Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEM SP. 083 RMM
 NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle A B C$

$$
\left(1+\frac{1}{m_{a}}\right)\left(1+\frac{1}{m_{b}}\right)\left(1+\frac{1}{m_{c}}\right) \geq\left(1+\frac{2}{3 R}\right)^{3}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Proof.
Using Huygens' inequality we obtain

$$
\left(1+\frac{1}{m_{a}}\right)\left(1+\frac{1}{m_{b}}\right)\left(1+\frac{1}{m_{c}}\right) \geq\left(1+\sqrt[3]{\frac{1}{m_{a} m_{b} m_{c}}}\right)^{3} \geq\left(1+\frac{2}{3 R}\right)^{3}
$$

where the last inequality is equivalent with:

$$
\sqrt[3]{\frac{1}{m_{a} m_{b} m_{c}}} \geq \frac{2}{3 R} \Leftrightarrow \frac{1}{m_{a} m_{b} m_{c}} \geq\left(\frac{2}{3 r}\right)^{3} \Leftrightarrow m_{a} m_{b} m_{c} \leq\left(\frac{3 R}{2}\right)^{3}
$$

which follows from means inequality and the known inequality in triangle $\sum m_{a} \leq 4 R+r \leq \frac{9 R}{2}$;

$$
\text { indeed: } m_{a} m_{b} m_{c} \leq\left(\frac{m_{a}+m_{b}+m_{c}}{3}\right)^{3} \leq\left(\frac{4 R+r}{3}\right)^{3} \leq\left(\frac{3 R}{2}\right)^{3}
$$

Equality holds if and only if the triangle is equilateral.

Remark.

In the same way it can be proposed:
2. In $\triangle A B C$

$$
\left(1+\frac{1}{m_{a}+m_{b}}\right)\left(1+\frac{1}{m_{b}+m_{c}}\right)\left(1+\frac{1}{m_{c}+m_{a}}\right) \geq\left(1+\frac{1}{3 R}\right)^{3}
$$

Proof.

> Using Huygens' inequality we obtain

$$
\left(1+\frac{1}{m_{a}+m_{b}}\right)\left(1+\frac{1}{m_{b}+m_{c}}\right)\left(1+\frac{1}{m_{c}+m_{a}}\right) \geq\left(1+\sqrt[3]{\frac{1}{\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right)}}\right)^{3} \geq\left(1+\frac{1}{3 R}\right)^{3}
$$

where the last inequality is equivalent with:

$$
\begin{gathered}
\sqrt[3]{\frac{1}{\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right)}} \geq \frac{1}{3 R} \Leftrightarrow \frac{1}{\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right)} \geq\left(\frac{1}{3 R}\right)^{3} \Leftrightarrow \\
\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right) \leq(3 R)^{3}
\end{gathered}
$$

which follows from means inequality and the known inequality in triangle

$$
\begin{aligned}
\sum m_{a} & \leq 4 R+r \leq \frac{9 R}{2} ; \text { indeed } \\
\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right) & \leq\left(\frac{2\left(m_{a}+m_{b}+m_{c}\right)}{3}\right)^{3} \leq\left(\frac{2(4 R+r)}{3}\right)^{3} \leq(3 R)^{3}
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.

3. In $\Delta A B C$

$$
\left(1+\frac{1}{m_{a}+\lambda m_{b}}\right)\left(1+\frac{1}{m_{b}+\lambda m_{c}}\right)\left(1+\frac{1}{m_{c}+\lambda m_{a}}\right) \geq\left(1+\frac{2}{3(\lambda+1) R}\right)^{3}, \text { where } \lambda \geq 0
$$

Proposed by Marin Chirciu - Romania

Proof.
Using Huygens' inequality we obtain

$$
\begin{aligned}
\left(1+\frac{1}{m_{a}+\lambda m_{b}}\right)\left(1+\frac{1}{m_{b}+\lambda m_{c}}\right) & \left(1+\frac{1}{m_{c}+\lambda m_{a}}\right) \geq\left(1+\sqrt[3]{\left.\frac{1}{\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right)}\right)^{3}} \geq\right. \\
& \geq\left(1+\frac{2}{3(\lambda+1) R}\right)^{3}
\end{aligned}
$$

where the last inequality is equivalent with:

$$
\begin{gathered}
\sqrt[3]{\frac{1}{\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right)}} \geq \frac{1}{3 R} \Leftrightarrow \frac{1}{\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right)} \geq\left(\frac{2}{3(\lambda+1) R}\right)^{3} \Leftrightarrow \\
\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right) \leq\left(\frac{3(\lambda+1) R}{2}\right)^{3}
\end{gathered}
$$

which follows from means inequality and the known inequality in triangle

$$
\sum m_{a} \leq 4 R+r \leq \frac{9 R}{2} ; \text { indeed: }
$$

$\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right) \leq\left(\frac{(1+\lambda)\left(m_{a}+m_{b}+m_{c}\right)}{3}\right)^{3} \leq\left(\frac{(1+\lambda)(4 R+r)}{3}\right)^{3} \leq\left(\frac{3(\lambda+1) R}{2}\right)^{3}$
Equality holds if and only if the triangle is equilateral.

Note
For $\lambda=0$ we obtain inequality 1., and for $\lambda=1$ we obtain inequality $\mathcal{2}$.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, mehedinti.

E-mail address: dansitaru63@yahoo.com

