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)3
.
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Proof.
Using Huygens’ inequality we obtain(

1 +
1

ma

)(
1 +

1

mb

)(
1 +

1

mc

)
≥
(
1 + 3

√
1

mambmc

)3
≥
(
1 +

2

3R

)3
,

where the last inequality is equivalent with:
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√
1

mambmc
≥ 2

3R
⇔ 1

mambmc
≥
( 2

3r

)3
⇔ mambmc ≤

(3R
2

)3
which follows from means inequality and the known inequality in triangle

∑
ma ≤ 4R+r ≤ 9R

2
;

indeed: mambmc ≤
(ma +mb +mc

3

)3
≤
(4R+ r

3

)3
≤
(3R

2

)3
.

Equality holds if and only if the triangle is equilateral.

�

Remark.
In the same way it can be proposed:
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Proof.

Using Huygens’ inequality we obtain(
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where the last inequality is equivalent with:
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√
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)3
⇔
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which follows from means inequality and the known inequality in triangle
1
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ma ≤ 4R+ r ≤ 9R

2
; indeed:

(ma +mb)(mb +mc)(mc +ma) ≤
(2(ma +mb +mc)

3

)3
≤
(2(4R+ r)

3

)3
≤ (3R)3

Equality holds if and only if the triangle is equilateral.
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3. In ∆ABC(
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, where λ ≥ 0

Proposed by Marin Chirciu - Romania

Proof.
Using Huygens’ inequality we obtain(
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where the last inequality is equivalent with:
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≥
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⇔
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which follows from means inequality and the known inequality in triangle∑

ma ≤ 4R+ r ≤ 9R

2
; indeed:

(ma+λmb)(mb+λmc)(mc+λma) ≤
( (1 + λ)(ma +mb +mc)

3

)3
≤
( (1 + λ)(4R+ r)

3

)3
≤
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2

)3
Equality holds if and only if the triangle is equilateral.
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Note

For λ = 0 we obtain inequality 1., and for λ = 1 we obtain inequality 2.
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