Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author: This article is published with open access.

PROBLEM 296 TRIANGLE MARATHON 201 - 300 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$rac{r_a}{r_b}+rac{r_b}{r_c}+rac{r_c}{r_a}+rac{2r}{R}\geq 4.$$

Proposed by Adil Abdullayev - Baku - Azerbaidian

Proof.

We have $\sum \frac{r_a}{r_b} = \sum \frac{r_a^2}{r_a r_b} \stackrel{(r_a + r_b + r_c)^2}{\geq} \stackrel{(q_a + r_b + r_c)^2}{=} = \frac{(4R+r)^2}{p^2} \stackrel{(1)}{\geq} 4 - \frac{2r}{R}$, where (1) follows from Blundon - Gerretsen's inequality $p^2 \leq \frac{R(4R+r)^2}{2(2R-r)}$ (true from Gergonne's identity: $H\Gamma^2 = 4R^2 \left[1 - \frac{2p^2(2R-r)}{r(4R+r)^2}\right]$, Γ is Gergonne's point, namely the lines intersections AA_1, BB_1, CC_1 , where A_1, B_1, C_1 are the tangent point of incircle in ΔABC with the sides BC, CA, AB).

The equality holds if and only if the triangle is equilateral.

Remark.

The inequality can be developed:

2. In ΔABC

 $rac{r_a}{r_b}+rac{r_b}{r_c}+rac{r_c}{r_a}+n\cdotrac{r}{R}\geq 3+rac{n}{2}, \ where \ n\leq 2.$

Proposed by Marin Chirciu - Romania

Proof.

We have $\sum \frac{r_a}{r_b} = \sum \frac{r_a^2}{r_a r_b} \xrightarrow{2} \frac{(r_a + r_b + r_c)^2}{r_a r_b + r_b r_c + r_c r_a} = \frac{(4R+r)^2}{p^2} \xrightarrow{2} 3 + \frac{n}{2} - \frac{nr}{R}$, where (1) follows from Blundon-Gerretsen's inequality $p^2 \leq \frac{R(4R+r)^2}{2(2R-r)}$ (true from Gergonne's identity: $H\Gamma^2 = 4R^2 \left[1 - \frac{2p^2(2R-r)}{r(4R+r)^2}\right]$, Γ is Gergonne's point, namely the intersection lines AA_1, BB_1, CC_1 , where A_1, B_1, C_1 are the tangent points of the incircle in ΔABC with the sides BC, CA, AB). It remains to prove that:

$$\underbrace{\frac{(4R+r)^2}{\frac{R(4R+r)^2}{2(2R-r)}} \xrightarrow{(1)} 3 + \frac{n}{2} - \frac{nr}{R} \Leftrightarrow \frac{4R-2r}{R} + \frac{nr}{R} \ge \frac{n+6}{2} \Leftrightarrow (2-n)(R-2r) \ge 0$$

MARIN CHIRCIU

obviously from Euler's inequality $R \ge 2r$ and the condition $2 - n \ge 0$. The equality holds if and only if the triangle is equilateral.

Remark.

For
$$n = 2$$
 we obtain inequality **1**.
For $n = 0$ we obtain the well known inequality $\frac{r_a}{r_b} + \frac{r_b}{r_c} + \frac{r_c}{r_a} \ge 3$.
For $n = -2$ we obtain the known inequality $\frac{r_a}{r_b} + \frac{r_b}{r_c} + \frac{r_c}{r_a} \ge 2 + \frac{2r}{R}$.

Let's notice that for $n \leq 0$ the obtained inequalities are very weak, the inequality is interesting for n > 0, being the strongest for n = 2.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E\text{-}mail\ address:\ \texttt{dansitaru63@yahoo.com}$