality in Triangle, with Sides and Sums

For any ∆ABC, prove that

a(2s− a)

4(s− a)
+
a(2s− b)
4(s− b)

+
a(2s− c)
4(s− c)

≥ a+ b+ c.

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
Rewrite the inequality as ∑

cycl

a(b+ c)

2(b+ c− a)
≥
∑
cycl

a.

Using Bergstrom’s inequality ,∑
cycl

a(b+ c)

b+ c− a
=
∑
cycl

[ a2

b+ c− a
+ a
]

≥
(
∑
cycl a)2∑

cycl(b+ c− a)
+
∑
cycl

a =
(
∑
cycl a)2∑
cycl a

+
∑
cycl

a = 2
∑
cycl

a

This is the required inequality. �

Acknowledgment (by Alexander Bogomolny)
The problem from the Romanian Mathematical Magazine has been kindly
posted by Daniel Sitaru at the CutTheKnotMath page.

116. An Inequality in Triangle, with Sines II

For any ∆ABC, prove that(∑
cycl

sinA

sinB

)(∑
cycl

sinA

sin2B

)(∑
cycl

sinA

sin3B

)
≥ 24

√
3

Proposed by Daniel Sitaru - Romania

Solution 1 (by Kevin Soto Palacios).

In an triangle sinA, sinB, sinC > 0. In addition , sinA sinB sinC ≤ 3
√

3
8 .

Thus applying first Hölder’s inequality and, subsequently, the AM-GM
inequality ,(∑

cycl

sinA

sinB

)(∑
cycl

sinA

sin2B

)(∑
cycl

sinA

sin3B

)
≥

(∑
cycl

sinA

sin2B

)3

≥ 27

sinA sinB sinC
≥ 27 · 8

3
√

3
= 24

√
3.

Equality holds only for equilateral triangles. �
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Solution 2 (by Myagmarsuren Yadamsuren).
In a triangle sinA, sinB, sinC > 0. In addition,

3
√

3 ≥ 8 sinA sinB sinC ≤ 3
√

3

8
=
abc

R3
.

Thus,

24
√

3 ≤ 8R3
( 3

3
√
abc
· 3

3
√

(abc)2
· 3
)

= 8R3 · 3

(
3

√
a

b2
· b
c2
· c
a2

)
·3

(
3

√
a

b3
· b
c3
· c
a3

)
·3

(
3

√
a

b
· b
c
· c
a

)

≤ 8R3

(∑
cycl

a

b

)(∑
cycl

a

b2

)(∑
cycl

a

b3

)

=

(∑
cycl

a
(2R)

b
(2R)

)(∑
cycl

a
(2R)

b
(2R)2

)(∑
cycl

a
(2R)

b
(2R)3

)

=

(∑
cycl

sinA

sinB

)(∑
cycl

sinA

sin2B

)(∑
cycl

sinA

sin3B

)
�

Solution 3 (by Soumava Chakraborty).
With the AM-GM inequality,

RHS ≤ (33)
3
√

1

(
3

√ ∏
cycl sinA∏
cycl sin

2B

)(
3

√ ∏
cycl sinA∏
cycl sin

3B

)

=
27∏

cycl sinA
≤ 27 · 8

3
√

3
= 24

√
3

�
Solution 4 (by Leonard Giugiuc).

Basically, it’s all about rearrangements:∑
cycl

sinA

sinB
≥
∑
cycl

sinA

sinB
= 3,

∑
cycl

sinA

sin2B
≥
∑
cycl

sinA

sin2A
=
∑
cycl

1

sinA
,

≥ 3

sin
(
A+B+C)

3

) , by Jensen’s inequality,

=
3

sin
(

180◦

3

) = 2
√

3

∑
cycl

sinA

sin3B
≥
∑
cycl

sinA

sin3A
=
∑
cycl

1

sin2A
= 3 +

∑
cycl

cot2A ≥ 4

�
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Acknowledgment (by Alexander Bogomolny)
The problem form the Romanian Mathematical Magazine has been kindly
posted by Daniel Sitaru at the CutTheKnotMath page . Solution 1 is by Kevin
Soto Palacios; Solution 2 is by Myagmarsuren Yadamsuren; Solution 3 is by Soumava
Chakraborty; Solution 4 is by Leo Giugiuc.

117. An Inequality Not in Triangle

Prove that for a, b, c, d ≥ 0,√
a2 + b2 − ab

√
2 +

√
b2 + c2 − bc

√
3 +

√
c2 + d2 − cd(

√
6 +
√

2)

2
≥
√
a2 + d2.

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).

With the reference to the above diagram, OA = a,OB = b,OC = c,OD = d.
By the Law of Cosines,

AB2 = a2b2 − 2ab cos 45◦ = a2 + b2 − ab
√

2,

BC2 = b2 + c2 − 2bc cos 30◦ = b2 + c2 − bc
√

3

CD2 = c2 + d2 − 2cd cos 15◦ = c2 + d2 − cd(
√

6 +
√

2)

2
,

AD2 − a2 + d2, AB +BC + CD ≥ AD
are the required inequality follows. �

Acknowledgment (by Alexander Bogomolny)
This is a problem and solution from the Romanian Mathematical Magazine
kindly communicated to me by Daniel Sitaru.
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118. An Inequality with Areas, Norms, and Complex Numbers

Prove that for a, b, c, d ∈ R, with a2 + b2 6= 0 and c2 + d2 6= 0, one has

(ad− bc)
(

3(a2 + b2)(c2 + d2)− 4(ad− bc)2
)

(
(a2 + b2)(c2 + d2)

) 3
2

≤ 1

Proposed by Daniel Sitaru

Solution 1(by Alexander Bogomolny).
Recollect that

(*) sin 3α = 3 sinα− 4 sin3 α

and consider two points A = (a, b) and B = (c, d) in the plane with the origin
O = (0, 0). The are [∆ABO] can be expressed in two ways, viz.,

2[∆ABO] = |ad− bc|, and

2[∆ABO] =
√
a2 + b2

√
c2 + d2 sinα,

where α is the angle at vertex O of the triangle. It follows that

sinα
|ad− bc|√

(a2 + b2)(c2 + d2)

By noticing that | sin 3α| ≤ 1 and substituting into (*), we obtain

1 ≥ 3
|ad− bc|√

(a2 + b2)(c2 + d2)
− 4

(
|ad− bc|√

(a2 + b2)(c2 + d2)

)3

=
|ad− bc|

(
3(a2 + b2)(c2 + d2)− 4(ad− bc)2

)
(

(a2 + b2)(c2 + d2)
) 3

2

which is the required inequality. �
Solution 2 (by Ravi Prakash).

Let z1 = a+ ib, z2 = d+ ic. Then z1z2 = (ad− bc) + i(ac+ bd),
ad − bc = 1

2 (z1z2 − z1z2), ac + bd = 1
2 (z1z2 + z1z2). Also, |z1|2 = a2 + b2 and

|z2|2 = c2 + d2. Now,

3(a2 + b2)(c2 + d2)− 4(ad− bc)2 = 3z1z1z2z2 −
4

4
(z1z2 + z1z2)2

= −[z2
1z

2
2 + z1

2z2
2 + 2z1z2z1z2 − 3z1z2z1z2]

= −[z2
1z

2
2 + z1

2z2
2 − z1z2z1z2]

Set

Num = −1

2
(z1z2 + z1z2)[z2

1z
2
2 + z1

2z2
2 − z1z2z1z2

= −1

2
[(z1z2)3 − (z1z2)3]

so that

|Num| ≤ 1

2
|(z1z2)3 − (z1z2)3| ≤ 1

2
[|z1z2|3 + |z1z2|3]

= |z1z2|3 =
(

(a2 + b2)(c2 + d2)
) 3

2

= Den,

implying
Num

Den
≤ |Num|

Den
≤ 1.
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�
Solution 3 (by Ravi Prakash).

Set z1 = a+ ib = r1(cos θ + i sin θ) and z2 = d+ ic = r2(cosφ+ i sinφ).

z1z2 = (ad− bc) + i(ac+ bd)

= r1r2[cos(θ + φ) + i sin(θ + φ)].

Also, |z1| = r1 and |z2| = r2. Now,

(ad− bc)
(

3(a2 + b2)(c2 + d2)− 4(ad− bc)2
)

(
(a2 + b2)(c2 + d2)

) 3
2

=
r1r2 cos(θ + φ)[3r2

1r
2
2 − 4r2

1r
2
2 cos2(θ + φ)]

r3
1r2r3

= 3 cos(θ + φ)− 4 cos3(θ + φ) = − cos 3(θ + φ) ≤ 1

�
Solution 4(by Soumitra Mandal).

Let (a2 + b2)(c2 + d2) = x2, x > 0. We need to prove that

(ad− bc)(3x2 − 4(ad− bc)2)

x3
≤ 1⇔

x3 − 3x2(ad− bc) + 4(ad− bc)3 ≥ 0⇔

x3 + (ad− bc)3 − 3(ad− bc)[x2 − (ad− bc)2] ≥ 0⇔

(x+ ad− bc)(x2 − x(ad− bc) + (ad− bc)2)

(x+ ad− bc)[x2 − 4x(ad− bc) + 4(ad− bc)2]⇔

−3(ad− bc)[x2 − (ad− bc)2] ≥ 0⇔

(x+ ad− bc)(x− 2(ad− bc))2 ≥ 0,

which is true, for x ≥ bc− ad since (ac+ bd)2 ≥ 0, for a, b, c, d ∈ R. �
Solution 5 (by Soumava Chakraborty).

From (ac+ bd)2 + (ad− bc)2 = (a2 + b2)(c2 + d2),

3(a2 + b2)(c2 + d2)− 4(ad− bc)2

= 3[(ac+ bd)2 + (ad− bc)2]− 4(ad− bc)2]

(1)︷︸︸︷
= 3(ac+ bd)2 − (ad− bc)2

= 3|ac+ bd|2 − |ad− bc|2
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Case 1: ac + bd 6= 0, ad− bc 6= 0

From the diagram, |ac + bd| = p cos θ (2) and |ad − bc| = p sin θ, (3), where

p =
√

(a2 + b2)(c2 + d2). It follows that

LHS =
(ad− bc)(3p2 cos2 θ − p2 sin2 θ)

p3
, using (1), (2), (3)

(4)︷︸︸︷
=

(ad− bc)(3 cos2 θ − sin2 θ)

p
.

Now, according as ad− bc ≥ 0 or ad− bc ≤ 0, ad− bc = ±|ad− bc|, (5). In

any event,
|d− bc|

p
= sin θ. Such that, using (4) and (5),

LHS = ± sin θ(3 cos2 θ − sin2 θ)

= ± sin θ
(

3(1− sin2 θ)− sin2 θ
)

= ±(3 sin θ − 4 sin3 θ)

= ± sin 3θ.

Since | sin θ| ≤ 1, |LHS| ≤ 1.

Case 2: ad− bc = 0

Then ac+ bd 6= 0 and LHS = 0 ≤ 1

Case 3: ac + bd = 0

Then ad− bc = 0 and LHS =
−(ad− bc)
|ad− bc|

= ±1 ≤ 1

�
Acknowledgment (by Alexander Bogomolny)

This is Problem SP060 from the 2017 Spring issue of the Romanian
Mathematical Magazine , proposed by Daniel Sitaru. Solution 2 and 3 are
by Ravi Prakash, Solution 4 is by Soumitra Mandal; Solution 5 is by Soumava
Chakraborty (all India).
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119. An Inequality with Circumradii And Distances to the
Vertices

Let M be an interior point of ∆ABC. Denote by Ra, Rb and Rc the circumradii of

the triangles MBC,MCA and MAB, respectively.

Prove that
MB ·MC

Ra
+
MC ·MA

Rb
+
MA ·MB

Rc
≤MA+MB +MC

Proposed by Leonard Giugiuc, Abdilkadir Altintas

Solution 1(by proposers).

Denote MA = x,MB = y,MC = z,∠BMC = 2α,∠AMC = 2β,∠AMB = 2γ

Clearly, 0 < α, β, γ <
π

2
and α+ β + γ = π.

From the Law of Cosines in ∆MBC,BC =
√
y2 − 2yz cos 2α+ z2. Byt the

Law of Sines in ∆MBC,Ra =

√
y2 − 2yz cosα+ z2

2 sin 2α
. As y2 + z2 ≥ 2yz,

Ra =

√
y2 − 2yz cos 2α+ z2

2 sin 2α
≥
√

2yz − 2yz cos 2α

2 sin 2α

=
2
√
yz sinα

2 sin 2α
=

√
yz

2 cosα

such that
1

Ra
≤ 2 cosα
√
yz

.We have

MB ·MC

Ra
=
yz

Ra
≤ 2yz cosα

√
yz

= 2
√
yz cosα.

Similarly,
MC ·MA

Rb
≤ 2
√
zx cosβ
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MA ·MB

Rc
≤ 2
√
xy cos γ

Thus,

MB ·MC

Ra
+
MC ·MA

Rb
+
MA ·MB

Rc
≤ 2
√
yz cosα+ 2

√
zx cosβ + 2

√
xy cos γ

Suffice it to show that

2
√
yz cosα+ 2

√
zx cosβ + 2

√
xy cos γ ≤ x+ y + z

But, according to the famous Wolstenholme’s inequality ,

For real x, y, z and α+ β + γ = π,

yz cosα+ zx cosβ + xy cos γ ≤ x2 + y2 + z2

Replacing here x, y, z with
√
x,
√
y,
√
z completes the proof.

�
Solution 2 (by Daniel Sitaru).

Based on the following configuration and the formula abc = 4RS,

MB ·MC

Ra
=

MB ·MC

MB ·MC ·MC · 1
4[∆MBC]

= 4 · [∆MBC]

BC
= 2MD,

such that, by similarity,

MB ·MC

Ra
+
MC ·MA

Rb
+
MB ·MB

Rc
= 2(MD+ME+MF ) ≤MA+MB+MC

by the Erdös - Mordell inequality . �

Aknowledgment (by Alexander Bogomolny)
The problem due to Leo Giugiuc and Kadir Altintas has been posted by Leo Giugiuc
at the CutTheKnotMath facebook page , with their solution (Solution 1)
communicated privately. Solution 2 is by Daniel Sitaru.
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120. An inequality with Cosines and a Sine

Prove that in acute ∆ABC

cosA+ 4 cosB + 4 sin
C

2
≤ 9 cos

π +B − C
3

Proposed by Daniel Sitaru

Solution 1(by Leonard Giugiuc).

On the internal
[
0, π2

]
, function cosx is concave, such that, by Jensen’s

inequality ,

cosA+ cosB ≤ 2 cos
A+B

2
= 2 sin

C

2

Hence suffice it to prove that cosB+ 2 cos A+B
2 ≤ 3 cos π+B−C

3 . We again apply
Jensen’s inequality:

cosB + 2 cos
A+B

2
= cosA+ cos

A+B

2
+ cos

A+B

2

≤ 3 cos

(
B + A+B

2 + A+B
2

3

)
= 3 cos

A+ 2B

3

and note that, since A+B + C = π, A+2B
3 = π+B−C

3 �
Solution 2 (by Alexander Bogomolny).

Observe that sinα = cos
(
π
2 − α

)
and make use of Jensen’s inequality as above:

cosA+ 4 cosB + 4 sin
C

2
= cosA+ 4 cosB + 4 cos

(π
2
− C

2

)

≤ 9 cos

(
A+ 4B + 4

(
π
2 −

C
2

)
3

)
= 9 cos

2π +A+ 4B − 2C

9

= 9 cos
3π + 3B − 3C

9
= 9 cos

π +B − C
3

.

�
Aknowledgment (by Alexander Bogomolny)

The problem (from the Romanian Mathematical Magazine) has been posted by
Dan Sitaru at the CutTheKnotMath page , and commented on by Leo Giugiuc
with his solution (Solution 1). Solution 2 may seem as a slight modification of
Solution 1.

121. An Inequality with Cyclic Sums And Products

Prove that if a, b, c, d, e > 0 are pairwise distinct, then∑
cycl

a2

(b+ c+ d+ e)(a− b)(a− c)(a− d)(a− e)
<

(a+ b+ c+ d+ e)2

1024abcde

Proposed by Daniel Sitaru
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Solution (by Daniel Sitaru).
Let’s split the left – hand side into partial fractions:

x2∏
cyc(x− a)

=
A

x− a
+

B

x− b
+

C

x− c
+

D

x− d
+

E

x− e

Then

x2∏
k 6=a(x−k)

= A+
B(x− a)

x− b
+
C(x− a)

x− c
+
D(x− a)

x− d
+
E(x− a)

x− e
.

This shows that = a2

(a−b)(a−c)(a−d)(a−e) . Similar expressions can be found for

B,C,D and E. It follows that∑
cycl

A

x− a
=
∑
cycl

a2

(x− a)(a− b)(a− c)(a− d)(a− e)

=
x2

(x− a)(x− b)(x− c)(x− d)(x− e)
.

Replacing x with a+ b+ c+ d+ e and using the AM-GM inequality , we get∑
cycl

a2

(b+ c+ d+ e)
∏
k 6=a(a− k)

=
(a+ b+ c+ d+ e)∏

cycl[
∑
k 6=a k]

<
(a+ b+ c+ d+ e)2∏

cycl[4
4

√∏
k 6=a k]

=
(a+ b+ c+ d+ e)2

44abcde

�
Aknowledgment (by Alexander Bogomolny)

The problem has been kindly posted by Dan Sitaru at the CutTheKnotMath
page ; his solution in a latex file came via email.

122. An Inequality with Inradius and Circumradii

If I is the incenter of ∆ABC , with r,R the inradius and circumradius, and
Ra, Rb, Rc the circumradii of triangles IBC, ICA, IAB.

(Ra +Rb +Rc)
( Ra
RbRc

+
Rb
RcRa

+
Rc
RaRb

)
≥ 12− 6r

R

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
In every triangle with the side lengths a, b, c are S, and circumradius R, we have
abc = 4RS. So, in ∆IAB,

Rc =
AI ·BI ·AB

4[∆IAB]
=

r
sin A

2

· r
sin B

2

· a

4 · ar2
=

r

2 sin A
2 sin B

2

,

Therefore, Rc = r
2 sin A

2 sin B
2

and, similarly, Rb = r
2 sin C

2 sin A
2

andRa = r
2 sin B

2 sin C
2

.

Thus, using Bergstrom’s inequality,∑
cycl

Ra =
r

2

∑
cycl

1

sin B
2 sin C

2

≥ r

2
· (1 + 1 + 1)2∑

cycl sin
B
2 sin C

2
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≥ r

2
· 9

1
3

(∑
cycl sin

A
2

)2 =
r

2
· 27(

3
2

)2 =
r

2
· 4

9
· 27

= 6r.

It follows that

(1)
∑
cycl

Ra = 6r.

Further, ∑
cycl

Ra
RbRc

=
∑
cycl

r
2 sin B

2 sin C
2

sin2 A
2 sin B

2 sin C
2

=
2

r

∑
cycl

sin2 A

2

=
1

r

∑
cycl

(1− cosA) =
3

r
=

1

r

∑
cycl

cosA

=
3

r
− 1

r

(
1 +

r

R

)
=

3

r
− 1

r
− 1

R
=

2

r
− 1

R
,

implying

(2)
∑
cycl

Ra
RbRc

=
2R− r
Rr

Multiplying (1) and (2), we get(∑
cycl

Ra

)(∑
cycl

Ra
RbRc

)
≥ (6R)

(2R− r
Rr

)
= 6 · 2R− r

R
= 12− 6r

R

�
Acknowledgment (by Alexander Bogomolny)

This is Dan Sitaru’s problem from the Romanian Mathematical Magazine .
Solution is by Dan Sitaru.

123. An Inequality with Integrals and Radicals

Let f : [0, 1]→ (0,∞) be a continuous function such that(∫ 1

0

3
√
f(x)dx

)(∫ 1

0

5
√
f(x)dx

)(∫ 1

0

7
√
f(x)dx

)
≤ 1

Proposed by Daniel Sitaru

Solution 1(by Chris Kyriazis).
By the AM-GM inequality ,

3
√
f(x)dx = 3

√
f(x) · 1 · 1 ≤ f(x) + 1 + 1

3
=
f(x) + 2

3
,

so that

(1)

∫ 1

0

3
√
f(x)dx ≤ 1

3

∫ 1

0

f(x)dx+
2

3

∫ 1

0

dx = 1

Also
5
√
f(x)dx = 5

√
f(x) · 1 · 1 ≤ f(x) + 1 + 1 + 1 + 1

5
=
f(x) + 4

5
,
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so that

(2)

∫ 1

0

5
√
f(x)dx ≤ 1

5

∫ 1

0

f(x)dx+
4

5

∫ 1

0

dx = 1

Similarly,

(3)

∫ 1

0

7
√
f(x)dx ≤ 1

7
f(x)dx+

6

7

∫ 1

0

dx = 1

By multiplying (1), (2); (3):(∫ 1

0

3
√
f(x)dx

)(∫ 1

0

5
√
f(x)dx

)(∫ 1

0

7
√
f(x)dx

)
≤ 1

�
Solution 2 (by Amit Itagi).

Function xn is convex for x ≥ 0, n an integer so that, by the integral form of
Jensen’s inequality(∫ 1

0

n
√
f(x)dx

)n
≤
∫ 1

0

[
n
√
f(x)

]n
dx =

∫ 1

0

f(x)dx = 1

It follows that each of the three integrals on the left is not greater than 1, and
so is their product. �

Solution 3 (by Nassim Nicholas Taleb).
By the Lp - norm inequality, in its general form, for any L1 function f and for
0 < p ≤ q, (∫ b

a

|f(x)|pdx

) 1
p

≥

(∫ b

a

|f(x)|qdx

) 1
q

Here apply p = 1
nj
, q = 1, f(x) ≥ 0, for all nj > 1:(∫ b

a

f(x)
1
nj dx

)nj
≤ 1.

Thus, ∏
j

(∫ b

a

f(x)
1
nj dx

)nj
≤ 1.

�
Solution 4 (by Andrea Aquaviva).

Using Hölder’s inequality, with p = n, q = n
n−1 ,

1
p + 1

q = 1,∫ 1

0

ghdx ≤

(∫ 1

0

hpdx

) 1
p
(∫ 1

0

gqdx

) 1
q

, h = n
√
f, g ≡ 1 :

∫ 1

0

n
√
f(x)dx =

∫ 1

0

n
√
f(x) · 1dx

≤

(∫ 1

0

(
n
√
f(x)

)n
dx

) 1
n
(∫ 1

0

1
n
n−1 dx

)n−1
n

=

(∫ 1

0

f(x)dx

) 1
n

= 1.

�
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Aknowledgment (by Alexander Bogomolny)
The problem (from the Romanian Mathematical Magazine) has been posted
by Dan Sitaru at the CutTheKnot Math page . Dan later communicated by
email his solution on a LaTeX file. The solution has been obtained independently
by Chirs Kyriazis. Solution 2 is by Amit Itagi, Solution 3 is by N. N. Taleb; Solution
4 is by Andrea Acquaviva.

124. An Inequality with Powers of Six

Prove that in any ∆ABC,

a6 + b6 + c6 ≥ 8r2s
∑
cycl

a5

b2 − bc+ c2
,

where =
a+ b+ c

2
, the semiperimeter of ∆ABC, r its inradius.

Proposed by Daniel Sitaru

Proof (by Soumitra Mandal , Seyran Ibrahimov).
From (a− b)2 ≥ 0, a2 − ab+ b2 ≥ ab. So, using Euler’s inequality R ≥ 2r,
abc = 4RS and S = rs,

RHS = 8r2s
∑
cycl

a5

b2 − bc+ c2
≤ 8r2s

∑
cycl

a5

bc

≤ 8r2s

abc

(∑
cycl

a6

)
=

8r2s

4RS

(∑
cycl

a6

)
=
∑
cycl

a6 = LHS.

�
Acknowledgment (by Alexander Bogomolny)

Dan Sitaru has kindly posted at the CutTheKnotMath page the above problem
from his book Math Accent, with a proof by Soumitra Mandal (India); Seyran
Ibrahimov (Azerbaijan) submitted the same proof independently.

125. An Inequality with Tangents and Cotangents

Prove that in ∆ABC the following relation holds∏
cycl

(
tan

A

2
tan

B

2
+ cot

A

2
cot

B

2

)
≥ 1000

27

Proposed by Daniel Sitaru

Solution 1 (by Leonard Giugiuc).
Set tan A

2 tan B
2 = z, tan B

2 tan C
2 = x, tan C

2 tan A
2 = y. We have to prove that(

x+
1

x

)(
y +

1

y

)(
z +

1

z

)
≥ 1000

27
,

subject to x+ y + z = 1.

Consider function f : (0, 1)→ R, defined by f(t) = ln
(
t+ 1

t

)
. We find

f ′(t) = 2t
t2+1 −

1
t < 0, f ′′(0) = 2(1−t)2

(t2+1)2 + 1
t2 > 0, for t ∈ (0, 1), implying that the

function is convex and decreasing so that, via Jensen’s inequality,

f(x) + f(y) + f(z) ≥ 3f
(x+ y + z

3

)
= 3f

(1

3

)
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i.e.

ln
(
x+

1

x

)
+ ln

(
y +

1

y

)
+ ln

(
z +

1

z

)
≥ 3 ln

(
3 +

1

3

)
= ln

(10

3

)
,

implying the required inequality. �
Solution 2 (by Leonard Giugiuc).

With the same change of variables, the problem reduces to(
x+

1

x

)(
y +

1

y

)(
z +

1

z

)
≥ 1000

27
,

subject to x+ y + z = 1.
With Hölder’s inequality, we get(

x+
1

x

)(
y +

1

y

)(
z +

1

z

)
≥
(

3
√
xyz +

1
3
√
xyz

)3

.

By the AM-GM inequality , 3
√
xyz ≤ 1

3 , and, since the function f(t) = t + 1
t

is decreasing for t ∈ (0, 1),(
3
√
xyz +

1
3
√
xyz

)3

≥
(

3 +
1

3

)3

=
1000

27
,

which completes the proof. �
Acknowledgment (by Alexander Bogomolny)

I am grateful to Dan Sitaru for communicating to me his problem and its two
solutions by Leo Giugiuc.

126. An Inequality with a Variety of Circumradii

Let Ra, Rb, Rc be the circumradius of ∆BOC,∆AOC respectively, ∆AOB, where
O is the circumcenter of an acute ∆ABC.

Prove that
R2
a

Rb
+
R2
b

Rc
+
R2
c

Ra
≥ 3R.

Proposed by Daniel Sitaru
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Solution 1 (by Mehmet Şahin).
It’s well known that Ra = R

2·cosA and cosA · cosB · cosC ≤ 1
8 . Thus,

RaRbRc =
R3

8 · cosA · cosB · cosC
≥ R3,

R2
a

Rb
+
R2
b

Rc
+
R2
c

Ra
≥ (Ra +Rb +Rc)

2

Ra +Rb +Rc
= Ra +Rb +Rc,

Ra +Rb +Rc ≥ 3 · 3
√
RaRbRc = 3 · 3

√
R3, by the AM-GM inequality

Ra +Rb +Rc ≥ 3R

as desired.

�
Solution 2 (by Soumava Chakraborty).

By the property of central and inscribed angels subtended by the same arc,
∠BOC = 2A, thus, in the above diagram, x = A. In ∆OBP,OP = R cosx,
implying OP = R cosA. It follows that

Ra =
OB ·OC · a
4[∆OBC]

=
aR2

4 · 1
2a ·OP

=
R2

2R cosA
=

R

2 cosA

Similarly, Rb = R
2 cosB and Rc = R

2 cosC . Therefore

LHS =
R

2

( cosB

cos2A
+

cosC

cos2B
+

cosA

cos2 C

)
≥ 3R

2
3

√
1

cosA cosB cosC
, due to the AM-GM inequality

≥ 3R because
∏
cyc

cosA ≤ 1

8

�
Solution 3 (by George Apostolopoulos).

It is well – known that

Ra =
R

2 cosA
,Rb =

R

2 cosB
,Rc =

R

2 cosC
and

cosA · cosB · cosC ≤ 1

8
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So by AM-GM inequality , we have

R2
a

Rb
+
R2
b

Rc
+
R2
c

Ra
≥ 3

3

√
R2
aR

2
bR

2
c

RbRcRa

= 3 3
√
RaRbRc = 3

3

√
R3

8 cosA · cosB · cosC

≥ 3
3

√
R3

1
= 3R.

Equality holds when ∆ABC is equilateral. �
Solution 4 (by Daniel Sitaru).

[∆BOC] =
1

2
OA ·OB · sin(B̂OC) =

1

2
R2 sin 2A

Ra =
OB ·OC ·BC

4S[BOC]
=

R ·R · a
4 · 1

2R
2 sin 2A

=
a

2 sin 2A
=

2R sinA

2 · 2 sinA cosA
=

R

2 cosA

R2
a

Rb
+
R2
b

Rc
+
R2
c

Ra

AM−GM︷︸︸︷
≥ 3

3

√
R2
a

Rb
·
R2
b

Rc
· R

2
c

Ra

= 3 3
√
RaRbRc = 3

3

√
R3

8 cosA cosB cosC
≥ 3 3

√
R3

8 · 1
8

= 3R.

�
Acknowledgment (by Alexander Bogomolny)

This is Daniel Sitaru’s problem from the Romanian Mathematical Magazine .
Solution 1 by Mehmet Sahin (Turkey); Solution 2 is by Soumava Chakraborty
(India); Solution 3 is by George Apostolopoulos (Greece); Solution 4 is by Daniel
Sitaru (Romania) who kindly provided a tex file with all the solutions.

127. An Inequality with Just Two Variable VII

Prove that, for x, y ≥ 0

(x3 + y3)3(x2 − xy + y2) ≥ x2y2√xy(x2 + y2)3.

Proposed by Daniel Sitaru

Solution 1(by Kevin Soto Palacios).
1. x2 − xy + y2 ≥ 1

2 (x2 + y2) ≥ 1
4 (x+ y)2. Also x2 + y2 ≥ 2xy.

2. For x, y ≥ 0, x+ y ≥ 2
√
xy.

The given inequality is equivalent to

(x+ y)3(x2 − xy + y2)3(x2 − xy + y2) ≥ x2y2√xy(x2 + y2)3

Thus,

(x+ y)3(x2 − xy + y2)3 ≥ 1

4
(x+ y)4(x+ y) ≥ 8x2y2√xy,

(x2 − xy + y2)3 ≥ 1

8
(x2 + y2)3

Multiplying the two gives the require inequality. �
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Solution 2 (by Seyran Ibrahimov).
By Chebyshev’s inequality ,

x3 + y3 ≥ 1

2
(x+ y)(x2 + y2)

By the AM-GM inequality ,

x2 − xy + y2 ≥ xy.
Thus

(x3 + y3)3(x2 − xy + y2) ≥ xy

8
(x+ y)2(x2 + y2)3 ≥ RHS

Because,
(x+ y)3 ≥ (2

√
xy)3 = 8xy

√
xy

�
Solution 3 (by Myagmarsuren Yadamsuren).

Multiply the require inequality by (x+ y) which reduce it to:

(x3 + y3)4 ≥ x2y2√xy(x2 + y2)3(x+ y).

We have

(x3 + y3)4 ≥
(1

2
(x+ y)(x2 + y2)

)4

=
(x+ y

2

)2

·
(x2 + y2

2

)
· (x+ y)2

2
· (x2 + y2)3

≥ (xy)2 · x+ y

2
· (x+ y) · (x2 + y2)3 ≥ (xy)2√xy(x2 + y2)3(x+ y).

�
Solution 4 (by Ravi Prakash).

If x = 0 or y = 0, there is nothing to prove. Assume x, y > 0. Set x = r cos θ,
y = r sin θ. The required inequality reduces to

r11(cos3 θ + sin3 θ)3(cos2 θ − cos θ sin θ + sin2 θ) ≥ r11(cos θ sin θ)
5
2

or, (cos θ + sin θ)3(1− cos θ sin θ)4 ≥ (cos θ sin θ)
5
2 .

By the AM-GM inequality, cos θ + sin θ ≥ 2
√

cos θ sin θ. Also, since
2 cos θ sin θ = sin 2θ < 1, 1− cos θ sin θ ≥ cos θ sin θ. In addition,

1− cos θ sin θ = 1− 1

2
[1− (cos θ − sin θ)2] =

1

2
[1 + (cos θ − sin θ)2]

It follows that

LHS ≥ 8(cos θ sin θ)
3
2 (cos θ sin θ)× 1

8
[1 + (cos θ − sin θ)2]3

= (cos θ sin θ)
5
2 [1 + (cos θ − sin θ)2]3 ≥ (cos θ sin θ)

5
2 = RHS.

�
Solution 5 (by Alexander Bogomolny).

From 3

√
x3+y3

2 ≥
√

x2+y2

2 , we have

2(x3 + y3)2 ≥ (x2 + y2)3.

Also, x3 + y3 ≥ 2
√
x3y3 and x2 − xy + y2 ≥ xy. Multiplying all three gives

the required inequality.

�
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Solution 6 (by Alexander Bogomolny).
The require inequality is equivalent to

(x3 + x3)4 ≥ (xy)
5
2 (x2 + y2)3(x+ y).

Now,

2(x3 + y3)2 ≥ (x2 + y2)3

x3 + y3 ≥ 2(xy)
3
2

x3 + y3 ≥ 1

2
(x2 + y2)(x+ y) ≥ 1

2
· 2
√
x2y2(x+ y) = xy(x+ y)

The product of the three yields the required inequality. �

Acknowledgment (by Alexander Bogomolny)
This problem from his book “Algebraic Phenomenon” has been kindly posted at
the CutTheKnotMath page by Daniel Sitaru. Solution 1 is by Kevin Soto
Palacios; Solution 2 is by Seyran Ibrahimov; Solution 3 by Myagmarsuren Yadamsuren;
Solution 4 by Ravi Prakash.

128. An Inequality with Just Two Variable VIII

If a, b ∈ [0, 2] then

a2

b+ 2
+

b3

a+ 2
+ (2− a)b2 ≤ 12.

Proposed by Daniel Sitaru - Romania

Solution 1 (by Redwane El Mellass).

Let f(a, b) = a2

b+2 + b3

a+2 + (2− a)b2. Then f(0, 0) = 0, f(a > 0, 0) = a2

2 ≤ 12;

f(0, b > 0) = b3

2 + 2b2 ≤ 12. Suppose a, b > 0:
1. If b ≤ 1,

f(a, b) ≤ a2

a
+
b2

b
+ (2− a) = b2 + 2 ≤ 12.

2. If b > 1,

f(a, b)− f(0, b) =
a2

b+ 2
+

b3

a+ 2
+ (2− a)b2−

(b3
2

+ 2b2
)

=
a2

b+ 2
− ab2 − ab3

2(a+ 2)
= a

( a

b+ 2
− b2 − b3

2(a+ 2)

)
≤ a

(
1− b2 − b3

2(a+ 2)

)
< 0,

implying that f(a, b) < f(0, b) =
b3

2
= 2b2 ≤ 12.

Finally, f(a, b) ≤ 12, with equality if and only if a = 0 and b = 2.

�
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Solution 2 (by Richdad Phuc).
We have

a2

b+ 2
+

b3

a+ 2
+ (2− a)b2 ≤ 12⇔

a2

b+ 2
− 4 + 2b2 − 8 +

a2

b+ 2
− ab2 ≤ 0⇔

(b− 2)(b2 + 2b+ 4)− 4a

a2
+ 2(b− 2)(b+ 2) +

a2

b+ 2
− ab2 ≤ 0⇔

(b− 2)(b2 + 2b+ 4)

a+ 2
+ 2(b− 2)(b+ 2) + a

( a

b+ 2
− b2 − 4

a+ 2

)
≤ 0,

which is true because

a

b+ 2
− b2 − 4

a+ 2
≤ a

2
− 4

2 + 2
− b2 ≤ 0,

because a, b ∈ [0, 2]. Equality holds if and only if a = 0 and b = 2. �
Solution 3 (by Amit Itagi).

a2

b+ 2
+

b3

a+ 2
+ (2− a)b2 ≤ 2a

b+ 2
+ 4 + 2b(2− a)

For a fixed value of b, the right hand side is a linear function of with slope
2

(b+2) − 2b. The slope is non-negative when b ∈ [0,
√

2− 1] and negative when

b ∈ (
√

2− 1, 2].
In the regime where the slope is non-negative, RHS attains maximum value of

4
(b+2) + 4 at a = 2 (the largerst value of a). This function of b, in turn, attains

a maximum value of 6 at b = 0.
In the regime where the slope is negative, RHS attains maximum value of
4+4b at a = 0 (the smallest value of a). Clearly, this function takes a maximum
value of 12 when b = 2 (the largest value of b).
Thus, LHS ≤ 12. �

Acknowledgment (by Alexander Bogomolny)
This problem from his book “Algebraic Phenomenon” has been kindly posted at
the CutTheKnotMath page by Dan Sitaru. Solution 1 is by Redwane El Mellass;
Solution 2 is by Richdad Phuc; Solution 3 is by Amit Itagi.

129. An Inequality with Just Two Variables III

Prove that, for positive a, b,

a

b
√

2
+
b
√

2

a
+ 2
(√a2 + b2

b
+

b

a2 + b2

)
≥ 9
√

2

2
.

Proposed by Daniel Sitaru

Solution 1(by Soumava Chakraborty).

In a right triangle with sides a, b,
√
a2 + b2.

Let θ be the acute angle opposite a:

a =
√
a2 + b2 sin θ; a : b =

√
a2 + b2 cos θ. Then
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LHS =
1√
2

tan θ +
√

2 cot θ + 2 cos θ + 2 sec θ =

def︷︸︸︷
= f(θ)

Solving

f ′(θ) =
1√

2 cos2 θ
−
√

2
1

sin2 θ
− 2 sin θ +

2 sin θ

cos2 θ
= 0.

we get successively

sin2 θ − 2 cos2 θ√
2 cos2 θ sin2 θ

− 2 sin θ
cos2 θ − 1

cos θ
= 0,

3 sin2 θ − 2√
2 cos2 θ sin2 θ

+ 2
sin3 θ

cos θ
= 0,

2− 3 sin2 θ√
2 cos2 θ sin2 θ

= 2
sin3 θ

cos θ
,

2− 3 sin2 θ = 2
√

2 sin5 θ,

4 + 9 sin4 θ − 12 sin2 θ = 8 sin10 θ.

With t = sin2 θ > 0,
8t2 − 9t4 + 12t− 4 = 0,

(2t− 1)(4t2 + 2t3 + (t− 2)2) = 0,

t =
1

2
, sin θ =

√
2

2
, θ =

π

4
.

Now,

f ′′(θ) =
√

2 sec2 θ tan θ + 2
√

2
cot θ

sin2 θ
− 2 cos θ + 2 sec3 θ + 2 tan2 θ sec θ.

f ′′
(
π
4

)
= 11

√
2 > 0, implying that θ = π

4 is a minimum ant that f never attends

a maximum on
(

0, π2

)
. Hence,

f(θ) ≥ f
(π

2

)
= 4
√

2 +
1√
2

=
9
√

2

2
.

�
Solution 2 (by Seyran Ibrahimov).

Note that a sinx+ b cosx ≤
√
a2 + b2 so that

a sinx√
a2 + b2

+
b cosx√
a2 + b2

≤ 1,

with equality only when a =
√
a2 + b2 sinx, b =

√
a2 + b2 cosx, x ∈

(
0, π2

)
.

The given inequality is equivalent to

f(x) =
1√
2

tanx+
√

2 cotx+
2

cosx
+ 2 cosx ≥ 9

√
2

2
.

where f(x) = 0

f ′(x) =
1√

2 cos2 x
+

√
2

sin2 x
− 2 sinx

cos2 x
− 2 sinx = 0,

or, (2
√

2 sin3 x− 1)(cos2 x+ 1)(2
√

2 sin3 x− 1) = 0 implies

x =
π

4
· f
(π

4

)
=

9
√

2

2
.
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�
Solution 3 (by Su Tanaya).

Using the AM-GM inequality ,

3 ·
a
b
√

2
+ b√

a2+b2
+ b√

a2+b2

3
+ 3 ·

b
√

2
a +

√
a2+b2

b +
√
a2+b2

b

3

= 3
( ab√

2(a2 + b2)

) 1
3

+ 6
(√2(a2 + b2)

8ab

) 1
3

= 3 · 3 ·

(
ab√

2(a2+b2)

) 1
3

+
(√

2(a2+b2)
8ab

) 1
3

+
(√

2(a2+b2)
8ab

) 1
3

3

≥ 9 ·

[( ab√
2(a2 + b2)

) 1
3
(√2(a2 + b2)

8ab

) 2
3

] 1
3

= 9 ·

[(a2 + b2

ab

) 1
3 · (
√

2
) 2

3−
1
3−4
] 1

3

≥ 9·
[
2

1
3 · (
√

2) 3−4
] 1

3

(because
a2 + b2

2
≥ ab) = 9·

[
(
√

2)
2
3 + 1

3−4
] 1

3

= 9 · (
√

2)−1

=
9
√

2

2
.

�
Acknowledgment (by Alexander Bogomolny)

The problem above has been kindly posted to the CutTheKnotMath page by
Dan Sitaru, along with several solutions. Solutions 1 is by Soumava Chakraborty;
Solution 2 by Seyran Ibrahimov; Solution 3 is by Su Tanaya.

130. An Inequality with Just Two Variables V

Prove that, for a, b ∈
(1

e
, 1
)
,(

ln
( 1

2a
+

1

2b

))a+b

≥
(

ln
1

a

)b(
ln

1

b

)a
.

Proposed by Daniel Sitaru

Solution 1 (by Daniel Sitaru).

Define function f :
(

1
e , 1
)
→ R by ln

(
ln 1

x

)
. Then

f ′(x) =
1

x lnx

f ′′(x) = − lnx+ 1

(x ln 2)2
< 0,∀x ∈

(1

e
, 1
)
.

Hence, f is concave on
(

1
e , 1
)

. By Jensen’s inequality ,

f
( b

a+ b
· a+

a

a+ b
· b
)
≥ b

a+ b
f(a) +

a

a+ b
f(a),

i.e., f
(

2ab
a+b

)
≥ bf(a)

a+b + af(b)
a+b . To continue,

ln
(

ln
a+ b

2ab

)
≥ b

a+ b
ln
(

ln
1

a

)
+

a

a+ b
ln
(

ln
1

b

)
,
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ln

(
ln
( 1

2a
+

1

2b

))
≥ ln

((
ln

1

a

) b
a+b ·

(
ln

1

b

) a
a+b

)
which is

ln
( 1

2a
+

1

2b

)
≥

((
ln

1

a

)
·
(

ln
1

b

)) 1
a+b

and, finally, (
ln
( 1

2a
+

1

2b

))a+b

≥
(

ln
1

a

)b
·
(

ln
1

b

)a
�

Solution 2 (by Nassim Nicholas Taleb).
Let x = 1

a and y = 1
b , x, y ∈ (1, e). We need to show that

ln
x+ y

2
≥ ln(x)

x
x+y ln(y)

y
x+y

Let y = x+ ε, where 0 < ε < e− x. We need to show that

ln
2x+ ε

2
≥ ln(x)

x
2x+ε ln(x+ ε)

x+ε
2x+ε .

Expanding up to orders of ε2, LHS = ln + ε
2x −

ε2

8x2 ;RHS = lnx+ ε
2x −

ε2

8x2 ln x .
So, since ln a < 1, we have LHS ≥ RHS.
We can refine further with the higher orders of O(ε4), by taking even orders.
This is a more engineering oriented but functional approach. �

Acknowledgment (by Alexander Bogomolny)
The problem above has been kindly posted to the CutTheKnotMath page and
several other forums (in particular at the Romanian Mathematical Magazine)
by Daniel Sitaru. After a length of time that it had not gathered any solution,
Daniel has communicated his solution by private mail. Solution 2 is by N.N. Taleb.

131. An Inequality with One Tangent and Six Sines

Given an acute ∆ABC. Prove that

tanA

sinB + 5 sinC
+

tanB

sinC + 5 sinA
+

tanC

sinA+ 5 sinB
>

1

2

Proposed by Daniel Sitaru

Solution (by Soumava Chakraborty).

Note, that, for α ∈
(

0, π2

)
, tanα > α and sinα < α. Thus, suffice it to prove

that
A

B + 5C
+

B

C + 5A
+

C

A+ 5B
≥ 1

2

As in proof of Nesbitt’s inequality, the above is equivalent to

A2

A(B + 5C)
+

B2

B(C + 5A)
+

C2

C(A+ 5B)
≥ 1

2
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By Bergstrom’s inequality ,∑
cycl

A2

A(B + 5C)
≥

(
∑
cyclA)2

6
∑
cyclAB

=

∑
cyclA

2 + 2
∑
cyclAB

6
∑
cyclAB

≥
3
∑
cyclAB

6
∑
cyclAB

≥ 1

2

�
Refinement (by Marian Dincă)

Given an acute ∆ABC. Prove that

tanA

sinB + 5 sinC
+

tanB

sinC + 5 sinA
+

tanC

sinA+ 5 sinB
≥ 1

Indeed, using the AM-GM inequality, we obtain∑
cycl

tanA

sinB + 5 sinC
≥ 3 3

√∏
cycl

tanA

sinB + 5 sinC
= 3

3
√

tanA tanB tanC

3

√∏
cycl(sinB + 5 sinC)

However,
∏
cycl tanA =

∑
cycl tanA ≥ 3 3

√∏
cycl tanA, implying∏

cycl tanA ≥ 3
√

3. To continue,

3

√∏
cycl

(sinB + 5 sinC) ≤
∑
cycl(sinB + 5 sinC)

3
= 2

∑
cycl

sinA ≤ 3
√

3.

Combining the latest results,∑
cycl

tanA

sinB + 5 sinC
≥ 3

√
3

3
√

3
= 1.

Equality is attained for A = B = C = π
3 .

Acknowledgment (by Alexander Bogomolny)
The problem (from the Romanian Mathematical Magazine) has been posted
by Dan Sitaru at the CutTheKnotMath page , Dan later communicated a solution
by Soumava Chakraborty. Marian Dinca came up with the refinement of the original
inequality.

132. An Inequality with Sides, Altitudes, Angle
Bisectors and Medians

Given ∆ABC, with c ≤ b ≤ a. Prove that( hb
ma

+
hc
mb

+
ha
mc

)(hb
la

+
hc
lb

+
ha
lc

)
≥
( b
a

+
c

b
+
a

c

)2

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
Note that the condition c ≤ b ≤ a implies (a− c)(b− c)(a− b) ≥ 0. Using that
we prove that

b

a
+
c

b
+
a

c
≥ a

b
+
b

c
+
c

a
.

The two are equivalent as follows from the sequence below:

b

a
+
c

b
+
a

c
≥ a

b
+
b

c
+
c

a
⇔
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b2c+ c2a+ a2b ≥ a2c+ b2a+ c2b⇔
b2(c− a) + ca(c− a)− b(c2 − a2) ≥ 0⇔

(c− a)(b2 + ca− bc− ba) ≥ 0⇔

(c− a)
(
b(b− c) + a(c− b)

)
≥ 0⇔ (c− a)(b− c)(a− b) ≥ 0.

To continue, since, say ha ≤ la ≤ ma,

b

a
+
c

b
+
a

c
≥ a

b
+
b

c
+
c

a
≥ hb
ha

+
hc
hb

+
ha
hc

≥ hb
la

+
hc
lb

+
ha
lc
≥ hb
ma

+
hc
mb

+
ha
mc

Thus we have
hb
ma

+
hc
mb

+
ha
mc
≤ b

a
+
c

b
+
a

c
and also

hb
la

+
hc
lb

+
ha
lc
≤ b

a
+
c

b
+
a

c
Taking the product of the two gives( hb

ma
+
hc
mb

+
ha
mc

)(hb
la

+
hc
lb

+
ha
lc

)
≤
( b
a

+
c

b
+
a

c

)2

as required. �

Aknowledgment (by Alexander Bogomolny)
The problem (from the Romanian Mathematical Magazine) has been kindly
posted by Dan Sitaru at the CutTheKnotMath facebook page , Dan later emailed
me his solution in a LatTex file.

133. An Inequality with Sin, Cos, Tan, Cot, and Some

Prove that, in acute ∆ABC, the following inequality holds:

2S2
∑
cycl

(sinA+ cosA+ tanA+ cotA) > 81πR4
∏
cycl

cosA,

where S = [∆ABC], the area and R the circumradius of ∆ABC.

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).

First for x ∈
(

0, π2

)
we prove that:

sinx+ tanx > 2x

Let be f :
(

0, π2

)
→ R, f(x) = sinx+ tanx− 2x. We have

f ′(x) = cosx+ tan2 x− 1 and f ′′(c) = sin x
cos3 x (2− cos2 x) > 0. It follows that

f ′(x) > lim
x→0+

f ′(x) = 0

such that f ′(x) > 0, x ∈
(

0, π2

)
, implying

f(x) > lim
x→0+

f(x) = 0,
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so that f(x) > 0, x ∈
(

0, π2

)
. Hence,

(1) sinx+ tanx > 2x.

Replace in (1) x with π
2 − x:

(2) cosx+ cotx > 2
(π

2
− x
)

By adding (1) and (2):

(3) sinx+ tanx+ cosx+ cotx > π.

For x = A;x = B; c = C in (3) and adding up:

(4)
∑
cycl

(sinA+ cosA+ tanA+ cotA) > 3π.

By the AM-GM inequality , a+ b+ c ≥ 3
√
abc such that 8

(
a+b+c

2

)3

≥ 27abc,

i.e., 8s3 ≥ 28abc. Further 8s3 ≥ 27 · 4RS = 27 · 4Rrs, or, 27 · Rr ≤ 2s2 and,
finally

(5) 9Rr ≤ 2s2

3
.

Now for a few facts, concerning the orthic triangle of ∆ABC: the side length of
the orthic triangle are:

a′ = a cosA, b′ = b cosB, c′ = c cos c

The inradius: r′ = 2R cosA cosB cosC,
The circumradius: R′ = R

2 ,
The semiperimeter: s′ = s

R .
Now, we apply (1) the orthic triangle:

9R′r′ ≤ 2s2

3
,

9 · R
2
· 2R cosA cosB cosC ≤ 2

3
· S

2

R2
,

cosA cosB cosC ≤ 2S2

27R4
,

1∏
cycl cosA

≥ 27R4

2S2
,

2S2∏
cycl cosA

≥ 27R4,

implying 2S2 ≥ 27R4
∏
cycl cosA. Multiplying (4), (5):

2S2
∑
cycl

(sinA+ cosA+ tanA+ cotA) > 81πR4
∏
cycl

cosA.

�
Acknowledgment (by Alexander Bogomolny)

I am grateful do Dan Sitaru for posting this problem from his book “Math Accent”
at the CutTheKnotMath page and later supplying a LaTeX file with its solution.

134. An Inequality with Tangents and Sides

Prove that in any acute ∆ABC the following relationship holds:

a2

tanB + tanC
+

b2

tanC + tanA
+

c2

tanA+ tanB
≤ sR.

Proposed by Daniel Sitaru
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Solution (by Daniel Sitaru).

tanC =
BA′

HA′
, tanB =

A′C

HA′
.

tanB + tanC =
BA′ +A′C

HA′
=

a

HA′
⇒ HA′ =

a

tanB + tanC

S[BHC] =
HA′ ·BC

2
=

1

2
· a2

tanB + tanC

S[AHC] =
b2

2(tanA+ tanC)

S[AHB] =
c2

2(tanA+ tanB)

S[ABC] = S[AHB] + S[AHC] + S[AHB]

S =
1

2

∑
cycl

a2

tanB + tanC

∑
cycl

a2

tanB + tanC
= 2S = 2rs

Euler︷︸︸︷
≤ sR.

�
Acknowledgment (by Alexander Bogomolny)

The problem (from the Romanian Mathematical Magazine) has been posted
by Dan Sitaru at the CutTheKnotMath , Dan later has kindly communicated his
solution in a LaTex file.

135. Another Integral Inequality from the RMM

Set

Ω(a) =

∫ 1
a

− 1
a

(2x6 + 2x4 + 3) arccos(ax)dx, a ≥ 1.

Then

Ω(a) ≤ 129π

35a
Proposed by Daniel Sitaru



49

Proof (by Ravi Prakash).
For a ≥ 1,

Ω(a) =

∫ 1
a

− 1
a

(2x6 + 2x4 + 3) arccos(ax)dx

=

∫ 1
a

− 1
a

(2x6 + 2x4 + 3)
(π

2
− arcsin(ax)

)
dx =

π

2
I1 − I2,

where

I1 =

∫ 1
a

− 1
a

(2x6 + 2x4 + 3)dx = 2
[2

7
x7 +

2

5
x5 + 3x

] 1
a

0

= 2
[ 2

7a7
+

2

5a5
+

3

a

]
≤ 2

35
[10 + 14 + 105]

1

a
=

2 · 129

35a
,

because a7 ≥ a5 ≥ a. On the other hand, I2 = 0, being an integral of an odd
function. So, finally,

Ω(a) =
π

2
I1 − I2 ≤

π

2
· 2 · 129

35a
=

129π

35a
.

�
Acknowledgment (by Alexander Bogomolny)

The problem form the Romanian Mathematical Magazine has been kindly
posted at CutTheKnotMath page by Dan Sitaru, along with the solution by Ravi
Prakash (India).

136. Another Problem from the 2016 Danubius Contest

Let a, b, c > 0 satisfy ab+ bc+ ca = 3. Prove that
1

a2 + 2
+

1

b2 + 2
+

1

c2 + 2
≤ 1.

Proposed by Leonard Giugiuc , Daniel Sitaru

Solution 1 (by proposers).

The inequality is equivalent to

12 + 4
∑
cycl

a2 +
∑
cycl

a2b2 ≤ 8 + 4
∑
cycl

a2 + 2
∑
cycl

a2b2 + a2b2c2,

or,

4 ≤ a2b2 + b2c2 + c2a2 + a2b2c2

let’s denote bc = x, ca = y, and ab = z. Then x, y, z > 0, x+ y + z = 3 and

xyz = a2b2c2. We have to show that

x2 + y2 + z2 + xyz ≥ 4.

We can homogenize the inequality:

4
(x+ y + z

3

)3

≤ (x2 + y2 + z2)
(x+ y + z

3

)
+ xyz,

reducing it to 5S3 − 3s+ 3xyz, where s3 = x3 + y3 + z3 and

s =
∑
cycl

xy(x+ y).

From Schur’s inequality , S3 − s+ 3xyz ≥ 0 and, from the well – known

inequality u3 + v3 ≥ uv(u+ v), 4S3 − 2s ≥ 0. Adding the two up gives the

required inequality.
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�
Solution 2 (by Marian Daniel Vasile).∑

cycl

1

a2 + 2
≤ 1 is equivalent

∑
cycl

2

a2 + 2
≤ 2 and, further, to

∑
cycl

(
1− a2

a2 + 2

)
≤ 2 which is

∑
cycl

a2

a2 + 2
≥ 1. To prove this we can use

Bergstrom’s inequality:∑
cycl

a2

a2 + 2
≥ (a+ b+ c)2

a2 + b2 + c2 + 6

=
(a2 + b2 + c2) + 2(ab+ bc+ ca)

a2 + b2 + c2 + 6
=

(a2 + b2 + c2) + 2 · 3
a2 + b2 + c2 + 6

= 1.

�
Solution 3 (by Vasile Ĉırtoaje).

Let’s denote bc = x, ca = y, and ab = z. Then x, y, z > 0, x+ y + z = 3. We

have to show that

x2 + y2 + z2 + xyz ≥ 4

Assuming x = min{x, y, z}, x ≤ 1, and we have

x2 + y2 + z2 + xyz − 4 = x2 + (y + z)2 + yz(x− 2)− 4

≥ x2 + (y + z)2 +
1

4
(y + z)2(x− 2)− 4

≥ x2 +
x+ 2

4
(y + z)2 − 4 = x2 + x+ 24(3− x)2 − 4

=
1

4
(x− 1)2(x+ 2) ≥ 0.

Equality occurs for a = b = c = 1.

�
Solution 4 (by Srinivas Vemuri).

c =
3− ab
a+ b

RHS − LHS =
c2 + 1

c2 + 2
− a2 + b2 + 4

(a2 + 2)(b2 + 2)

=
(3− ab)2 + (a+ b)2

(3− ab)2 + 2(a+ b)2
− a2 + b2 + 4

(a2 + 2)(b2 + 2)

Denominators being positive, we’ll focus on the numerators:

(2a2 + 2b2 + 4)
(

(3− ab)2 + (a+ b)2
)
− (a2 + b2 + 4)

(
(3− ab)2 + 2(a+ b)2

)
+

+a2b2
(

(3− ab)2 + (a+ b)2
)

= (a2 + b2)(3− ab)2 − 4(a2 + b2)− 8ab+ a2b2(a2 + b2 − 4ab+ 9 + a2b2)

= (a2 + b2)(a2b2 − 6ab+ 9− 4 + a2b2)− ab(a3b3 − 4a2b2 + 9ab− 8)

= (a2 + b2)(2a2b2 − 6ab+ 4) + ab(a3b3 − 4a2b2 + 9ab− 6) + (a− b)2

= (a2 + b2)(ab− 1)(ab− 2) + ab(ab− 1)(a2b2 − 3ab+ 6) + (a− b)2

≥ 2 · 2ab(ab− 1) + ab(ab− 1)(a2b2 − 3ab+ 6) + (a− b)2
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= ab(ab− 1)(a2b2 + ab− 2) + (a− b)2

= ab(ab− 1)(ab− 1)(ab+ 2) + (a− b)2

= ab(ab− 1)2(ab+ 2) + (a− b)2 ≥ 0.

�
Solution 5 (by Amit Itagi).

We make the same substitution as in Solution 1 and 3 to obtain the problem of

proving

xyz + x2 + y2 + z2 − 4 ≥ 0,

provided x+ y + z = 3 and x, y, z > 0. Let x = k +m, y = k −m,

z = 3− x− y = 3− 2k. The positivity of x, y, and z implies

3

2
> k > 0 and k > m > −k.

We have

f(k,m) := (k +m)(k −m)(3− 2k) + (k +m)2 + (k −m)2 + (3− 2k)2 − 4

= [(5− 2k)(k − 1)2] + [(2k − 1)m2].

Note: The first term (the first square braket) is non – negative over the allowed
range of k, becoming 0 at k = 1. The sign of the second term depends on k.

Let us consider two cases:

Case 1: 1
2 > k > 0. In this case, the second term is negative an for a fixed value

of k is monotonically decreasing function of m2. Moreover, m2 < k2 implies

f > (5− 2k)(k − 1)2 + (2k − 1)k2 =
(4k − 3)2

2
+

1

2
>

1

2

Case 2: 3
2 > k ≥ 1

2 . In this case, the second term is non – negative and takes

value 0 when k = 1
2 or m = 0. Thus, f takes minimum value of 0 when k = 1

and m = 0. �
Solution 6 (by Andrea Aquaviva).

From ab+ bc+ ca = 3, a2 + b2 + c2 ≥ 3, by the AM-GM inequality. If we use 3D
polar coordinates, then the problem reduces to finding the maximum of

1

ρ sin2 θ cos2 ϕ
+

1

ρ2 sin2 θ sin2 ϕ
+

1

ρ2 cos2 θ
,

where, as we just observed ρ2 ≥ 3. The above function decreases as ρ grows
o that it achieves its maximum on the sphere ρ2 = 3 - for the minimal value
of ρ. Further, from ab + bc + ca = 3 and a2 + b2 + c2 = 3 it follows that
(a+ b+ c)2 = 9, i.e. a+ b+ c = 3, the tangent plane to the sphere a2 + b2 + c2

at the point (1, 1, 1). �
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Illustration (by Nassim Nicholas Taleb)

Acknowledgment (by Alexander Bogomolny)
Leo Giugiuc has kindly posted at the CutTheKnotMath page the above problem
which he coauthored with Daniel Sitaru. The problem has been included at 2016
Danubius contest.
Solution 1 is by authors; Solution 2 is by Marian Daniel Vasile; Solution 3 is by
Vasile Ĉırtoaje; Solution 4 is by Srinivas Vemuri; Solution 5 is by Amit Itagi;
Solution 6 is by Andrea Acquaviva. The illustration is by N.N. Taleb.

137. Area Inequality in Three Triangles

Prove that in three acute triangles A1B1C1, A2B2C2, A3B3C3,

2(
√
S1 +

√
S2 +

√
S3)2 <

∑
cycl

a2
1 +

∑
cycl

a2
2 +

∑
cycl

a2
3

Proposed by Daniel Sitaru
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Solution 1 (by Kevin Soto Palacios).
First, recollect that ∑

cycl

a2 ≥ 4
√

3S.

By the Cauchy – Schwarz inequality ,

(
√
S1 +

√
S2 +

√
S2)2 ≤ (S1 + S2 + S3)(1 + 1 + 1).

From here, ∑
cycl

a2
1 +

∑
cycl

a2
2 +

∑
cycl

a2
3 ≥ 4

√
3(S1 + S2 + S3)

≥ 4
√

3
1

3
(
√
S1 +

√
S2 +

√
S3)2 > 2(

√
S1 +

√
S2 +

√
S3)2

�
Solution 2 (by Soumitra Mandal).

By the Cauchy – Schwarz inequality ,(
3∑
k=1

√
Sk

)2

≤ 3

3∑
k=1

Sk.

Also, abc ≥ 8(s− a)(s− b)(s− c), where 2s = a+ b+ c. It follows that√
abc(a+ b+ c) ≥ 4S. By the AM-GM inequality, xy + yx+ yz ≥√
3xyz(x+ y + z). Combining everything and using the Rearrangement

inequality ,

3∑
k=1

≤ 1

4
√

3

(
3∑
k=1

(akbk + bkck + ckak)

)
≤ 1

4
√

3

(
3∑
k=1

(a2
k + b2k + c2k)

)
,

implying

2(
√
S1 +

√
S2 +

√
S3)2 ≥ 6

(
3∑
k=1

Sk

)

≤
√

3

2

(
3∑
k=1

(a2
k + b2k + c2k)

)
<
∑
cycl

a2
1 +

∑
cycl

a2
2 +

∑
cycl

a2
3.

�
Solution 3 (by Soumava Chakraborty).

By the Cacuchy – Schwarz inequality, 2(
√
S1 +

√
S2 +

√
S3)2 ≤ 6(S1 +S2 +S3).

We shall prove that in any ∆ABC,∑
cycl

ab ≥ 4
√

3S.

The latter is equivalent to s2 + r(4R+ r) ≥ 4
√

3S. But

s2 + r(4R+ r) ≥ s(3
√

3r) + r(s
√

3),

because s ≥ 3
√

3r and 4R + r ≥ s
√

3. Thus, s2 + r(4R + r) ≥ 4
√

3rs = 4
√

3S,
with a conclusion that

6(S1 + S2 + S3) ≤ 4
√

3(S1 + S2 + S3)

≤
∑
cycl

(a1b1 + a2b2 + a3b3) ≤
∑
cycl

(a2
1 + a2

2 + a2
3)
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Please note that we proved a stronger inequality than required:

(2
√
S1 +

√
S2 +

√
S3)2 <

∑
cycl

(a1b1 + a2b2 + a3b3).

�
Solution 4 (by Myagmarsuren Yadamsuren).

S = sr and
(

s
3
√

3

)
≥ r, i.e., S ≤ s2

3
√

3
. With the AM-QM inequality ,

S ≤ 1

4
√

3

∑
cycl

a2.

2

(
3∑
k=1

√
Sk

)2

≤ 2

4
√

3

[√∑
cycl

a2
1 +

√∑
cycl

a2
2 +
√

3
∑
cycl

a2
3

]

≤ 1

2
√

3

(
3
∑
cycl

a2
1 + 3

∑
cycl

a2
2 + 3

∑
cycl

a2
3

)

=

√
3

2

∑
cycl

(a2
1 + a2

2 + a2
3) <

∑
cycl

(a2
1 + a2

2 + a2
3).

�
Remark (by Alexander Bogomolny)

The required inequality is rather weak. Each of the available proofs established a
stronger inequality:

Prove that in three acute triangles A1B1C1, A2B2C2, A3B3C3,

3(
√
S1 +

√
S2 +

√
S3)2 ≤

√
3

(∑
cycl

a2
1 +

∑
cycl

a2
2 +

∑
cycl

a2
3

)
.

Solution 3 provided a further refinement:

Prove that in three acute triangles A1B1C1, A2B2C2, A3B3C3,

4(
√
S1 +

√
S2 +

√
S3)2 ≤

√
3

(∑
cycl

a1b1 +
∑
cycl

a2b2 +
∑
cycl

a3b3

)
.

Equality is achieved for three equal equilateral triangles.

Acknowledgment (by Alexander Bogomolny)
The inequality (Romanian Mathematical Magazine) has been kindly posted
at the CutTheKnotMath page by Daniel Sitaru. Solution 1 is by Kevin Soto
Palacios (Peru); Solution 2 is by Soumitra Mandal (India); Solution 3 is by Soumava
Chakraborty (India); Solution 4 is by Myagmarsuren Yadamsuren (Mongolia).

138. Cyclic Inequality with Square Roots

Prove that, for x, y, z ≥ 0,

2
√

2
∑
cycl

xy ≥
√

2xyz
∑
cycl

√
x+

∑
cycl

√
x2z2 + y2z2

Proposed by Daniel Sitaru
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Solution 1 (by Kevin Soto Palacios).

Set x = a2, y = b2, z = c2. We choose a, b, c ≥ 0. The given inequality is

equivalent to

2
√

2(a2b2 + b2c2 + c2a2) ≥
√

2a2b2z(a+ b+ c) +
∑
cycl

a2
√
c4 + b4

Let’s prove c4 + b4 ≤ 2(b2 − bc+ c2)2. This is equivalent to

c4 + b4 ≤ 2(b2 + c2)2 + 2b2c2 − 4bc(b2 + c2)

and, it turn, to

(b4 + c4 + 2b2c2) + 4b2c2 − 4bc(b2 + c2)

= (b2 + c2)2 − 4bc(b2 + c2) + 4b2c2 = (b− c)4 ≥ 0.

So, we have ∑
cycl

a2
√
c4 + b4 ≤

∑
cycl

√
2a2(b2 − bc+ c2)

= 2
√

2(a2b2 + b2c2 + c2a2)−
√

2abc(a+ b+ c)⇔
2
√

2(a2b2 + b2c2 + c2a2) ≥
√

2abc(a+ b+ c) +
∑
cycl

a2
√
c4 + b4

�
Solution 2 (by Myagmarsuren Yadamsuren).

2
√

2
∑
cycl

xy =
√

2
∑
cycl

(xy + zx) =
√

2
∑
cycl

x(y + z) =
∑
cycl

x
√

2(y + z)2

=
∑
cycl

x
√

2(x2 + 2xy + y2)

=
∑
cycl

x

√
(12 + 12)

[(√
y2 + z2

)2

+
(√

2yz
)2]

≥
∑
cycl

x(
√
y2 + z2 +

√
2yz), by the Cauchy - Schwarz inequality

=
∑
cycl

√
x2y2 + z2x2 +

∑
cycl

√
2xyz

√
x

=
√

2xyz(
√
x+
√
y +
√
z) +

∑
cycl

√
x2y2 + y2z2

�
Acknowledgement (by Alexander Bogomolny)

Dan Sitaru has kindly posted this problem form the Romanian Mathematical
Magazine , with two solutions, at the CutTheKnotMath page . Solution 1 is by
Kevin Soto Palacios; Solution 2 is by Myamagsuren Yadmasuren.

139. Dan Sitaru’s Cyclic Inequality in Three Variables with
Constraints

Prove that, for a, b, c > 0, subject to a2 + b2 + c2 = 26(a+ b+ c),
1√
a+ b2

+
1√
b+ c2

+
1

c+ a2
≥ 1√

a+ b+ c
Proposed by Daniel Sitaru
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Solution 1 (by Marjan Milanovic).
Since y = 1√

x
is a convex function,

∑
cycl

1√
a+ b2

≥ 3

(∑
cycl a+

∑
cycl a

2

3

)− 1
2

= 3

(
27(a+ b+ c)

3

)− 1
2

= (a+ b+ c)−
1
2

�
Solution 2 (by Alexander Bogomolny).

By Bergstrom’s inequality,

(1) LHS ≥ 9√
a+ b2 +

√
b+ c2 +

√
c+ a2

.

Now, using

(∑
cycl

x

)2

≤ 3
∑
cycl

x2,

(∑
cycl

√
a+ b2

)2

≤ 3

(∑
cycl

a+
∑
cycl

a2

)
= 81

(∑
cycl

a

)

So to continue from (1),

LHS ≥ 9√
a+ b2 +

√
b+ c2 +

√
c+ a2

≥ 9

9
√
a+ b+ c

=
1√

a+ b+ c

�
Solution 3 (by Daniel Sitaru).

By Hölder’s inequality ,(∑
cycl

1√
a+ b2

)(∑
cycl

1√
a+ b2

)(∑
cycl

(a+ b2)

)

≥

(∑
cycl

1
6
√
a+ b2

· 1
6
√
a+ b2

· 3
√
a+ b2

)3

= 27.

In other words, (∑
cycl

1√
a+ b2

)2(∑
cycl

a+
∑
cycl

a2

)
≥ 27,

implying,(∑
cycl

1√
a+ b2

)2

≥ 27∑
cycl a+ 26

∑
cycl a

=
27

27
∑
cycl a

=
1∑
cycl a

This equivalent to the required inequality. �
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Solution 4 (by Shivam Sharma).
Applying the AM-HM inequality ,∑

cycl

1√
a+ b2

≥ 9√
(1 + 1 + 1)(a+ b+ c+ a2 + b2 + c2)

=
9√

3
(

27(a+ b+ c)
) =

9√
9 · 9(a+ b+ c)

=
1

a+ b+ c

�
Acknowledgment (by Alexander Bogomolny)

Dan Sitaru has kindly posted the CutTheKnotMath page the above problem
from his book “Algebraic Phenomenon”. Solution 1 is by Maki Milanovic; Solution
3 is by Dan Sitaru; Solution 4 is by Shivam Sharma.

140. Gireaux’s Theorem

Theorem
If a continuous function of several variables is defined on a hyperbrick and is convex
in each of the variables, it attains its maximum at one of the corners. More formally:

Assume Ik = [ak, bk] ⊂ R, k = 1, n and

f : I1 × I2 × . . .× In → R is a continuous

function convex separately in each of the

variables in the domain of definition. Then it

attains its maximum at point C = (c1, . . . , cn)

where ck ∈ {ak, bk}, k ∈ 1, n

The statement of the theorem is a specification of a theorem of Weierstrass (the
Extreme Values Theorem) that states that a continuous function defined on a
compact set attains its extremes in a set. Assume now that the function is convex
in each variables (i.e., as a function of one argument, with other arguments fixed.)
A continuous function of one variable, convex on a closed interval, attains its max-
imum at one of the endpoints of the interval. This means that the maximum of the
given function is attained at either, say, a× I2× . . .× In or b1× I2× . . .× In, which
reduces the dimension of the search for the maximum by 1. Doing this recursively
proves the statement.

References:
1. Israel Meireles Chrisostomo, Trigonometria Pura e Aplicações e um pouco além:
problemas de Olimṕıadas, 3 de Julho, 2015

USA 1980
Prove that, for a, b, c ∈ [0, 1],

a

b+ c+ 1
+

b

c+ a+ 1
+

c

a+ b+ 1
+ (1− a)(1− b)(1− c) ≤ 1.

The function f(a, b, c) =
∑
cycl

a
b+c+1 +

∏
cycl(1−a) is a convex in each of the three

variables a, b, c so that f takes its maximum value in one of either vertices of the
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cube 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1. Since f(a, b, c) takes value 1 in each of these
points, the required inequality is proven.

References:
1. M. S. Klamkin, USA Mathematical Olympiads 1972 – 1986, MAA, 1988

Dan Sitaru I

Prove that, for a, b, c, d ∈ [0, 2],

9a

1 + bcd
+

9b

1 + cda
+

9c

1 + dab
+

9d

1 + abc
+ 9eabcd ≤ 8 + 9e16.

f : [0, 2]4 → R, f(a, b, c, d) = 9
∑ a

1 + bcd
+ 9eabcd.

f ′a =
9

1 + bcd
− 9bcd

(1 + cda)2
− 9cdb

(1 + dab)2
− 9dbc

(1 + abc)2
+ 9bcdeabcd,

f ′′aa =
18bc2d2

(1 + cda)3
+

18cd2b2

(1 + dab)3
+

18db2c2

(1 + abcd)3
+ 9b2c2d2eabcd > 0.

f strictly convex in variable and, similarly, in the rest of the variables.f

defined on a compact set [0, 2]4, hence, by Gireaux’s theorem f attains it

maximum at the vertices of the hypercube [0, 1]4. It is easy to check that the

maximum is attained for f(2, 2, 2, 2) = 4 · 18

1 + 8
+ 9e16 = 8 + 9e16, thus proving

the inequality.

Dan Sitaru II

Prove that, for x, y, z ∈ [0, 1]

x

y + z + 2016
+

y2

z + x+ 2016
+

z3

x+ y + 2016
+ (1− x)(1− y)(1− z) ≤ 1.

f : [0, 2]3 → R,

f(x, y, z) =
x

y + z + 2016
+

y2

z + x+ 2016
+

z3

x+ y + 2016
+ (1− x)(1− y)(1− z)

We easily check that

f ′xx =
2y2

(x+ z + 2016)3
+

2z3

(x+ y + 2016)3
> 0.

fstrictly convex in variable a and, similarly, in the rest of the variables. f

defined on a compact set [0, 2]4, hence, by Gireaux’s theorem f attains it

maximum at the vertices of the hypercube [0, 1]3. It is easy to check that the

maximum is attained for f(0, 0, 0) = 1, thus proving the inequality.
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Second proof (Leo Giugiuc).

From x, y, z ∈ [0, 1] it follows that x
y+z+2016 ≤

x
3 ; y2

z+x+2016 ≤
y
3 ,

z3

x+y+2016 ≤
z
3 .

Thus suffice it to prove that

f(x, y, z) =
x+ y + z

3
+ (1− x)(1− y)(1− z) ≤ 1.

Let a = 1− x, b = 1− y, c = 1− z. The inequality to prove becomes

1− a+ 1− b+ 1− c
3

+ abc ≤ 1,

or, abc ≤ a+b+c
3 , which is true because, for a, b, c ∈ [0, 1], abc ≤ 3

√
abc and by

the AM-GM inequality. �
Third proof (by Alexander Bogomolny).

Observe that f(x, y, z) defined in the seconds proof is linear, hence convex, in
each of its arguments. Gireaux’s theorem applies. f(0, 0, 0) = 1,
f(0, 0, 1) = 1

3 , f(0, 1, 1) = 2
3 , f(1, 1, 1) = 1

3 = 1. �

Aknowledgment (by Alexander Bogomolny)
I am indebted to Dan Sitaru for supplying the references and the examples.

141. Hung Viet’s Inequality III

Prove that, for all real a, b, c ≥ 0,(∑
cycl

a4

)(∑
cycl

ab3

)
≥

(∑
cycl

a3b

)(∑
cycl

a2b2

)
Proposed by Hung Nguyen Viet

Solution (by Kevin Soto Palacios).
Observe that by Hölder’s inequality(∑

cycl

a4

)(∑
cycl

a2b2

)
≥

(∑
cycl

a3b

)2

,

(∑
cycl

ab3

)(∑
cycl

a3b

)
≥

(∑
cycl

a2b2

)2

.

The product of the above two is exactly the required inequality. �

Acknowledgment (by Alexander Bogomolny)
The inequality – by Nguyen Viet Hung – has been published at Spring issue of
the Romanian Mathematical Magazine . This is Problem SP048. I reproduce
here the charming solution by Kevin Soto Palacios. Additional solutions can be
found at the link.
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142. Inequality with Constraint XV and XVI

If a, b, c are positive numbers such that a+ b+ c = 3, then

(1)
a2

√
b2 + 4

+
b2√
c2 + 4

+
c2√
a2 + 4

>
3

5

Proposed by Henry Ricardo

(2)
a2

√
b2 + 4

+
b2√
c2 + 4

+
c2√
a4 + 4

>
3

5

Proposed by Daniel Sitaru

Problem 1, Solution 1 (by Henry Ricardo).
WLOG,we may assume that a ≥ b ≥ c. It follows that a2 ≥ b2 ≥ c2 and

1√
a2+4

≤ 1
b2+4 ≤

1
c2+4 . Now the Rearrangement inequality gives us∑

cycl

a2

√
b2 + 4

≥
∑
cycl

a2

√
a2 + 4

It can be seen graphically (and proved with some tedious algebra/analysis) that

the curve given by y = x2
√
x2+4

lies on or above the tangent line to the curve at

x = 1, y = 9
√

5
25 (x− 1) +

√
5

5 , on the interval (0, 3). Thus we have∑
cycl

a2

√
b2 + 4

≥
∑
cycl

(9
√

5

25
(a− 1) +

√
5

5

)

=
9
√

5

25

∑
cycl

−12
√

5

25
=

27
√

5

25
− 12

√
5

25
=

3
√

5

5
>

3

5
.

�
Problem 1, Solution 2 (by Alexander Bogomolny).

Using Bergström inequality and the obvious x+ 2 >
√
x2 + 4,∑

cycl

a2

√
b2 + 4

≥ (a+ b+ c)2∑
cycl

√
a2 + 4

>
(a+ b+ c)2∑
cycl(a+ 2)

=
9

9
= 1

�
Problem 2, Solution (by Anish Ray).

As above, using Bergström inequality, the obvious x2 + 2 >
√
x4 + 4 and

(x+ y + z)2 ≥ x2 + y2 + z2,∑
cycl

a2

√
b4 + 4

≥ (a+ b+ c)2∑
cycl

√
a4 + 4

>
9∑

cycl(a
2 + 2)

≥ 9

(a+ b+ c)2 + 6
=

9

15
=

3

5
.

�
Acknowledgment (by Alexander Bogomolny)

The problem (Problem 1) with a solution (Problem 1, Solution 1) has been
posted to the Romanian Mathematical Magazine by Henry Ricardo. A somewhat
more complicated (but similar) problem has been posted by Dan Sitaru, with
credits to Anish Ray.
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143. Inequality with Constraint from Dan Sitaru’s Math
Phenomenon

If a ≥ b ≥ c > 0 and a+ b+ c = 10, then

b+ 2a+ 20 ≥ 2
∑
cycl

a2 + ab+ b2

a+ b
≥ b+ 2c+ 20.

Proposed by Daniel Sitaru

Solution 1 (by Soumitra Mandal).
Note that

2
∑
cycl

a2 + ab+ b2

a+ b
≥ 2

∑
cycl

3
4 (a+ b)2

a+ b
= 2

∑
cycl

3

4
(a+ b)

= 2 · 3

2
(a+ b+ c) = 3(a+ b+ c)

≥ (a+ b+ c) + 2(a+ b+ c) ≥ b+ 2c+ 20,

because a ≥ c. This proves the right inequality. The left inequality is equivalent
to

4a+ 3b+ 2c ≥
∑
cycl

a2 + ab+ b2

a+ b

which, in turn is equivalent to(
2a+ b− 2(a2 + ab+ b2)

a+ b

)
+

(
2b+ c− 2(b2 + bc+ c2)

b+ c

)
+

+

(
2a+ c− 2(a2 + ac+ c2)

a+ c

)
≥ 0,

or,
b(a− b)
a+ b

+
b(b− c)
b+ c

+
c(a− c)
c+ a

≥ 0,

which is true because a ≥ b ≥ c. �
Solution 2 (by Alexander Bogomolny).

The left inequality is equivalent to

4a+ 3b+ 2c ≥ 2
∑
cycl

a2 + ab+ b2

a+ b

= 2
∑
cycl

a2 + 2ab+ b2

a+ b
− 2

∑
cycl

ab

a+ b

= 2
∑
cycl

(a+ b)− 2
∑
cycl

ab

a+ b
= 4(a+ b+ c)− 2

∑
cycl

ab

a+ b

which can be rewritten as

2
∑
cycl

ab

a+ b
≥ b+ 2c.

Now note that
2ab

a+ b
+

2bc

b+ c
≥ 2ab

2a
+

2bc

2b
= b+ c.
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Also 2ca
c+a ≥ c is equivalent to 2ca ≥ c2 +ca, or a ≥ c, which is true. Now, adding

this to
2ab

a+ b
+

2bc

b+ c
≥ b+ c

completes the proof of the left inequality. For the right inequality, observe that,
as we just showed,

2
∑
cycl

ab

a+ b
≥ b+ 2c.

Thus suffice it to prove that

2
∑
cycl

a2 + b2

a+ b
≥ 20.

This is indeed so due to Bergström’s inequality :

2
∑
cycl

a2 + b2

a+ b
= 2

∑
cycl

a2

a+ b
+ 2

∑
cycl

b2

a+ b

≥ 2
(a+ b+ c)2

2(a+ b+ c)
+ 2

(a+ b+ c)2

2(a+ b+ c)
= 2(a+ b+ c) = 20.

�
Solution 3 (by Nassim Nicholas Taleb).

Let = 2
∑
cycl

a2+ab+b2

a+b . We reexpress:

f = 2
∑
cycl

(
(a+ b)2 − ab

a+ b

)
= 2

(
20−

∑
cycl

ab

a+ b

)
Let us further establish that from the assumtions a ≥ b ≥ c > 0 and
a + b + c = 10, it is necessary that a ≥ 10

3 and c ≤ 10
3 . We have the right side

inequality:

b+ 2c+ 20 ≤ 20+
(

1− 10

3

)
+

10

3
< 30.

We also have f ≥ 30, for ab
a+b ≤

1
4 (a+ b) from which∑

cycl

ab

a+ b
≤ 1

2
(a+ b+ c) = 5

For the left inequality, we have

ab

a+ b
+

cb

b+ c
+

ca

c+ a
≥ ab

2a
+
bc

2b
+
ca

2a
=
b

2
+ c,

so f ≤ 40− b− 2c. The left side inequality becomes
b+ 2a+ 20 ≥ 40− b− 2c, i.e., 2(a+ b+ c) ≥ 20 which is true. �

Acknowledgment (by Alexander Bogomolny)
The above problem, originally from his book Math Phenomenon, has been posted
by Dan Sitaru at the CutTheKnot Math . Solution 1 is by Soumitra Mandal;
Solution 3 is by N. N. Taleb.
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144. Problem 4 From the 2016 Pan – African Math Olympiad

Let x, y, z be positive real numbers such that xyz = 1. Prove that∑
cycl

1

(x+ 1)2 + y2 + 1
≤ 1

2

Solution (by Daniel Sitaru).
We’ll first use the AM-GM inequality:

(x+ 1)2 + y2 + 1 = (x2 + y2) + 2x+ 2 ≥ 2(xy + x+ 1).

The other two summands are modified appropriately. Introduce a, b, c via
x = b

a , y = c
b , z = a

c . Note that xy = c
a . It follows that∑

cycl

1

(x+ 1)2 + y2 + 1
≤
∑
cycl

1

2(xy + x+ 1)

=
1

2

1
c
a + b

a + 1
=

1

2

∑
cycl

a

a+ b+ c
=

1

2
· a+ b+ c

a+ b+ c
=

1

2

�
Acknowledgment (by Alexander Bogomolny)

Dan Sitaru has kindly posted at the CutTheKnotMath page the above problem
from the 24th Pan – African Mathematical Olympiad , along with his solution.
Dan had also remarked that the problem was created in 2006 by Cristinel Mortici
from Romania.

145. Simple Inequality with a Variety of Solutions

Prove that, for x, y, z > 1,∑
cycl

( lnx

ln y ln z
+

ln y

ln z lnx

)
≥ 18

ln(xyz)
.

Proposed by Daniel Sitaru - Romania

Solution 1(by Kevin Soto Palacios).
Let a = lnx, b = ln y, c = ln z. The inequality becomes( a

bc
+

b

ca

)
+
( b
ca

+
c

ab

)
+
( c
ab

+
a

bc

)
≥ 18

a+ b+ c
,

or, equivalently, ( a
bc

+
b

ca
+

c

ab

)
(a+ b+ c) ≥ 9.

This is seen to be true by first applying the Cauchy - Schwarz and then
AM-GM inequality :(∑

cycl

a

bc

)
(a+ b+ c) ≥ (a+ b+ c)2

3abc
· (a+ b+ c)

=
(a+ b+ c)3

3abc
≥ 9.

�
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Solution 2 (by Nirapada Pal).
Let a = lnx, b = ln y, c = ln z. The inequality reduces to( a

bc
+

b

ca

)
+
( b
ca

+
c

ab

)
+
( c
ab

+
a

bc

)
≥ 18

a+ b+ c
,

LHS =
∑
cycl

( a
bc

+
b

ca

)
=
∑
cycl

a2 + b2

ab
≥
∑
cycl

2ab

abc
= 2

∑
cycl

1

a

AM−HM︷︸︸︷
≥ 2 · 9

a+ b+ c
=

18

a+ b+ c
.

�
Solution 3(by Daniel Sitaru).

Let a = lnx, b = ln y, c = ln z. The inequality reduces to( a
bc

+
b

ca

)
+
( b
ca

+
c

ab

)
+
( c
ab

+
a

bc

)
≥ 18

a+ b+ c
,

LHS =
∑
cycl

( a
bc

+
b

ca

)
= 2

∑
cycl

a

bc

≥ 2

abc

∑
cycl

a2 ≥ 2

abc

∑
cycl

ab = 2
∑
cycl

1

a

AM−HM︷︸︸︷
≥ 2 · 9

a+ b+ c

=
18

a+ b+ c
�

Solution 4 (Nikolaos Skoutaris).
Let a = lnx, b = ln y, c = ln z. The inequality reduces to( a

bc
+

b

ca

)
+
( b
ca

+
c

ab

)
+
( c
ab

+
a

bc

)
≥ 18

a+ b+ c

LHS =
∑
cycl

( a
bc

+
b

ca

)
=
∑
cycl

a2 + b2

abc

≥
∑
cycl

2ab

abc
= 2

∑
cycl

1

a
= 2 · 3 ·

1
a + 1

b + 1
c

3

AM−HM︷︸︸︷
≥ 6 · 3

1
1
a

+ 1
1
b

+ 1
1
c

=
18

a+ b+ c
�

Solution 5 (by Nguyen Than Nho).

x, y, z > 1⇒ lnx, ln y, ln z > 0

LHS =
∑
cycl

( lnx

ln y ln z
+

ln y

ln z lnx

)AM−GM︷︸︸︷
≥ 2

( 1

lnx
+

1

ln y
+

1

ln z

)
Cauchy−Schwarz︷︸︸︷

≥ 2 · (1 + 1 + 1)2

lnx+ ln y + ln z
=

18

ln(xyz)
.

�
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Solution 6 (by Soumava Chakraborty , Geanina Tudose).
Let a = lnx, b = ln y, c = ln z. Then inequality reduces to( a

bc
+

b

ca

)
+
( b
ca

+
c

ab

)
+
( c
ab

+
a

bc

)
≥ 18

a+ b+ c

or, equivalently,
1

abc

∑
cycl

a2 ≥ 9

a+ b+ c
,

or, ∑
cycl

a2 ·
∑
cycl

a ≥ 9.

By the AM-GM inequality ∑
cycl

a2 ≥ 3
3
√
a2b2c2

∑
cycl

a ≥ 3
3
√
abc

the product of which is
∑
cycl a

2 ·
∑
cycl a ≥ 9abc, which is equivalent to the

required inequality. �
Solution 7 (by Uche Eliezer Okeke).

Let a = lnx, b = ln y, c = ln z. The inequality reduces to( a
bc

+
b

ca

)
+
( b
ca

+
c

ab

)
+
( c
ab

+
a

bc

)
≥ 18

a+ b+ c
,

or, equivalently,
1

abc

∑
cycl

a2 ≥ 9

a+ b+ c

LHS =
1

abc

∑
cycl

a2 ≥ 2

abc
·

(
∑
cycl a)2

3

AM−GM︷︸︸︷
≥ 2

3
·

(
∑
cycl a)2

(
∑
cycl)

3
· 27

1
=

18∑
cycl a

�
Solution 8 (by Seyran Ibrahimov).

Let a = lnx, b = ln y, c = ln z. The inequality reduces to( a
bc

+
b

ca

)
+
( b
ca

+
c

ab

)
+
( c
ab

+
a

bc

)
≥ 18

a+ b+ c
,

LHS =
∑
cycl

a

bc

Chebyshev︷︸︸︷
≥ 1

3
(a+ b+ c)

(∑
cycl

1

bc

)
Cauchy−Schwarz︷︸︸︷

≥ 3(a+ b+ c)

ab+ bc+ ca
≥ 9

a+ b+ c

because (a+ b+ c)2 ≥ 3(ab+ bc+ ca) which follows from

a2 + b2 + c2 ≥ ab+ bc+ ca

�
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Solution 9 (by Myagmarsuren Yadamsuren).
Let lnx = t1, ln y = t2, ln z = t3. The inequality reduces to

LHS =
∑
cycl

t1
t2t3

=
∑
cycl

1

t3

( t1
t2

+
t2
t1

)
AM−GM︷︸︸︷
≥ 2 ·

∑
cycl

1

t3

Bergstrom︷︸︸︷
≥ 2 · 9∑

cycl t1
=

18

t1 + t2 + t3

�
Solution 10 (by Alexander Bogomolny).

Let a = lnx, b = ln y, c = ln z. The inequality reduces to

∑
cycl

a

bc

AM−GM︷︸︸︷
≥ 3

3

√
1

abc

AM−GM︷︸︸︷
≥ 9

a+ b+ c

�
Acknowledgment (by Alexander Bogomolny)

Dan Sitaru has kindly posted the problem form the Romanian Mathematical
Magazine at the CutTheKnotMath facebook page and latter commented with
several proofs. Solution 1 is by Kevin Soto Palacios; Solution 2 is by Nirapada Pal;
Solution 3 is by Dan Sitaru; Solution 4 is by Nikolaos Skoutaris; Solution 5 is by
Nguyen Thanh Nho; Solution 6 is by Soumava Chakraborty, Geanina Tudose came
up with the same solution; Solution 7 is by Eliezer Okeke; Solution 8 is by Seyran
Ibrahimov; Solution 9 is by Myagmarsuren Yadamsuren;

146. Sitaru – Schweitzer Inequality

Below is a slightly modified versions of Dan Sitaru’s statement from his book “Math
Phenomenon”. The problem represents an integral analog and a generalization of
the well known Schweitzer’s Inequality derived next.

Let f : [a, b]→ [m,M ], with m > 0, be an Riemann integrable function such

that
1

f(x)
is also Riemann integrable. Then(∫ b

a

f(x)dx

)(∫ b

a

1

f(x)
dx

)
≤ (m+M)2

4mM
(b− a)2

Remark(by Alexander Bogomolny)
Note that, by the Cauchy criterion for integrability, if function
f : [a, b]→ [m,M ], with m > 0 is Riemann integrable, then the function
1
f : [a, b]→

[
1
M , 1

m

]
is also Riemann integrable.

Solution 1 (by Ravi Prakash).

It follows from the premises that
(
f(x)−m

)(
M − f(x)

)
≥ 0, implying

f2(x) +mM ≤ (m+M)f(x), or

f(x) +
mM

f(x)
≤ m+M,
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so that ∫ b

a

f(x)dx+mM

∫ b

a

dx

f(x)
≤ (m+M)

∫ b

a

dx = (m+M)(b− a)

Let J = mM
∫ b
a

dx
f(x) and H =

∫ b
a
f(x)dx. We have J +H ≤ (m+M)(b− a),

implying J2 + JH ≤ (m+M)(b− a)J , i.e.,

JH ≤ 1

4
(m+M)2(b− a)2−

[1

2
(m+M)(b− a)− J

]2
≤ 1

4
(m+M)2(b− a)2

This is the required inequality. �
Solution 2 (by Soumitra Mandal).

We proceed as above to obtain∫ b

a

f(x)dx+mM

∫ b

a

dx

f(x)
≤ (m+M)

∫ b

a

dx = (m+M)(b− a).

By the AM-GM inequality,

(m+M)(b− a) ≥ 2

√
mM

(∫ b

a

f(x)dx
)(∫ b

a

dx

f(x)

)
.

Squaring gives the required inequality. �
Schweitzer’s Inequality

For 0 < m < M , and xk ∈ [m,M ], for k ∈ 1, n,(
n∑
k=1

xk

)(
n∑
k=1

1

xk

)
≤ (m+M)2

4mM
n2.

Proof of Schweitzer’s Inequality (by Alexander Bogomolny).
Given sequence {xk} ⊂ [m,M ], we define a function piece – wise: set, for
x ∈ [k, k + 1], f(x) = xk, k ∈ 1, n. Then, with a = 1 and b = n+ 1,
f : [a, b]→ [m,M ], and it remains to observe that,

b− a = n∫ b

a

f(x)dx =

n∑
k=1

xk∫ b

a

dx

f(x)
=

n∑
k=1

1

xk
.

Note that two additional proofs appear elsewhere . �
Acknowledgment (by Alexander Bogomolny)

The problem has been kindly posted by Dan Sitaru at CutTheKnotMath
facebook page . Solution 1 is by Ravi Prakash; Solution 2 is by Soumitra Mandal.
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147. The Beauty of Fractions

On a circle of radius r, three points are chosen so that the circle is divided into

three arcs in the ratios u : v : w. At the division points, tangents are drawn to the

circle:

Prove that the area of the triangle formed by the tangents equals

S = ±r2 tan
πu

u+ v + w
· tan

πv

u+ v + w
· tan

πw

u+ v + w
.

Proposed by Francisco Javier Garcia Capitan

Solution (by Daniel Sitaru).
Set AB = x+ y,BC = y + z,AC = z + x. Scale the arc ratios to satisfy
u+ v + w = 2π. As we can see, x = r tan u

2 , y = r tan v
2 , z = r tan w

2 .

Heron’s formula reduces to S =
√
xyz(x+ y + z), so we have

S =
√
xyz(x+ y + z)

=

√√√√r4

(∑
cycl

tan
u

2

)∏
cycl

tan
u

2

= r2

√√√√(∏
cycl

tan
u

2

)2

= ±r2
∏
cycl

tan
u

2

= ±r2 tan
πu

u+ v + w
· tan

πv

u+ v + w
· tan

πw

u+ v + w
,

where we applied an identity valid for α+ β + γ = π.

tanα+ tanβ + tan γ = tanα · tanβ · tan γ

�
Acknowledgment (by Alexander Bogomolny)

The problem by Francisco Javier Garćıa Capitán has been kindly communicated to
me by Dan Sitaru, along with his solution.
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148. Twin Inequalities in Four Variables: Twin 1

Assume a, b, c, d > 0. Prove that

(ac+ bd)2 ≤ (b
5
√
ab4 + d

5
√
cd4)(a

5
√
a4b+ c

5
√
c4d)

Proposed by Daniel Sitaru

Solution 1 (by Kevin Soto Palacios , Chris Kyriazis).
Recollect the Cauchy – Schwarz inequality :

For real numbers x1, x2, . . . xn and y1, y2, . . . , yn and integer n ≥ 1,(
n∑
k=1

xkyk

)2

≤

(
n∑
k=1

x2
k

)(
n∑
k=1

y2
k

)
,

with equality when the vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)

are proportional.

Take x1 =
√
b

10
√
ab4, y1 =

√
a

10
√
a4b, x2 =

√
2

10
√
cd4, y2 =

√
c

10
√
c2d.

Then the above becomes

(ac+ bd)2 ≤ (b
5
√
ab4 + d

5
√
cd4)(a

5
√
a4b+ c

5
√
c4d),

with equality when

√
b

10
√
ab4

√
a

10
√
a4b

=

√
d

10
√
cd4

√
c

10
√
c4d

, i.e., for bc = ad.

�
Solution 2 (by Seyran Ibrahimov).

Let a = x5, b = y5, c = z5, d = t5. Then the required inequality becomes

(x5y5 + z5t5)2 ≤ (y9x+ t9z)(x9y + z9t)

which is, when expanded and simplified, reduces to

xty9z9 + zyx9t9 ≥ 2x5y5z5t5

which is true by the AM-GM inequality . �
Acknowledgment (by Alexander Bogomolny)

Dan Sitaru has kindly posted this problem from the Romanian Mathematical
Magazine at the CutTheKnotMath page, along with three solutions. Solution
1 is by Kevin Soto Palacios; Chris Kyriazis independently submitted a similar
solution; Solution 2 is by Seyran Ibrahimov.

149. Twin Inequalities in Four Variables: Twin 2

Assume a, b, c, d > 0. Prove that

(a
3
√
a2b+ c

3
√
c2d)(b

3
√
ab2 + d

3
√
cd2) ≤ (a2 + c2)(b2 + c2)

Proposed by Daniel Sitaru

Solution(by Soumava Chakraborty).
After expanding and simplifying, the required inequality becomes

a
5
3 d

5
3 b

1
3 c

1
3 + b

5
3 c

5
3 a

1
3 d

1
3 ≤ a2d2 + b2c2.

Let x = a
1
3 , y = b

1
3 , u = c

1
3 , v = d

1
3 . The new variables are all positive. We need

to prove that
F = x5v5yu+ y5u5xv − x6v6 − y6y6 ≤ 0

We have
F = x5v5yu+ y5u5xv − x6v6 − y6u6
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= (yu− xv)
(

(xv)5 − (yu)5
)

= −(yu+ xv)2

(
4∑
k=0

(xv)k(yu)4−k

)
≤ 0,

with equality when yu = xv, i.e., a
1
3 d

1
3 = b

1
3 c

1
3 , or ad = bc. �

Acknowledgment (by Alexander Bogomolny)
Dan Sitaru has kindly posted this problem from the Romanian Mathematical
Magazine at the CutTheKnotMath page , along with three solutions. The
above solution is by Soumava Chakraborty; Ravi Prakash and Seyran Ibrahimov
have independently submitted two solutions along the same lines.

150. An Inequality with Three Points

Let O, I,G be the circumcenter, the incenter, and the centroid of an acute

∆ABC. Prove that∑
P∈{O,I,G}

∑
cycl

(
[∆APB]

[∆ABC]
+

[∆ABC]

[∆APB]

)2

≥ 100

where [F ]denotes the area of shape F.

Proposed by Daniel Sitaru

Solution (by Daniel Sitaru).
Let P be a point in the interior of ∆ABC. Then, obviously,

[∆APB] + [∆BPC] + [∆CPA]

[∆ABC]
= 1

Thus, if we introduce x = [∆APB]
[∆ABC] , y = [∆BPC]

[∆ABC] , z = [∆CPA]
[∆ABC] , then x, y, z > 0 and

x+ y + z = 1.

Define function f : (0,∞)→ R as f(x) =
(
x+ 1

x

)2

. Then

f ′(x) = 2
(
x+

1

x

)(
x− 1

x2

)
= 2x− 2

x3

And f ′′(x) = 2 + 6
x4 ≥ 0, making function f convex and Jensen’s inequality

applicable:

f(x) + f(y) + f(z) ≥ 3f
(x+ y + z

3

)
= 3f

(1

3

)
= 3
(

3 +
1

3

)2

=
100

3
Thus, ∑

P∈{OIG}

∑
cycl

(
[∆APB]

[∆ABC]
+

[∆ABC]

[∆APB]

)2

≥
∑

P∈{OIG}

100

3
= 100.

�
Remark (by Alexander Bogomolny)

The restriction to acute triangles would have been superfluous, if it were not for one
of the points involved being the circumcenter O which lies in the exterior of obtuse
triangles. This makes at least one of the variables x, y, z negative. If the problem
stipulates that all three selected points are located in the interior of the triangle,
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the inequality become true for every triangle. For example, assume ∆RST is the
Morley triangle of ∆ABC. Then∑

P∈{OIG}

∑
cycl

(
[∆APB]

[∆ABC]
+

[∆ABC]

[∆APB]

)2

≥ 100

Aknowledgment (by Alexander Bogomolny)
The problem (from the Romanian Mathematical Magazine) has been posted
by Dan Sitaru at the CutTheKnotMath page , Dan later communicated his
solution on a LaTex file by email.

Its nice to be important but more important its to be nice.

At this paper works a TEAM.

This is RMM TEAM.

To be continued!

Daniel Sitaru
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