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1. In ∆ABC
r2a
ha

+
r2b
hb

+
r2c
hc

≥ 9r.
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Proof.
We prove the following lemma:

Lemma.
2. In ∆ABC
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b
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+
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=
2R(4R + r) − p2

r
.

Proof.
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r2p
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Let’s prove inequality 1.

Using the Lemma, inequality 1, can be written:

2R(4R+ r)− p2

r
≥ 9r ⇔ p2 ≤ 2R(4R+r)−9r2, which follows from Gerretsen’s inequality:

p2 ≤ 4R2 + 4Rr + 3r2

It remains to prove that:

4R2+4Rr+3r2 ≤ 2R(4R+r)−9r2 ⇔ 2R2−Rr−6r2 ≥ 0⇔ (R−2r)(2R+3r) ≥ 0,

obviously from Euler’s inequality: R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�

Remark.
Inequality 1. can be strengthened:
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Proof.
Using the Lemma, inequality 3 can be written:

2R(4R+ r)− p2

r
≥ 9R

2
⇔ 2p2 ≤ 2R(4R+r)−9Rr, which follows from Gerretsen’s inequality:

p2 ≤ 4R2 + 4Rr + 3r2.

It remains to prove that:

2(4R2+4Rr+3r2) ≤ 2R(4R+r)−9Rr ⇔ 8R2−13Rr−6r2 ≥ 0⇔ (R−2r)(8R+3r) ≥ 0,

obviously from Euler’s inequality: R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�

Remark.
Inequality 3. is stronger than inequality 1.

4. In ∆ABC
r2a
ha

+
r2b
hb
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≥
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2
≥ 9r.

Proof.
See inequality 3. and Euler’s inequality.

The equality holds if and only if the triangle is equilateral.
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