Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
INEQUALITY IN TRIANGLE 305 ROMANIAN MATHEMATICAL MAGAZINE

2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\frac{R}{2 r}+\frac{3 p^{2}}{(4 R+r)^{2}} \geq 2
$$

Proposed by Adil Abdullayev - Baku - Azerbaidian
Proof.
Using Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$, it's enough to prove that:

$$
\frac{R}{2 r}+\frac{3\left(16 R r-5 r^{2}\right)}{(4 R+r)^{2}} \geq \Leftrightarrow 16 R^{3}-56 R^{2} r+65 R r^{2}-34 R r^{2} \geq 0 \Leftrightarrow
$$

$$
\Leftrightarrow(R-2 r)\left(16 R^{2}-24 R r+17 r^{2}\right) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r \text {. }
$$

The equality holds if and only if the triangle is equilateral.

Remark

> The inequality can be developed:

2. In $\triangle A B C$

$$
n \cdot \frac{R}{r}+k \cdot \frac{p^{2}}{(4 R+r)^{2}} \geq 2 n+\frac{k}{3}, \text { where } 15 n \geq 2 k \geq 0
$$

Proposed by Marin Chirciu - Romania
Proof.

Using Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and the conditions $n \geq 0, k \geq 0$ it's enough to prove that:
$n \cdot \frac{R}{r}+k \cdot \frac{16 R r-5 r^{2}}{(4 R+r)^{2}} \geq 2 n+\frac{k}{3} \Leftrightarrow$
$48 n R^{3}-(72 n+16 k) R^{2} r+(40 k-45 n) R r^{2}-(6 n+18 k) r^{3} \geq 0$
$\Leftrightarrow(R-2 r)\left(48 n R^{2}+(24 n-16 k) R r+(3 n+8 k) r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2$ rand the observation that $48 n R^{2}+(24 n-16 k) R r+(3 n+8 k) r^{2} \geq 0$ for $15 n \geq 2 k \geq 0$.

The equality holds if and only if the triangle is equilateral or $n=k=0$.

Remark

The inequality can be reformulated:
3. In $\triangle A B C$

$$
\frac{R}{r}+\lambda \cdot \frac{p^{2}}{(4 R+r)^{2}} \geq 2+\frac{\lambda}{3}, \text { where } 0 \leq \lambda \leq \frac{15}{2}
$$

Proof.
In 2. we divide with n and we denote $\frac{k}{n}=\lambda$.
The equality holds if and only if the triangle is equilateral.
For $\lambda=6$ we obtain inequality 1.

Remark

> The inequality can be reformulated:

4. In $\Delta A B C$

$$
\lambda \cdot \frac{R}{r}+\frac{p^{2}}{(4 R+r)^{2}} \geq 2 \lambda+\frac{1}{3}, \lambda \geq \frac{2}{15}
$$

Proof.
In 2. we divide with k and we denote $\frac{n}{k}=\lambda$.
The equality holds if and only if the triangle is equilateral.

$$
\text { For } \lambda=\frac{1}{6} \text { we obtain inequality } 1
$$

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, mEhedinti.

E-mail address: dansitaru63@yahoo.com

