Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

SOLUTION
 INEQUALITY IN TRIANGLE - 413 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{27(a+b)(b+c)(c+a)}{8 a b c}
$$

Proposed by Abdullayev - Baku - Azerbaidian
Remark.

> The inequality can be strengthened:
2. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{2 p^{2}}{R r}
$$

Marin Chirciu - Romania
Proof.

> We prove that following Lemma.

Lemma 1.
3. In $\Delta A B C$

$$
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq \frac{p^{2}+r^{2}-2 R r}{4 R r}
$$

Proof.
Using Teresin's inequality $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$, formula $h_{a}=\frac{b c}{2 R}$ and the known inequality in triangle $\sum \frac{b^{2}+c^{2}}{b c}=\frac{p^{2}+r^{2}-2 R r}{2 R r}$, we obtain:
$\sum \frac{m_{a}}{h_{a}} \geq \sum \frac{\frac{b^{2}+c^{2}}{4 R}}{\frac{b c}{2 R}}=\frac{1}{2} \sum \frac{b^{2}+c^{2}}{b c}=\frac{p^{2}+r^{2}-2 R r}{4 R r}$
Equality holds if and only if the triangle is equilateral.

Remark.

> We can write the inequalities:

4. In $\triangle A B C$

$$
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq \frac{p^{2}+r^{2}-2 R r}{4 R r} \geq \frac{7 R-2 r}{2 R} \geq 3
$$

Proof.
The first inequality is Lemma 1, the second inequality follows from
Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$, and the third inequality follows from Euler's inequality $R \geq 2 r$.

Equality holds if and only if the triangle is equilateral.

Lemma 2.

5. In $\Delta A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \geq \frac{2 p^{2}}{3 R r}
$$

Proof.
Using Lemma 1, is enough to prove that: $\left(\frac{p^{2}+r^{2}-2 R r}{4 R r}\right)^{2} \geq \frac{2 p^{2}}{3 R r} \Leftrightarrow$
$3 p^{4}+p^{2}\left(6 r^{2}-44 R r\right)+12 R^{2} r^{2}-12 R r^{3}+3 r^{4} \geq 0 \Leftrightarrow p^{2}\left(3 p^{2}+6 r^{2}-44 R r\right)+3 r^{2}(2 R-r)^{2} \geq 0$

We distinguish the cases:

1) If $\mathbf{3} \boldsymbol{p}^{2}+\mathbf{6} \boldsymbol{r}^{\mathbf{2}}-\mathbf{4 4 R r} \geq \mathbf{0}$, the inequality is obvious.
2) If $\mathbf{3} p^{2}+\mathbf{6} r^{2}-\mathbf{4 4 R r}<\mathbf{0}$, inequality we can rewrite:
$p^{2}\left(44 R r-6 r^{2}-3 p^{2}\right) \leq 3 r^{2}(2 R-r)^{2}$, true from Gerretsen's inequality:

$$
\left(4 R^{2}+4 R r+3 r^{2}\right)\left[44 R r-6 r^{2}-3\left(16 R r-5 r^{2}\right)\right] \leq 3 r^{2}(2 R-r)^{2} \Leftrightarrow
$$

$$
\Leftrightarrow 4 R^{3}-2 R^{2} r-9 R r^{2}-6 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(4 R^{2}+6 R r+3 r^{2}\right) \geq 0
$$

obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark 2.

We can rewrite the inequalities:
6. In $\Delta A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \geq \frac{2 p^{2}}{3 R r} \geq \frac{9(a+b)(b+c)(c+a)}{8 a b c} \geq 9
$$

Proof.
First inequality is Lemma 2.
Let's prove the second inequality.
Using the known identities in triangle: $(a+b)(b+c)(c+a)=2 p\left(p^{2}+r^{2}+2 R r\right)$
and $a b c=4 R r p$, the second inequality:
$\frac{2 p^{2}}{3 R r} \geq \frac{9 \cdot 2 p\left(p^{2}+r^{2}+2 R r\right)}{8 \cdot 4 R r p} \Leftrightarrow 32 p^{2} \geq 27\left(p^{2}+r^{2}+2 R r\right) \Leftrightarrow 5 p^{2} \geq 27\left(r^{2}+2 R r\right)$
which follows from Gerretsen's inequality: $p^{2} \geq 16 R r-5 r^{2}$ and Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

The third inequality is the well known inequality $(a+b)(b+c)(c+a) \geq 8 a b c$ (Cesaro)
We've obtained a strengthened inequality in triangle $\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq 3$.
Let's pass to solving inquality 2: $\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{2 p^{2}}{R r}$
Base on Lemma 2 and the the last inequality from Remark 1 we obtain:

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3}=\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \cdot\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right) \geq \frac{2 p^{2}}{3 R r} \cdot 3=\frac{2 p^{2}}{R r}
$$

Equality holds if and only if the triangle is equilateral.

Remark 3.

Inequality 2 is stronger then inequality 1:

7. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{2 p^{2}}{R r} \geq \frac{27(a+b)(b+c)(c+a)}{8 a b c}
$$

Proof.
The first inequality is $\boldsymbol{6}$.
Let's prove the second inequality.
Using the known identities in triangle: $(a+b)(b+c)(c+a)=2 p\left(p^{2}+r^{2}+2 R r\right)$
and $a b c=4 R r p$, the second inequality:
$\frac{2 p^{2}}{R r} \geq \frac{27 \cdot 2 p\left(p^{2}+r^{2}+2 R r\right)}{8 \cdot 4 R r p} \Leftrightarrow 32 p^{2} \geq 27\left(p^{2}+r^{2}+2 R r\right) \Leftrightarrow 5 p^{2} \geq 27\left(r^{2}+2 R r\right)$
which follows from Gerretsen's inequality: $p^{2} \geq 16 R r-5 r^{2}$ and Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark 4.

We can write the inequalities:

8. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{2 p^{2}}{R r} \geq \frac{27(a+b)(b+c)(c+a)}{8 a b c} \geq 27
$$

Proof.
See 7 and Cesaro's inequality $(a+b)(b+c)(c+a) \geq 8 a b c$

Remark 5.

$$
\text { Inequality } \mathcal{2} \text { can also be strengthened: }
$$

9. In $\Delta A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{p^{2}}{3 R r}\left(7-\frac{2 r}{R}\right)
$$

Proof.
Base on Lemma 2 and on the second inequality from Remark 1 we obtain:

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3}=\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \cdot\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right) \geq \frac{2 p^{2}}{3 R r} \cdot \frac{7 R-2 r}{2 R}=\frac{p^{2}}{3 R r}\left(7-\frac{2 r}{R}\right)
$$

Equality holds if and only if the triangle is equilateral.

Remark 6.

> Inequality 9. is stronger then inequality 2.:
10. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{p^{2}}{3 R r}\left(7-\frac{2 r}{R}\right) \geq \frac{2 p^{2}}{R r}
$$

Proof.
See inequality 9. and Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark 7.

We can write the inequalities:
11. In $\triangle A B C$
$\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{p^{2}}{3 R r}\left(7-\frac{2 r}{R}\right) \geq \frac{2 p^{2}}{R r} \geq \frac{27(a+b)(b+c)(c+a)}{8 a b c} \geq 27$.

Proof.
See 10. and 8.
Equality holds if and only if the triangle is equilateral.

We've obtained again a strengthening of the well known inequality in triangle

$$
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq 3
$$

Finally we can propose a development of inequality 2.:
12. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{n} \geq 3^{n-3} \cdot \frac{2 p^{2}}{R r}, \text { where } n \geq 2
$$

Proof.
Base on Lemma 2 and the last inequality from Remark 1 we obtain:
$\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{n}=\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \cdot\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{n-2} \geq \frac{2 p^{2}}{3 R r} \cdot 3^{n-2}=3^{n-3} \cdot \frac{2 p^{2}}{R r}$.
Equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

