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Proof.
We prove the following lemma:
Lemma.
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Let’s prove inequality 1.
Using the Lemma, inequality 1, can be written:
2R(4R — p?
“r+r) —p > 9r < p? < 2R(4R+71)—9r2, which follows from Gerretsen’s inequality:
,
p? < 4AR? + ARr + 3r?
It remains to prove that:
4R?+4Rr+3r? <2R(4R+7)—9r* & 2R>—Rr—6r> > 0 & (R—2r)(2R+3r) > 0,
obviously from Fuler’s inequality: R > 2r.
The equality holds if and only if the triangle is equilateral.

O
Remark.
Inequality 1. can be strengthened:
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Proof.

Using the Lemma, inequality 3 can be written:
2R(4R + 1) — p?

. > 5 ®© 2p* < 2R(4R+1)—9Rr, which follows from Gerretsen’s inequality:
p? <4R* + 4Rr + 3r°.
It remains to prove that:
2(4R*+4Rr+3r?) < 2R(4R+r)—9Rr < 8R?*—13Rr—6r> > 0 < (R—2r)(8R+3r) > 0,
obviously from FEuler’s inequality: R > 2r.
The equality holds if and only if the triangle is equilateral.

O
Remark.
Inequality 3. is stronger than inequality 1.
4. In AABC
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Proof.
See inequality 3. and Euler’s inequality.
The equality holds if and only if the triangle is equilateral.
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