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Some Challenging Problems Using 3-dimensional
Geometric Probabilities

Dana Heuberger 1

Abstract: In this article we use Henri Poincaré’s definition of the function
probability, on an infinite field of Lebesgue measurable events, for solving some
geometric problems in R3

In the following, we will prove a few generalisations of some classical probability
problems, using 3-dimensional geometry. The generalized probability, definded by
Henri Poincaré on an infinite field of Lebesgue measurable events, allows us to
model and solve situations that are closer to those in real life.

1. Introduction

At first, we will remind the notions we need in this paper.

Definition 1.1. The set Ω of the elementary events associated to an experiment
is named sample space, or the set of all possible outcomes.

Remark 1.2. We denote by K = P (Ω) the set of all events associated to an
experiment. K is also named the power set of the sample space, or the event space.
The sets Ω and K may be finite, or infinite.

Definition 1.3. (M. Kolmogorov)
Let be (Ω,K) an infinite field of events.
A function p : K → R is a ( completely additive) probability on (Ω,K) if the
following assertions are true:

(1) p (A) ≥ 0, ∀A ∈ K.
(2) p (Ω) = 1.
(3) If I ⊆ N, I 6= ∅, and (Ai)i∈I ⊂ K, such as for all i, j ∈ I with i 6= j,

we have Ai ∩Aj = ∅, then p

(⋃
i∈I

Ai

)
=
∑
i∈I

p (Ai)

The triplet (Ω,K, p) with the above properties is named an infinite field of proba-
bilities.

Definition 1.4. (H. Poincaré)
Ω ⊂ Rn is a Lebesgue measurable set and (Ω,K) an infinite field of events, such
that the subsets of K (the events) are Lebesgue measurable. For A ∈ K, we
denote by µ (A) its Lebesgue measure. We say that the function

p : K → R, p (A) =
µ (A)

µ (Ω)

is a geometric probability on the field (Ω,K).
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Remark 1.5. In this context, the set of all possible outcomes from the classical
definition will be replaced by the possible set, the set of all favorable outcomes, by
the favorable set and the cardinal of the set, by its Lebesgue measure.

Remark 1.6. The properties of the Lebesgue measure ensure the fact that the
function p from the previous definition is a probability .

Remark 1.7. For n = 1, 2, or 3, the Lebesgue measure coincides with the standard
measure of length, area, or volume.

2. Generalizations of some problems of classic geometrical
probabilities

In the following, we will present some problems that are solved in R2 (whose
solutions may be found in [1]) and we will prove their generalisations in 3-D space.

Problem 2.1. (Triangles with constant perimeter)
A segment [AB] of length a > 0 is divided in three random parts. Prove that the
probability of having a triangle with the side lengths equal to those of the three
segments thus obtained is p = 1

4 .

Generalisation 2.1. (D. Heuberger)
A segment [RS] of length a > 0 is divided in four random parts. Prove that the
probability of having a quadrilateral with the side lengths equal to those of the four
segments thus obtained is p = 1

2 .

Proof. We will use the following

Lemma Let a, b, c, d ∈ (0,∞). A quadrilateral with the side lengths equal to
a, b, c, d exists, if and only if 

a < b+ c+ d

b < c+ d+ a

c < a+ b+ d

d < a+ b+ c

Let M,N,P be three random interior points of
[RS], such that RM = x, MN = y, NP = z.

Then, PS = t = a− x− y − z and we must have x+ y + z < a.
The possible set is: Ω =

{
(x, y, z) ∈ R3

∣∣ x, y, z ∈ (0, a) , 0 < x+ y + z < a
}

.
We denote by D the favorable set of the event ED that there exists a quadrilateral
with the sides length equal to x, y, z, t. Using the previous Lemma, we deduce:
D =

{
(x, y, z) ∈ R3 ∩ Ω

∣∣ x < y + z + t, y < x+ z + t, z < x+ y + t, t < x+ y + z
}

therefore

D =

{
(x, y, z) ∈

(
0,

a

2

)3

∩ Ω

∣∣∣∣ x+ y + z >
a

2

}
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The plane (O′AC) has the
equation x + y + z = a

2 , and
x + y + z > a

2 is the equation
of the half-plane bounded by
(O′AC) that doesn’t contain O.
Moreover, the coordinates of
the points within the cube
[OABCO′A′B′C ′] verify the

relation: (x, y, z) ∈
(
0, a

2

)3
.

We obtain:

D = Int ([OABCO′A′B′C ′] \ ([OO′AC] ∪ [B′BA′C ′]))

The plane (UVW ) has the equation x + y + z = a, and x + y + z < a is the
equation of the half-plane bounded by (UVW ) that contains O, therefore Ω is the
interiour of the tetrahedron [OUVW ]. The requested probability is:

p (ED) =
V ([OABCO′A′B′C ′] \ [O′OAC])

V [OUVW ]
=

(
a
2

)3 − 2
6 ·
(
a
2

)3
1
6 · a3

=
1

2
.

�

Remark 2.3. The probability of having a circumscribed quadrilateral with the
side lengths equal to those of the segments obtained by dividing [RS] in four random
parts is equal to 0, i.e. the favorable set is negligible relative to the possible set.

Indeed, the possible set is the same as in Generalisation 2.1 and to find the
favorable set,we will use the following:

Theorem (Pitot)
The quadrilateral ABCD is circumscribed if and only if AB + CD = BC +AD.

The favorable set M of the event EM to whom we are seeking the probability,
is: M = M1 ∪M2 ∪M3, where

M1 = { (x, y, z) ∈ D| x+ y = z + t } = { (x, y, z) ∈ D| x+ y = z + a− x− y − z }

therefore

M1 =
{

(x, y, z) ∈ D | x+ y =
a

2

}
= [ACC ′A′] ,

M2 =
{

(x, y, z) ∈ D| x+ z =
a

2

}
= [ABC ′O′] ,

M3 =
{

(x, y, z) ∈ D| y + z =
a

2

}
= [BCO′A′] .

We obtain p (EM ) = V (M1∪M2∪M3)
V [OUVW ] = 0

1
6 ·a3 = 0.

Remark 2.4. The probability that on choosing four points randomly on a circle
of radius 1 we obtain a quadrilateral with a straight angle is also equal to 0.
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Indeed, we may consider that A is fixed. The positions of
the other three points will be given by the positive measure
in radians of the arcs AB,AC and AD.
If, for example, the angle A is straight, then we cut the
circle in A and we unfold it on the segment [AA′].

We must find the probability that choosing randomly
the points B,C,D on [AA′], the sum of the lenghts of
two adjacent segments equals π.

The possible set is:

Ω =
{

(x, y, z) ∈ R3
∣∣ x, y, z ∈ (0, 2π) , x+ y + z < 2π

}
and the favorable set M of the event EM to whom we are seeking the probability,
is:

M = { (x, y, z) ∈ Ω | x+ y = π } ∪ { (x, y, z) ∈ Ω | y + z = π }
With the same reasoning as in Remark 2.3, we deduce that the probability equals
0.

Remark 2.5. The probability that on choosing randomly four points A,B,C,D
on a circle of radius 1 we obtain a quadrilateral with O ∈ Int (ABCD) is p = 1

2 .

Indeed, denoting by x, y, z, t the positive measure
in radians of the arcs AB, BC, CD and DA, the
center of the circle must be in the interior of the
quadrilateral, because otherwise the length (mea-
sure) of one of the arcs is greater than the sum of
the lengths of the other three arcs.

By unfolding the cercle, as in Remark 2.4, on the segment [AA′], it follows that
it suffices to find the probability that on choosing randomly the points
B,C,D ∈ [AA′], if AB = x, BC = y, CD = z and DA′ = a − x − y − z = t, we
obtain 

x < y + z + t

y < z + t+ x

z < x+ y + t

t < x+ y + z

.

So it’s enough to have a quadrilateral with the sides of lengths x, y, z, t. Using
Generalisation 2.1, the conclusion follows.

Problem 2.6. (The problem of the meeting)
Two persons can arrive at any moment of time of the interval [0, T ] in a certain
place. Prove that the probability that the time interval between the arrivals of the

two persons doesn’t exceed t, where t ∈ (0, T ), is p = 1−
(
1− t

T

)2
.

Generalisation 2.6. (D. Heuberger)
Three persons can arrive at any moment of time of the interval [0, T ] in a certain
place. Then, the probability that the time interval between the arrivals of any two

of the three persons doesn’t exceed t, where t ∈
(
0, T2

)
is p =

(
t
T

)2 (
3− 2 t

T

)
.
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Proof. We denote by x, y, z the moments of the arrivals of the three persons.
We have x, y, z ∈ [0, T ]. The possible set is Ω = [0, T ]3.
We denote by Q the favorable set of the desired event EQ. Then:

Q = { (x, y, z) ∈ Ω | |x− y| ≤ t, |y − z| ≤ t, |x− z| ≤ t }
Q is the set of the points si-
tuated in the interior of the
cube with the length of the
sides T , between the planes
α1, α2, α3, α4, α5, α6, where

α1 : x− y − t = 0

α2 : x− y + t = 0

α3 : y − z − t = 0

α4 : y − z + t = 0

α5 : x− z − t = 0

α6 : x− z + t = 0

We have α1 ‖ α2 ‖ Oz, α3 ‖ α4 ‖ Ox
and α5 ‖ α6 ‖ Oy. Q is the union of
the cubes [OABCEDXF ], [GHIY JKLM ], of
the quadrilateral prism [DXFEGHIY ] and of
the triangular prisms [ADGBXH], [BXHCFI],
[DGJEYM ], [EYMFIL].
Then,
V [OABCEDXF ] = V [GHIY JKLM ] = t3,

V [DXFEGHIY ] = t2 · d (G, (DEF )) = t2 · (T − 2t)
and V [ADGBXH] = V [BXHCFI] = V [DGJEYM ] = V [EYMFIL].

Because V [ADGBXH] = S [ADG] · d (B, (ADG)), d (B, (ADG)) =
√

2
2 · t is

the distance from B to α1 and S [ADJG] = AD · d (A,GJ) =
√

2 · t · (T − t),
we obtain V [Q] = 2 · t3 + t2 · (T − 2t) + 2 · t2 · (T − t) = t2 · (3T − 2t).

Finally, p (EQ) = V [Q]
V [Ω] =

(
t
T

)2 (
3− 2 t

T

)
. �

Generalisation 2.6. (D. Heuberger)
Three persons can arrive at any moment of time of the interval [0, 4t] at a hotel.
Arrivals are independent and equally possible. Then, the probability that the time
interval between the arrivals of at least two of the three persons doesn’t exceed t
is p = 7

8 .

Proof. We denote by x, y and z the moments of the arrivals of the three persons,
therefore x, y, z ∈ [0, 4t]. The possible set is Ω = [0, 4t]3.
We denote by Q′ the favorable set of the desired event E′Q.

We have Q′ = Q1 ∪Q2 ∪Q3 where Q1 = { (x, y, z) ∈ Ω | |x− y| ≤ t },
Q2 = { (x, y, z) ∈ Ω | |y − z| ≤ t }, Q3 = { (x, y, z) ∈ Ω | |x− z| ≤ t }.
Q1 is the set of the points situated in the interior of the cube with the length of the
sides 4t, between the planes α1, α2, where α1 : x− y − t = 0, α2 : x− y + t = 0.
Q2 is the set of the points situated in the interior of the cube with the length of
the sides 4t, between the planes α3, α4, where α3 : y−z−t = 0, α4 : y−z+t = 0.
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and Q3 is the set of the points situated
in the interior of the cube with the length
of the sides 4t, between the planes α5, α6,
where α5 : x−z−t = 0, α6 : x−z+t = 0.
We have α1 ‖ α2 ‖ Oz, α3 ‖ α4 ‖ Ox,
α5 ‖ α6 ‖ Oy, and

V [Q1] = (4t)
3 − 2 · 1

2
· (3t)2 · 4t = 28t3.

It is obvious that the sets Q1, Q2 and Q3

have the same volume.
The set Q1 ∩ Q2 ∩ Q3 coincides with the
set Q from Generalisation 2.6, for T = 4t,
therefore V [Q1 ∩Q2 ∩Q3] = 10t3.
The sets Q1 ∩ Q2, Q2 ∩ Q3 and Q3 ∩ Q1

have the same volume.
The set Q3 ∩Q1 is the polyhedron from the last image. Its volume is:
V [Q3 ∩Q1] = V [Q1]− 2 · V [AGNBHP ]− 2 · V [BHPCSQ].
V [AGNBHP ] = S[AGN ] · d (A, OP ) = AN ·GN

2 · 1
8 ·OP = 9

2 t
3, and

V [BHPCSQ] = V [LBHP ]−V [LCSQ] = 9
2 t

3− CQ·SQ·d(L, CQ)
6 = 9

2 t
3− 4

3 t
3 = 19

6 t
3

We obtain V [Q3 ∩Q1] = 28t3 − 2 ·
(

9
2 t

3 + 19
6 t

3
)

= 38
3 t

3 and then

V [Q1 ∪Q2 ∪Q3] =V [Q1] + V [Q2] + V [Q3]− V [Q1 ∩Q2]− V [Q1 ∩Q3]−
− V [Q2 ∩Q3] + V [Q1 ∩Q2 ∩Q3] = 56t3.

Therefore p (EQ) = V [Q]
V [Ω] = 56t3

64t3 = 7
8 �

References
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