Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEM 296
 TRIANGLE MARATHON 201-300 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle A B C$

$$
\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}}+\frac{2 r}{R} \geq 4
$$

Proposed by Adil Abdullayev - Baku - Azerbaidian
Proof.
We have $\sum \frac{r_{a}}{r_{b}}=\sum \frac{r_{a}^{2}}{r_{a} r_{b}} \overbrace{\geq}^{\text {Bergstrom }} \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}}=\frac{(4 R+r)^{2}}{p^{2}} \overbrace{\geq}^{(1)} 4-\frac{2 r}{R}$, where (1) follows from Blundon - Gerretsen's inequality $p^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)}$ (true from Gergonne's identity: $H \Gamma^{2}=4 R^{2}\left[1-\frac{2 p^{2}(2 R-r)}{r(4 R+r)^{2}}\right], \Gamma$ is Gergonne's point, namely the lines intersections $A A_{1}, B B_{1}, C C_{1}$, where A_{1}, B_{1}, C_{1} are the tangent point of incircle in $\triangle A B C$ with the sides $B C, C A, A B)$.

The equality holds if and only if the triangle is equilateral.

Remark.

> The inequality can be developed:

2. In $\triangle A B C$

$$
\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}}+n \cdot \frac{r}{R} \geq 3+\frac{n}{2}, \text { where } n \leq 2
$$

Proposed by Marin Chirciu - Romania
Proof.
We have $\sum \frac{r_{a}}{r_{b}}=\sum \frac{r_{a}^{2}}{r_{a} r_{b}} \overbrace{\geq}^{\text {Bergstrom }} \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}}=\frac{(4 R+r)^{2}}{p^{2}} \overbrace{\geq}^{(1)} 3+\frac{n}{2}-\frac{n r}{R}$, where (1) follows from Blundon-Gerretsen's inequality $p^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)}$ (true from

Gergonne's identity: $H \Gamma^{2}=4 R^{2}\left[1-\frac{2 p^{2}(2 R-r)}{r(4 R+r)^{2}}\right], \Gamma$ is Gergonne's point, namely the intersection lines $A A_{1}, B B_{1}, C C_{1}$, where A_{1}, B_{1}, C_{1} are the tangent points of the incircle in $\triangle A B C$ with the sides $B C, C A, A B)$.
It remains to prove that:

$$
\frac{(4 R+r)^{2}}{\frac{R(4 R+r)^{2}}{2(2 R-r)}} \overbrace{\geq}^{(1)} 3+\frac{n}{2}-\frac{n r}{R} \Leftrightarrow \frac{4 R-2 r}{R}+\frac{n r}{R} \geq \frac{n+6}{2} \Leftrightarrow(2-n)(R-2 r) \geq 0
$$

obviously from Euler's inequality $R \geq 2 r$ and the condition $2-n \geq 0$.
The equality holds if and only if the triangle is equilateral.

Remark.

$$
\text { For } n=2 \text { we obtain inequality } 1 .
$$

For $n=0$ we obtain the well known inequality $\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}} \geq 3$.
For $n=-2$ we obtain the known inequality $\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}} \geq 2+\frac{2 r}{R}$.
Let's notice that for $n \leq 0$ the obtained inequalities are very weak, the inequality is interesting for $n>0$, being the strongest for $n=2$.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDinti.

E-mail address: dansitaru63@yahoo.com

