RMM - Calcultwe Avarathon 101-200

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

RMM
 CALCULUS
 MARATHON
 101-200

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro
Proposed by

Daniel Sitaru - Romania Hoang Le Nhat Tung - Hanoi - Vietnam

Rovsen Pirguliev - Sumgait - Azerbaidian
D.M. Bătinețu - Giurgiu - Romania

Neculai Stanciu - Romania
Abdallah Almalih - Damascus - Syria
Geanina Tudose - Romania
Soumitra Mandal - Chandar Nagore - India
Uche Eliezer Okeke - Anambra - Nigeria
Nitin Gurbani - India
Nguyen Viet Hung - Hanoi - Vietnam
Vidyamanohar Sharma Astakala - Hydebarad - India
Adil Abdullayev - Baku - Azerbaidian
Maria Elena Panaitopol - Romania
Koczinger Éva - Romania
Kovács Béla - Romania
Seyran Ibrahimov - Maasilli - Azerbaidian
George Apostolopoulos - Messolonghi - Greece

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solutions by

Daniel Sitaru - Romania

Igor Soposki - Skopje, Bedri Hajrizi - Mitrovica - Kosovo,
Ravi Prakash - New Delhi - India, Rovsen Pirguliyev - Sumgait - Azerbaidian
Shivam Sharma - New Delhi - India, Sujeetran Balendran - Sri Lanka
Kunihiko Chikaya - Tokyo - Japan, Carlos Suarez - Quito - Ecuador,
Hasan Bostanlik - Sarkisla - Turkey, Boris Colakovic - Belgrade - Serbia
Khanh Hung Vu - Ho Chi Minh - Vietnam, Hoang Le Nhat Tung - Hanoi - Vietnam Myagmarsuren Yadamsuren - Darkhan - Mongolia, Soumava Chakraborty - Kolkata-India

Nguyen Thanh Nho - Tra Vinh - Vietnam, Subhajit Chattopadhyay - Bolpur - India
Togrul Ehmedov - Baku - Azerbaidian, Abinash M ohapatra - India Șerban George Florin - Romania, Lazaros Zachariadis - Thessaloniki - Greece

Soumava Pal - Kolkata - India, SK Rejuan - West Bengal - India Abdelhak Maoukouf - Casablanca - M orocco, Nawar Alasadi - Babylon - Iraq Chris Kyriazis - Greece, Leonard Giugiuc - Romania Quang Minh Tran - Vietnam, Soumitra Mandal - Chandar Nagore - India Saptak Bhattacharya - Kolkata - India, Antonis Anastasiadis - Katerini-Greece Kays Tomy - Nador - Tunisia, Michel Rebeiz - Lebanon, Anisoara Dudu-Romania Dimitris Kastriotis - Greece, Abdallah El Farissi - Bechar - Algerie Geanina Tudose - Romania, Vidyamanohar Sharma Astakala - Hydebarad - India Nirapada Pal - Jhargram - India, Madan Beniwal - India

Yen Tung Chung - Taichung - Taiwan, Francis Fregeau - Quebec - Canada
Seyran Ibrahimov - Maasilli - Azerbaidian, Rozeta Atanasova - Skopje,

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Abdallah Almalih - Damascus - Syria, Avishek Mitra - Kolkata - India Mehmet șahin - Ankara - Turkey, Koczinger Éva - Romania

Kovács Béla - Romania, Shahlar Maharramov - Jebrail - Azerbaidian Uche Eliezer Okeke - Anambra - Nigeria, Rustem Zeynalov -Baku-Azerbaidian Kevin Soto Palacios - Huarmey - Peru, Anas Adlany - El Zemamra - M orocco, Anunoy Chakraborty - India

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
101.

$E_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ; \boldsymbol{E}_{2}: \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1, a>b$. Find yellow area and red area.

Proposed by Daniel Sitaru - Romania

Solution by Igor Soposki-Skopje

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \wedge \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1 \Rightarrow \begin{aligned}
& x_{1}=\frac{a b}{\sqrt{a^{2}+b^{2}}} \\
& y_{1}=\frac{a b}{\sqrt{a^{2}+b^{2}}}
\end{aligned} P\left(x_{1}, y_{1}\right)=\left(\frac{a b}{\sqrt{a^{2}+b^{2}}} ; \frac{a b}{\sqrt{a^{2}+b^{2}}}\right), \alpha=\frac{\pi}{4}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
P_{\text {red }}=8 \cdot\left[\frac{a^{2} \pi}{8}-\int_{0}^{x_{1}} x d x-\int_{0}^{x_{1}} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x\right] \\
I_{1}=\int_{0}^{x_{1}} x d x=\frac{x_{1}^{2}}{2}=\frac{(a b)^{2}}{2\left(a^{2}+b^{2}\right)}
\end{gathered}
$$

$$
I_{2}=b \cdot \int_{x_{1}}^{a} \sqrt{1-\frac{x^{2}}{a^{2}}}=\left\{\begin{array}{c}
x=a \sin t \\
d x=a \cos t d t
\end{array}\right\}=a b \int \cos ^{2} t d t=
$$

$$
=a b \int \frac{1+\cos 2 t}{2} d t=a b\left[\frac{t}{2}+\frac{\sin 2 t}{4}\right]=\frac{a b}{2} \cdot\left[\arcsin \frac{x}{a}+\frac{x}{a} \cdot \sqrt{1-\frac{x^{2}}{a^{2}}}| |_{x_{1}}^{a}=\right.
$$

$$
=\frac{a b}{2} \cdot\left[\arcsin 1-\arcsin \frac{b}{\sqrt{a^{2}+b^{2}}}+0-\frac{a b}{a^{2}+b^{2}}\right]=
$$

$$
=\frac{a b}{2} \cdot\left[\frac{\pi}{2}-\arcsin \frac{b}{\sqrt{a^{2}+b^{2}}}-\frac{a b}{a^{2}+b^{2}}\right] \Rightarrow
$$

$$
P_{\text {red }}=a^{2} \pi-\frac{4(a b)^{3}}{a^{2}+b^{2}}-2(a b) \pi+4 a b \arcsin \frac{b}{\sqrt{a^{2}+b^{2}}}+\frac{4(a b)^{2}}{a^{2}+b^{2}}=
$$

$$
=a^{2} \pi-2(a b) \pi+4 a b \cdot \arcsin \frac{b}{\sqrt{a^{2}+b^{2}}}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
P\left(x_{1}, y_{1}\right), x_{1}=\frac{a b}{\sqrt{a^{2}+b^{2}}}, y_{1}=\frac{a b}{\sqrt{a^{2}+b^{2}}} \\
P_{y e l l o w}=8 \cdot\left[\int_{0}^{x_{1}} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x-\int_{0}^{x_{1}} x d x\right]= \\
=8 \cdot\left[\left.\frac{a b}{2}\left[\arcsin \frac{x}{a}+\frac{x}{a} \cdot \sqrt{1-\frac{x^{2}}{a^{2}}}\right]\right|_{0} ^{x_{1}}-\frac{x_{1}^{2}}{2}\right]= \\
=4 a b \cdot\left\{\arcsin \frac{b}{\sqrt{a^{2}+b^{2}}}+\frac{a b}{a^{2}+b^{2}}\right\}-4 \frac{(a b)^{2}}{a^{2}+b^{2}}= \\
=4 a b \cdot \arcsin \frac{b}{\sqrt{a^{2}+b^{2}}}+\frac{4(a b)^{2}}{a^{2}+b^{2}}-\frac{4(a b)^{2}}{a^{2}+b^{2}} \\
P_{y \text { ellow }}=4 a b \arcsin \frac{b}{\sqrt{a^{2}+b^{2}}}
\end{gathered}
$$

102. Solve in natural numbers the following equation:

$$
\frac{1^{2} \cdot 2!+2^{2} \cdot 3!+\cdots+n^{2}(n+1)!-2}{(n+1)!}=108
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Bedri Hajrizi-M itrovica-Kosovo, Solution 2 by Ravi Prakash-New Delhi-India, Solution 3 by Rovsen Pirguliyev-Sumgait-Azerbaidian, Solution 4 by Shivam Sharma-New Delhi-India, Solution 5 by Sujeetran Balendran-Sri Lanka, Solution 6 by Kunihiko Chikaya-Tokyo-Japan

Solution 1 by Bedri Hajrizi-Nis-Serbia

$$
\text { Let } S(k)=1^{1} \cdot 2!+2^{2} \cdot 3!+\cdots+k^{2}(k+1)!; S(1)=1^{2} \cdot 2=2
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
S(2)=1^{2} \cdot 2!+2^{2} \cdot 3!=2+4! \\
S(3)=2+4!+3^{2} \cdot 4!=2+10 \cdot 4!=2+2 \cdot 5! \\
S(4)=2+2 \cdot 5!+4^{2} \cdot 5!=2+18 \cdot 5!=2+3 \cdot 6! \\
\text { Suppose that } S(n)=2+(n-1)(n+2)! \\
\text { We must proof that } S(n+1)=2+n(n+3)! \\
\text { Readly: } S(n+1)=S(n)+(n+1)^{2}(n+2)!= \\
=2+(n-1)(n+2)!+(n+1)(n+2)!= \\
=2+\left(n^{2}+2 n+1+n-1\right)(n+2)!= \\
=2+\left(n^{2}+3 n\right)(n+2)!=2+n(n+3)!\text { Q.E.D. }
\end{gathered}
$$

So: $1^{2} \cdot 2!+2^{2} \cdot 3!+\cdots+(n-1)^{2} n!=2+(n-1)(n+2)!$

$$
\frac{\mathbf{1}^{2} \cdot 2!+2^{2} \cdot 3!+\cdots+n^{2}(n+1)!-2}{(n+1)!}=\mathbf{1 0 8}
$$

$$
\frac{2+(n-1)(n+2)!-2}{(n+1)!}=108 ;(n-1)(n+2)=9 \cdot 12 ; n=10
$$

Solution 2 by Ravi Prakash-New Delhi-India

$$
\text { For } r \geq 1, \text { write } r^{2} \equiv(r+3)(r+2)+A(R+2)+B
$$

Put $r=-2,4=B ;$ Put $r=-3,9=-A+B \Rightarrow A=-5$

$$
\begin{gathered}
\therefore r^{2} \equiv(r+3)(r+2)-5(r+2)+4 \\
\Rightarrow r^{2}(r+1)!=(r+3)!-5(r+2)!+4(r+1)! \\
=((r+3)!-(r+2)!)-4((r+2)!-(r+1)!) \\
\Rightarrow \sum_{r=1}^{n} r^{2}(r+1)!=((n+3)!-3!)-4((n+2)!-2!) \\
=(n+3)!-4(n+2)!+2
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\therefore \sum_{k=1}^{n} k^{2}(k+1)!-2=(n+2)!(n+3-4)=(n+2)!(n-1) \\
\therefore \frac{\sum_{k=1}^{n}\left(k^{2}\right)(k+1)!-2}{(n+1)!}=108 \\
\Rightarrow(n+2)(n-1)=108 \Rightarrow n^{2}+n-110=0 \\
\Rightarrow(n+11)(n-10)=0 . \text { As } n \in \mathbb{N}, n=10
\end{gathered}
$$

Solution 3 by Rovsen Pirguliyev-Sumgait-Azerbaidian

$$
\begin{aligned}
& \frac{\sum_{k=1}^{n} k^{2}(k+1)!-2}{(n+1)!}=108, \sum_{k=1}^{n} \boldsymbol{k}^{\mathbf{2}}(\boldsymbol{k}+\mathbf{1})!=(\boldsymbol{n}-\mathbf{1})(\boldsymbol{n}+2)!+\mathbf{2}, \\
& \text { then } \frac{(n-1)(n+2)!+2-2}{(n+1)!}=\frac{(n-1)(n+2)!}{(n+1)!}=(n-1)(n+2), \\
&(n-1)(n+2)=\mathbf{1 0 8} \Rightarrow \boldsymbol{n}=\mathbf{1 0}
\end{aligned}
$$

Solution 4 by Shivam Sharma-New Delhi-India

$$
\begin{aligned}
& \frac{\left[\sum_{j=1}^{n}\left(j^{2}\right)(j+1)!\right]-2}{(n+1)!}=\mathbf{1 0 8} \text {. Applying partial sum, we get, } \\
& \frac{\Gamma(n+3)(n-1)+2-2}{(n+1)!}=108 ; \frac{(n+2)!(n-1)+2-2}{(n+1)!}=108 \\
& \frac{(n+2)(n+1)!(n-1)+2-2}{(n+1)!}=108 ;(n+2)(n-1)=108 \\
& n^{2}+2 n-2=108 ; n^{2}+2 n-110=0 ; n=\frac{-2+\sqrt{4+440}}{2} \\
& \text { We get, } \boldsymbol{n}=10 \text { [Valid]; } \boldsymbol{n}=\mathbf{- 1 0} \text { [Invalid]. Hence, } \boldsymbol{n}=10 \\
& \text { Solution } 5 \text { by Sujeetran Balendran-Sri Lanka } \\
& \sum_{k=1}^{n}(r+x)!(r+x) \text { [Theory]; } f(n)=(r+x+1)!; f(r)=(r+x)! \\
& f(r+1)-f(r)=(r+x+1)!-(r+x)! \\
& =(r+x)![r+x+1-1]=(r+x)!(r+x)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$\sum_{k=1}^{n}(r+x)!(r+x)=f(r+\mathbf{1})-f(\mathbf{1})=(r+x+\mathbf{1})!-(x+\mathbf{1})!$
My solution $108=\frac{\sum_{k=1}^{n} r^{2}(r+1)!-2}{(n+1)!}$
$V_{r}=r^{2}(r+1)!=\left(r^{2}+4 r+4\right)(r+1)!-4(r+1)(r+1)!$
$V_{r}=(r+2)(r+2)!-4(r+1)(r+1)!$
$\sum_{k=1}^{n} V_{r}=\sum_{k=1}^{n}(r+2)(r+2)!-4 \sum_{k=1}^{n}(r+1)(r+1)!$
$=(n+3)!-6-4(n+2)!+8=(n+3)!-4(n+2)+2$
$\mathbf{1 0 8}=\frac{\sum_{k=1}^{n} V_{r}-\mathbf{2}}{(n+1)!}=\frac{(n+3)!-4(n+2)!}{(n+1)!}=\mathbf{1 0 8}$

$$
n^{2}+5 n+6-4 n-8-108=0 ; n^{2}+n-110=0
$$

$$
(n+11)(n-10)=0 ; n=10, n=-11
$$

Solution 6 by Kunihiko Chikaya-Tokyo-Japan
Solve in $n \in \mathbb{N} ;\left(\mathbf{(}^{*}\right) \frac{\mathbf{1}^{2} \cdot 2!+\mathbf{2}^{2} \cdot 3!+\cdots+n^{2}(n+1)!-2}{(n+1)!}=108$. Ans. $n=10$

$$
\begin{aligned}
& k^{2}(k+1)!=\left\{(k+2)^{2}-4(k+1)\right\}(k+1)! \\
& \text { Telescopic sum } \\
& =(k+2)(k+2)!-4(k+2-1)(k+1)! \\
& =(k+3-\mathbf{1})(k+2)!-\mathbf{4}(k+2-\mathbf{1})(k+1)! \\
& =(k+3)!-(k+2)!-4\{(k+2)!-(k+1)!\} \\
& \therefore \sum_{k=1}^{n} \boldsymbol{k}^{2}(k+1)!=(n+3)!-3!-4\{(n+2)!-2!\} \\
& =(n+3)!-4(n+2)!+2=(n+2)!(n+3-4)+2= \\
& =(n-1)(n+2)(n+1)!+2
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\therefore\left({ }^{*}\right) \Leftrightarrow(n+2)(n-1)=108$ increase monotonous

$$
n=11 \ldots=130 x ; n=10 \ldots=108
$$

103. Find $\boldsymbol{n} \in \mathbb{N}, \boldsymbol{n}>1$:

$$
\begin{array}{r}
\frac{2!\left(2^{3}-1\right)+3!\left(3^{3}-1\right)+\cdots+n!\left(n^{3}-1\right)-2}{n^{2}-2}=40320 \\
\quad \text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution 1 by Carlos Suarez-Quito-Ecuador, Solution 2 by Kunihiko Chikaya-
Tokyo-Japan
Solution 1 by Carlos Suarez-Quito-Ecuador

$$
\begin{gathered}
\sum_{k=1}^{n}\left(k^{3}-1\right) k!=\left(n^{2}-2\right)(n+1)!+2 ; \frac{\left(n^{2}-2\right)(n+1)!+2-2}{\left(n^{2}-2\right)}=40320 \\
\frac{\left(n^{2}-2\right)(n+1)!}{\left(n^{2}-2\right)}=40320 ;(n+1)!=40320 ; n=7
\end{gathered}
$$

Solution 2 by Kunihiko Chikaya-Tokyo-Japan
Find $n \geq 2$ such that $\left.\mathbf{*}^{*}\right) \frac{2!\left(2^{3}-1\right)+3!\left(3^{3}-1\right)+\cdots+n!\left(n^{3}-1\right)-2}{n^{2}-2}=40320$

$$
\begin{gathered}
\sum_{k=1}^{n}\left(k^{3}-1\right) k!=\sum_{k=1}^{n}\{f(k)-f(k-1)\}=f(n)-f(0) \\
=\left(n^{2}-2\right)(n+1)!+2 \\
f(k)=\left(k^{3}+k^{2}-2 k-2\right) k!=\left(k^{2}-2\right)(k+1)! \\
\therefore\left(^{*}\right) \Leftrightarrow(n+1)!=8! \\
\therefore n=7
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

104. Find $x, y, z \in \mathbb{N}^{*}$ such that:

Proposed by Daniel Sitaru - Romania
Solution 1 by Hasan Bostanlik-Sarkisla-Turkey, Solution 2 by Boris Colakovic-
Belgrade-Serbia, Solution 3 by Khanh Hung Vu-Ho Chi Minh-Vietnam
Solution 1 by Hasan Bostanlik-Sarkisla-Turkey

$$
\begin{gathered}
x \cdot \frac{10^{2000}-1}{9}-y \cdot \frac{10^{1000}-1}{9}=\frac{z^{2} \cdot\left(10^{1000}-1\right)^{2}}{81} \\
10^{1000}=k \Rightarrow x \cdot \frac{\left(k^{2}-1\right)}{9}-y \cdot \frac{(k-1)}{9}=\frac{z^{2}(k-1)^{2}}{81} \\
x(k+1)-y=\frac{z^{2} \cdot(k-1)}{9} ; 9 x(k+1)-9 y=z^{2} \cdot k-z^{2} \\
k\left(z^{2}-9 x\right)=z^{2}+9 x-9 y\left\{z^{2} \neq 9 x \Rightarrow k\left(z^{2}-9 x\right)>z^{2}+9 x-9 y\right\} \\
z^{2}=9 x \Rightarrow x=1, z=3, y=2 ; x=4, z=b, y=8
\end{gathered}
$$

Solution 2 by Boris Colakovic-Belgrade-Serbia

$$
\begin{aligned}
& \Leftrightarrow \sqrt{\frac{10^{2000}-1}{9} \cdot x-\frac{10^{1000}-1}{9} y}=\frac{10^{1000}-1}{9} \cdot z \Leftrightarrow \\
& \Leftrightarrow \frac{1}{3} \sqrt{x \cdot 10^{2000}-y \cdot 10^{1000}+y-x}=\frac{10^{1000}-1}{9} z \Leftrightarrow \\
& \Leftrightarrow \frac{1}{3} \sqrt{\left(\sqrt{x} 10^{1000}-\frac{y}{2 \sqrt{x}}\right)^{2}-\frac{(2 x-y)^{2}}{4 x}}=\frac{10^{1000}-1}{9} \cdot z \Rightarrow \\
& \Rightarrow y=2 k^{2}, x=k^{2} \Rightarrow \frac{1}{3} \sqrt{\left(k \cdot 10^{1000}-k\right)^{2}}=\frac{10^{1000}-1}{9} \cdot z \Leftrightarrow
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\Leftrightarrow \frac{k}{3} \cdot \frac{10^{1000}-1}{9}=\frac{10^{1000}-1}{9} \cdot z \Rightarrow z=3 k
$$

Solutions are $(x, y, z)=\left(k^{2}, 2 k^{2}, 3 k\right) k \in N$
Solution 3 by Khanh Hung Vu-Ho Chi Minh-Vietnam

We have $\underbrace{\frac{x x x x \ldots x x}{x}}_{\text {for }{ }^{20000^{\prime} \text { tmes }}}=x\left(10^{1999}+10^{1998}+\cdots+10+1\right)=x \cdot \frac{10^{2000}-1}{10-1}$

$$
\begin{aligned}
& \text { Similalry, we have } \frac{\underbrace{y y y y \ldots y}_{\text {for } " 1000^{\prime} \text { times }}}{y^{\prime}}=y \cdot \frac{10^{1000}-1}{10-1} \text { and } \\
& \underset{\text { for }{ }^{2000 " \text { times }}}{ }=\mathrm{z} \cdot \frac{10^{1000}-1}{10-1}
\end{aligned}
$$

$$
\begin{gather*}
\text { We have }(1) \Rightarrow \sqrt{x \cdot \frac{10^{2000}-1}{10-1}-y \cdot \frac{10^{1000}-1}{10-1}}=z \cdot \frac{10^{1000}-1}{10-1} \\
\Rightarrow x \cdot \frac{10^{2000}-1}{10-1}-y \cdot \frac{10^{1000}-1}{10-1}=\left(z \cdot \frac{10^{1000}-1}{10-1}\right)^{2} \Rightarrow \\
\Rightarrow \frac{x\left(10^{2000}-1\right)-y\left(10^{1000}-1\right)}{9}=\frac{z^{2}\left(10^{1000}-1\right)^{2}}{81} \\
\Rightarrow 9\left[x\left(10^{2000}-1\right)-y\left(10^{1000}-1\right)\right]=z^{2}\left(10^{1000}-1\right)^{2} \Rightarrow \\
\Rightarrow 9\left[x\left(10^{1000}+1\right)-y\right]=z^{2}\left(10^{1000}-1\right) \Rightarrow\left(9 x-z^{2}\right) \cdot 10^{1000}=-z^{2}-9 x+9 y \tag{2}
\end{gather*}
$$

We have $-81 \leq-z^{2} \leq-1,-81 \leq-9 x \leq-9$ and $9 \leq 9 y \leq 81$

$$
\begin{gathered}
\Rightarrow-153 \leq-z^{2}-9 x+9 y \leq 73 \Rightarrow-153 \leq-z^{2}-9 x+9 y \leq 73 \Rightarrow \\
\\
\Rightarrow-153 \leq\left(9 x-z^{2}\right) \cdot 10^{1000} \leq 73 \Rightarrow 9 x=z^{2}
\end{gathered}
$$

On the other hand, we have $1 \leq x \leq 9$ and

$$
1 \leq z \leq 9 \Rightarrow(x, z)=(1 ; 3) ;(4 ; 6) ;(9 ; 9)
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

* If $(x ; z)=(1 ; 3)$, we have (2) $\Rightarrow-9-9+9 y=0 \Rightarrow y=2$
*If $(x ; z)=(4 ; 6)$, we have (2) $\Rightarrow-36-36+9 y=0 \Rightarrow y=8$
*If $(x ; z)=(9 ; 9)$, we have (2) $\Rightarrow-81-81+9 y=0 \Rightarrow y=18$ (Absurd)
So, the equation (1) has 2 roots: $(x ; y ; z)=(1 ; 2 ; 2) ;(4 ; 8 ; 6)$

105. Find $n \in \mathbb{N}, n \geq 3$ such that:

$$
\sum_{k=3}^{n}\binom{n}{k}\binom{k-1}{2}=21\left(2^{n-2}-1\right)
$$

Proposed by Daniel Sitaru - Romania
Solution by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\binom{k-1}{2}=\frac{1}{2}(k-1)(k-2)=\frac{1}{2}[k(k-1)-2 k+2]=\frac{1}{2} k(k-1)-k+1 \\
\therefore \sum_{k=3}^{n}\binom{n}{k}\binom{k-1}{2}=\sum_{k=3}^{n}\binom{n}{k}\left[\frac{1}{2} k(k-1)-k+1\right] \\
=\frac{1}{2} \sum_{k=3}^{n} k(k-1)\binom{n}{k}-\sum_{k=3}^{n} k\binom{n}{k}+\sum_{k=3}^{n}\binom{n}{k} \\
=\frac{1}{2} n(n-1) \sum_{k=3}^{n}\binom{n-2}{k-2}-n \sum_{k=3}^{n}\binom{n-1}{k-1}+\sum_{k=3}^{n}\binom{n}{k} \\
=\frac{1}{2} n(n-1)\left[2^{n-2}-1\right]-n\left(2^{n-1}-1(n-1)\right)+\left[2^{n}-1-n-\frac{1}{2} n(n-1)\right] \\
=n(n-1) 2^{n-3}-\frac{1}{2} n(n-1)-n\left(2^{n^{-1}}\right)+n+n(n-1)+2^{n}-1-n-\frac{1}{2} n(n-1) \\
=n(n-1) 2^{n-3}-(n-2) 2^{n-1}-1
\end{gathered} \quad \begin{aligned}
& \therefore n(n-1) 2^{n-3}-(n-2) 2^{n-1}-1=21\left(2^{n-1}-1\right) \\
& \Rightarrow n(n-1) 2^{n-3}-(n-2) 2^{n-1}-21\left(2^{n-2}\right)+20=0
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\Rightarrow n(n-1)-4(n-2)-42+20\left(2^{3-n}\right)=0$;
$\Rightarrow n^{2}-5 n-34+5\left(2^{7-n}\right)=0 \Rightarrow 5\left(2^{7-n}\right)=34+5 n-n^{2}$
As RHS is an integer, and $n \geq 3,3 \leq n \leq 7$.
But $\boldsymbol{n}=\mathbf{3 , 4 , 5 , 6}, 7$ do not satisfy it. $\mathbf{S o}$, no solution.
106. Solve the question in R :

$$
\begin{equation*}
\sqrt{x^{3}-2 x^{2}+2 x}+3 \cdot \sqrt[3]{x^{2}-x+1}+2 \cdot \sqrt[4]{4 x-3 x^{4}}=\frac{x^{4}-3 x^{3}}{2}+7 \tag{1}
\end{equation*}
$$

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam
Solution 1 by proposer

Solution 2 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

Solution 1 by proposer

$$
\begin{aligned}
& \text { * We have: }\left\{\begin{array} { c }
{ x ^ { 3 } - 2 x ^ { 2 } + 2 x \geq 0 } \\
{ 4 x - 3 x ^ { 4 } \geq 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
x\left(x^{2}-2 x+2\right) \geq 0 \\
x\left(3 x^{3}-4\right) \leq 0
\end{array} \Leftrightarrow\right.\right. \\
& \Leftrightarrow\left\{\begin{array}{c}
x\left((x-1)^{2}+1\right) \geq 0 \\
0 \leq x \leq \sqrt[3]{\frac{4}{3}}
\end{array} \Leftrightarrow 0 \leq x \leq \sqrt[3]{\frac{4}{3}}\right.
\end{aligned}
$$

* Because: $x^{2}-x+1=\left(x^{2}-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4} \geq \frac{3}{4}>0$
- Therefore, since inequality AM - GM for 2,3,4 real numbers:

$$
\begin{gathered}
\sqrt{x^{3}-2 x^{2}+2 x}+3 \cdot \sqrt[3]{x^{2}-x+1}+2 \cdot \sqrt[4]{4 x-3 x^{4}} \\
=\sqrt{x\left(x^{2}-2 x+2\right)}+3 \cdot \sqrt[3]{\left(x^{2}-x+1\right) \cdot 1 \cdot 1}+2 \cdot \sqrt[4]{x\left(4-3 x^{3}\right) \cdot 1 \cdot 1} \leq \\
\leq \frac{x+x^{2}-2 x+2}{2}+\left(x^{2}-x+1\right)+1+1+\frac{2\left(x+\left(4-3 x^{3}\right)+1+1\right)}{4} \\
\Rightarrow \sqrt{x^{3}-2 x^{2}+2 x}+3 \cdot \sqrt[3]{x^{2}-x+1}+2 \cdot \sqrt[4]{4 x-3 x^{4}} \leq
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gather*}
\leq \frac{x^{2}-x+2}{2}+x^{2}-x+3+\frac{-3 x^{3}+x+6}{2} \\
\Leftrightarrow \sqrt{x^{3}-2 x^{2}+2 x}+3 \cdot \sqrt[3]{x^{2}-x+1}+2 \cdot \sqrt[4]{4 x-3 x^{4}} \leq \frac{-3 x^{3}+3 x^{2}-2 x+14}{2} \tag{2}
\end{gather*}
$$

- Since (1), (2):

$$
\begin{gather*}
\Rightarrow \frac{x^{4}-3 x^{3}}{2}+7 \leq \frac{-3 x^{3}+3 x^{2}-2 x+14}{2} \Leftrightarrow \frac{x^{4}-3 x^{3}+14}{2} \leq \frac{-3 x^{3}+3 x^{2}-2 x+14}{2} \\
\Leftrightarrow x^{4}-3 x^{3}+14 \leq-3 x^{3}+3 x^{2}-2 x+14 \Leftrightarrow x^{4}-3 x^{2}+2 x \leq 0 \\
\Leftrightarrow x\left(x^{3}-3 x+2\right) \leq 0 \\
\Leftrightarrow x\left(x^{2}(x-1)+x(x-1)-2(x-1)\right) \leq 0 \Leftrightarrow x(x-1)\left(x^{2}+x-2\right) \leq 0 \Leftrightarrow \\
\Leftrightarrow x(x+2)(x-1)^{2} \leq 0 \tag{3}
\end{gather*}
$$

- Other, $x \geq 0, x(x+2) \geq 0$. That $(x-1)^{2} \geq 0 ; \forall x \in R$ therefore

$$
\begin{equation*}
x(x+2)(x-1)^{2} \geq 0 \tag{4}
\end{equation*}
$$

*Since (3), (4): $\Rightarrow x(x+2)(x-1)^{2}=0 \Leftrightarrow\left\{\begin{array}{c}x=x^{2}-2 x+2 \\ x^{2}-x+1=1 \\ x=4-3 x^{3}=1 \\ x(x+2)(x-1)^{2}=0\end{array} \Leftrightarrow\right.$

$$
\Leftrightarrow\left\{\begin{array}{c}
(x-1)(x-2)=0 \\
x(x-1)=0 \\
3 x^{3}+x-4=0 ; x=1 \\
x(x+2)(x-1)^{2}=0
\end{array} \Leftrightarrow x=1\right.
$$

Solution 2 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gather*}
\sqrt{x^{3}-2 x^{2}+2 x}+3 \cdot \sqrt[3]{x^{2}-x+1}+2 \cdot \sqrt[4]{4 x-3 x^{4}}=\frac{x^{4}-3 x^{3}}{2}+7 \tag{*}\\
D(x):\left\{\begin{array}{c}
x^{3}-2 x^{2}+2 x \geq 0 \\
4 x-3 x^{4} \geq 0
\end{array} \Leftrightarrow 0<x \leq \sqrt[3]{\frac{4}{3}}(1)\right. \\
\left.D(x): x \in] 0 ; \sqrt[3]{\frac{4}{3}}\right]
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
I. $\left.\sqrt{x \cdot\left(x^{2}-2 x+2\right)} \leq \frac{x^{2}-x+2}{2}\left[\begin{array}{c}A M=G M \\ x=x^{2}-2 x+2 \\ x^{2}=3 x+2=0 \\ (*)\end{array}\right\} \Rightarrow x=1\right]$
II. $\left.\quad 3 \sqrt[3]{1 \cdot 1 \cdot\left(x^{2}-x+1\right)} \leq x^{2}-x+3\left[\begin{array}{c}A M=G M \\ x^{2}-x+1=1 \\ x^{2}-x=0 \\ (*)\end{array}\right\} \Rightarrow x=1\right]$
III. $\quad 2 \sqrt[4]{4 x-3 x^{4}}=2 \cdot \sqrt[4]{x \cdot\left(4-3 x^{3}\right) \cdot 1 \cdot 1} \leq$

$$
\left.\leq \frac{6+x-3 x^{3}}{2}\left[\begin{array}{c}
A M=G M \\
x=1 \\
4-3 x^{3}=1 \\
4-3 x^{3}=x
\end{array}\right\} \stackrel{(1)}{\Rightarrow} x=1\right]
$$

IV.

$$
\begin{gathered}
(*) \Rightarrow \frac{x^{4}-3 x^{3}}{2}+7 \underset{\substack{\sqrt{2}}}{<} \frac{x^{2}-x+2}{2}+\left(x^{2}-x+3\right)+\frac{6+x-3 x^{3}}{2} \\
0 \geq(x-1)^{2} \cdot(x+2) \stackrel{(1)}{\Rightarrow} \\
(x-1)^{2} \cdot(x+2)=0 \Rightarrow x=1
\end{gathered}
$$

I; II; III; IV $\Rightarrow \boldsymbol{x}=1$. Done
107. Solve for real numbers:

$$
\arcsin [x] \cdot \arccos [x]=\frac{\pi x}{2}-x^{2} ?
$$

Proposed by Rovsen Pirguliev-Sumgait-Azerbaidian

Solution 1 by M yagmarsuren Yadamsuren-Darkhan-M ongolia, Solution 2 by Ravi Prakash-New Delhi-India, Solution 3 by Soumava Chakraborty-KolkataIndia

Solution 1 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\left.\begin{array}{c}
\cos y=[x] \\
\sin y=[x]
\end{array}\right\} \Rightarrow-1 \leq[x] \leq+1 ;[x] \in\{-\mathbf{1} ; \mathbf{0} ; \mathbf{1}\}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

1) If $[x]=-1 \Rightarrow$ is $\arcsin [x] \cdot \arccos [x]=\arcsin (-1) \cdot \arccos (-1)=$

$$
\begin{gathered}
=\frac{3 \pi}{2} \cdot \pi=\frac{3 \pi^{2}}{2}=L H S \\
\frac{3 \pi^{2}}{2}=\frac{\pi}{2} \cdot x-x^{2} \Leftrightarrow x^{2}-\frac{\pi}{2} \cdot x+\frac{3 \pi^{2}}{2}=0 \Rightarrow D<0, x \in \emptyset
\end{gathered}
$$

2) If $[x]=0$ is $\arcsin [x] \cdot \arccos [x]=\arcsin 0 \cdot \arccos 0=$

$$
\begin{gathered}
=0 \cdot \frac{\pi}{2}=0=\text { LHS } \\
\left.0=\frac{\pi}{2} \cdot x-x^{2} \Rightarrow \begin{array}{c}
x_{1}=0 \\
x_{2}=\frac{\pi}{2} \Rightarrow[x] \neq 0 \Rightarrow
\end{array}\right\} \Rightarrow x=0
\end{gathered}
$$

3) If $[x]=+1$ is $\arcsin 1 \cdot \arccos 1=\frac{\pi}{2} \cdot 0=0$

$$
\left.0=x \cdot\left(\frac{\pi}{2}-x\right) \Rightarrow \begin{array}{c}
x=0 \Rightarrow[x] \neq 1 \\
x=\frac{\pi}{2} \cdot\left[\frac{\pi}{2}\right]=1
\end{array}\right\} x=\frac{\pi}{2} ; x=0 ; x=\frac{\pi}{2}
$$

Solution 2 by Ravi Prakash-New Delhi-India
If $[x]=$ greatest integer then, $[x]=-1,0,1$

1. $[x]=-1,-1 \leq x<0$, the equation becomes,

$$
\begin{aligned}
& \left(-\frac{\pi}{2}\right) \pi=\frac{\pi}{2} x-x^{2} \Rightarrow x^{2}-\frac{\pi}{2} x-\frac{\pi^{2}}{2}=0 \\
& \Rightarrow x=\frac{\frac{\pi}{2} \pm \sqrt{\frac{\pi^{2}}{4}+2 \pi^{2}}}{2}=\frac{\pi \pm 3 \pi}{4}=\pi,-\frac{\pi}{2} \text {. Not possible }
\end{aligned}
$$

2. For $[x]=0,0 \leq x<1$. The equation becomes

$$
0=\frac{\pi}{2} x-x^{2} \Rightarrow x=0 \text { or } x=\frac{\pi}{2}
$$

3. For $[x]=1,1 \leq x<2$, The equation becomes

$$
0=\frac{\pi}{2} x-x^{2} \Rightarrow x=0 \text { or } x=\frac{\pi}{2} . \therefore \text { in this case solution is }\left\{0, \frac{\pi}{2}\right\}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\sin ^{-1}[x] \cdot \cos ^{-1}[x]=\frac{\pi x}{2}-x^{2} \rightarrow \text { Solve }-1 \leq[x] \leq 1 \Rightarrow[x]=-1,0,1
$$

Case 1) $[x]=-1 \Rightarrow-\leq x<0$
\therefore given equlity becomes: $\sin ^{-1}(-1) \cdot \cos ^{-1}(-1)=\frac{\pi x}{2}-x^{2}$

$$
\begin{gathered}
\Rightarrow\left(-\frac{\pi}{2}\right)(\pi)=\frac{\pi x}{2}-x^{2} \Rightarrow-\pi^{2}=\pi x-2 x^{2} \Rightarrow 2 x^{2}-\pi x-\pi^{2}=0 \\
\Rightarrow x=\frac{\pi \pm \sqrt{\pi^{2}-4(2)\left(-\pi^{2}\right)}}{4}=\frac{\pi \pm 3 \pi}{4}=-\frac{\pi}{2}, \pi
\end{gathered}
$$

But - $1 \leq x<0 \Rightarrow$ no sol in this case
Case 2) $[x]=0 \Rightarrow \mathbf{0} \leq \boldsymbol{x}<1$
\therefore given equality becomes: $\sin ^{-1}(0) \cdot \cos ^{-1}(0)=\frac{\pi x}{2}-x^{2}$

$$
\Rightarrow x\left(\frac{\pi}{2}-x\right)=0 \Rightarrow x=0\left(\because x \neq \frac{\pi}{2} \text { as } 0 \leq x<1\right)
$$

Case 3) $[x]=1 \Rightarrow 1 \leq x<2$
\therefore given equality becomes: $\sin ^{-1}(1) \cos ^{-1}(1)=\frac{\pi x}{2}-x^{2}$

$$
\Rightarrow x\left(\frac{\pi}{2}-x\right)=\mathbf{0} \Rightarrow x=\frac{\pi}{2} \text { as } \mathbf{1} \leq x<2 \therefore \text { solutions are: } x=\mathbf{0}, \frac{\pi}{2}
$$

108. Find $x, y, z \in \mathbb{R}^{*}$ such that:

$$
\begin{array}{r}
\frac{x^{2}}{1+x^{2}}+\frac{y^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)}+\frac{z^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)}+\frac{1}{8 x y z}=1 \\
\text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution 1 by Hoang Le Nhat Tung-Hanoi-Vietnam
Solution 2 by Nguyen Thanh Nho-Tra Vinh-Vietnam

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 1 by Hoang Le Nhat Tung-Hanoi-Vietnam

$$
\begin{gathered}
\frac{x^{2}\left(1+y^{2}\right)+y^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)}+\frac{z^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)}+\frac{1}{8 x y z}=1 \\
\Leftrightarrow \frac{\left(x^{2} y^{2}+x^{2}+y^{2}\right)\left(z^{2}+1\right)+z^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)}+\frac{1}{8 x y z}=1 \Leftrightarrow \frac{\left(x^{2}+1\right)\left(y^{2}+1\right)\left(z^{2}+1\right)}{\left(x^{2}+1\right)\left(y^{2}+1\right)\left(z^{2}+1\right)}=1-\frac{1}{8 x y z} \\
\Leftrightarrow \frac{1}{\left(x^{2}+1\right)\left(y^{2}+1\right)\left(z^{2}+1\right)}=\frac{1}{8 x y z} \Leftrightarrow\left(x^{2}+1\right)\left(y^{2}+1\right)\left(z^{2}+1\right)=8 x y z
\end{gathered}
$$

By AM-GM $\left(x^{2}+1\right)\left(y^{2}+1\right)\left(z^{2}+1\right) \geq 2 x \cdot 2 y \cdot 2 z=8 x y z$
\Rightarrow Equality occurs if $\Leftrightarrow x=y=z=1$
Solution 2 by Nguyen Thanh Nho-Tra Vinh-Vietnam

$$
\begin{gathered}
\left(1-\frac{1}{1+x^{2}}\right)+\left(\frac{1}{1+x^{2}}-\frac{1}{\left(1+x^{2}\right)\left(1+y^{2}\right)}\right)+\left(\frac{1}{\left(1+x^{2}\right)\left(1+y^{2}\right)}-\frac{1}{\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)}\right)+\frac{1}{8 x y z}=1 \\
-\frac{1}{\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)}+\frac{1}{8 x y z}=0 \Leftrightarrow\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)=8 x y z \\
\Leftrightarrow\left(\frac{1}{x}+x\right)\left(\frac{1}{y}+y\right)\left(\frac{1}{z}+z\right)=8 ; \frac{1}{x}+x \geq 2, \frac{1}{y}+y \geq 2, \frac{1}{z}+z \geq 2 \\
\Rightarrow\left(\frac{1}{x}+x\right)\left(\frac{1}{y}+y\right)\left(\frac{1}{z}+z\right) \geq 8 ; "=" \Leftrightarrow x=y=z=1
\end{gathered}
$$

109. Find $x, y, z, t \in \mathbb{R}$ such that:

$$
\begin{array}{r}
5 x^{2}+5 y^{2}+5 z^{2}+5 t^{2}-5 x y-5 y z-5 z t-5 t+2=0 \\
\text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution by Subhajit Chattopadhyay-Bolpur-India

$$
\begin{gathered}
5 x^{2}+5 y^{2}+5 z^{2}+5 t^{2}-5 x y-5 y z-5 z t-5 t+2=0 \\
\text { or, } 5\left(x-\frac{y}{2}\right)^{2}+\frac{15 y^{2}}{4}+5 z^{2}+5 t^{2}-5 y z-5 z t-5 t+2=0 \\
\text { or, } 5\left(x-\frac{y}{2}\right)^{2}+5\left(\frac{\sqrt{3} y}{2}-\frac{z}{\sqrt{3}}\right)^{2}+\frac{10 z^{2}}{3}-5 z t+5 t^{2}-5 t+2=0
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\text { or, } 5\left(x-\frac{y}{2}\right)^{2}+5\left(\frac{\sqrt{3} y}{2}-\frac{z}{\sqrt{3}}\right)^{2}+5\left(\frac{\sqrt{2} z}{\sqrt{3}}-\frac{\sqrt{3} t}{2 \sqrt{2}}\right)^{2}+\frac{25 t^{2}}{8}-5 t+2=0 \\
\text { or, } 5\left(x-\frac{y}{2}\right)^{2}+5\left(\frac{\sqrt{3} y}{2}-\frac{z}{\sqrt{3}}\right)^{2}+5\left(\frac{\sqrt{2} z}{\sqrt{3}}-\frac{\sqrt{3} t}{2 \sqrt{2}}\right)^{2}+\left(\frac{5 t}{2 \sqrt{2}}-\sqrt{2}\right)^{2}=0 \\
t, x, y, z \in \mathbb{R} \Rightarrow x=\frac{y}{2} ; \frac{\sqrt{3} y}{2}=\frac{z}{\sqrt{3}} ; \frac{\sqrt{2} z}{\sqrt{3}}=\frac{\sqrt{3} t}{2 \sqrt{2}} ; \frac{5 t}{2 \sqrt{2}}=\sqrt{2} \\
\Rightarrow t=\frac{4}{5}, z=\frac{3}{5} ; y=\frac{2}{5} ; x=\frac{1}{5}
\end{gathered}
$$

110. From the book "Math Energy"

Find:

$$
\Omega=\lim _{x \rightarrow \infty} \int_{0}^{x} \frac{x^{4}}{\left(1+x^{3}\right)^{2}} d x
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Igor Soposki-Skopje, Solution 2 by Togrul Ehmedov-Baku-
Azerbaidian, Solution 3 by Carlos Suarez-Quito-Ecuador, Solution 4 by Shivam Sharma-New Delhi-India

Solution 1 by Igor Soposki-Skopje

$$
\begin{gathered}
\Omega=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x^{4}}{\left(1+x^{3}\right)^{2}} d x ; I=\int \frac{x^{4}}{\left(1+x^{3}\right)^{2}} d x=\left\{\begin{array}{c}
u=x^{2} \\
d u=2 x d x
\end{array}\right. \\
d v=\frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x \Rightarrow v=\int \frac{x^{2}}{\left(1+x^{3}\right)^{2}} d x=\left\{\begin{array}{c}
1+x^{3}=t \\
3 x^{2} d x=d t
\end{array}\right\}=\frac{1}{3} \int \frac{d t}{t}= \\
\left.=-\frac{1}{3 t}=-\frac{1}{3\left(1+x^{3}\right)}\right\}=u \cdot \vartheta-\int v \cdot d u=-\frac{x^{2}}{8\left(1+x^{3}\right)}+\frac{2}{3} \underbrace{\int \frac{x}{1+x^{3}}}_{I_{1}} d x
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& I_{1}=\int \frac{x}{x^{3}+1} d x=\int \frac{x}{(x+1)\left(x^{2}-x+1\right)}=\int \frac{A}{x+1} d x+\int \frac{B x+c}{x^{2}-x+1} d x \\
& \left.\frac{x}{x^{3}+1}=\frac{A}{x+1}+\frac{B x+c}{x^{2}-x+1} \right\rvert\, \cdot(x+1)\left(x^{2}-x+1\right) \Rightarrow \\
& \begin{array}{c}
\Leftrightarrow x=A\left(x^{2}-x+1\right)+(B x+c)(x+1) \\
\Leftrightarrow x=A x^{2}-A x+A+B x^{2}+B x+C x+c \\
\Leftrightarrow x=(A+B) x^{2}+(-A+B+C) x+A+C
\end{array} \Rightarrow\left\{\begin{array}{ccc}
A+D=0 \\
-A+B+C=1 & A & A=-\frac{1}{3} \\
A+C & B=C=\frac{1}{3}
\end{array}\right\} \\
& I_{2}=\int \frac{A}{x+1} d x=-\frac{1}{3} \ln (x+1) ; I_{3}=\frac{1}{3} \int \frac{x+1}{x^{2}-x+1} d x=\frac{1}{6} \int \frac{2 x+2}{x^{2}-x+1} d x= \\
& =\frac{1}{6} \int \frac{2 x-1}{x^{2}-x+1} d x+\frac{1}{2} \int \frac{d x}{x^{2}+x+1}=\frac{1}{6} \cdot I_{4}+\frac{1}{2} \cdot I_{5} \\
& I_{4}=\int \frac{2 x-1}{x^{2}-x+1} d x=\left\{\begin{array}{c}
x^{-x}+x+1 \\
(2 x-1) d x=d t
\end{array}\right\}=\int \frac{d t}{t}=\ln t=\ln \left(x^{2}-x+1\right) \\
& I_{5}=\int \frac{d x}{x^{2}-x+1}=\int \frac{d x}{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\left\{\begin{array}{c}
x-\frac{1}{2}=t \\
d x=d t
\end{array}\right\}=\int \frac{d t}{t^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}=\frac{2}{\sqrt{3}} \cdot \arctan \frac{2 x-1}{\sqrt{3}} \\
& I_{3}=\frac{1}{6} \cdot \ln \left(x^{2}-x+1\right)+\frac{1}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}} ; I_{1}=I_{2}+I_{3} \\
& I=-\frac{x^{2}}{3\left(1+x^{3}\right)}+\frac{2}{3} \cdot I_{1}=\left.\frac{1}{9} \cdot\left[\ln \left(\frac{x^{2}-x+1}{(x+1)^{2}}-\frac{3 x^{2}}{x^{3}+1}+2 \sqrt{3} \arctan \frac{2 x-1}{\sqrt{3}}\right)\right]\right|_{0} ^{t} \\
& \Omega=\frac{1}{9} \lim _{t \rightarrow \infty}\left[\ln \frac{t^{2}-t+1}{(t+1)^{2}}-\frac{3 t^{2}}{t^{3}+1}+e \sqrt{3} \frac{2 t-1}{\sqrt{3}}+\frac{2 \sqrt{3} \pi}{6}\right]= \\
& =\frac{1}{9} \cdot\left[2 \sqrt{3} \frac{\pi}{2}+2 \sqrt{3} \frac{\pi}{6}\right]=\frac{1}{9} \cdot 2 \sqrt{3} \cdot \frac{4 \pi}{6}=\frac{4 \sqrt{3} \pi}{27}
\end{aligned}
$$

Solution 2 by Togrul Ehmedov-Baku-Azerbaidian

$$
\Omega=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x^{4}}{\left(1+x^{3}\right)^{2}} d x=\int_{0}^{\infty} \frac{x^{4}}{\left(1+x^{3}\right)^{2}} d x
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
=\left[\frac{1}{3} \int_{0}^{\infty} \frac{t^{\frac{2}{3}}}{(1+t)^{2}} d t\right]_{x^{3}=t}=\frac{1}{3} \int_{0}^{\infty} \frac{t^{\frac{5}{3}}-1}{(1+t)^{\frac{1}{3}+\frac{5}{3}}} d t
$$

$$
=\frac{1}{3} B\left(\frac{1}{3}, \frac{5}{3}\right)=\frac{1}{3} \cdot \frac{\Gamma\left(\frac{5}{3}\right) \Gamma\left(\frac{1}{3}\right)}{\Gamma(2)}=\frac{2}{9} \Gamma\left(\frac{2}{3}\right) \Gamma\left(\frac{1}{3}\right)=\frac{2}{9} \cdot \frac{\pi}{\sin \left(\frac{\pi}{3}\right)}=\frac{4 \pi}{9 \sqrt{3}}
$$

Solution 3 by Carlos Suarez-Quito-Ecuador

$$
\begin{gathered}
\Omega=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x^{4}}{\left(1+x^{3}\right)^{2}} d x ; \Omega=\frac{4 \pi}{9 \sqrt{3}}=0,80613 \\
\int_{0}^{t} \frac{x^{4}}{\left(1+x^{3}\right)^{2}} d x=\frac{1}{9}\left[\ln \left(x^{2}-x+1\right)-\frac{3 x^{2}}{x^{3}+1}-2 \ln (x+1)+2 \sqrt{3} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)\right]_{0}^{t} \\
\int_{0}^{t} \frac{x^{4}}{\left[(l+x)\left(1-x+x^{2}\right)\right]^{2}}=\frac{x^{4}}{(1+x)^{2}\left(1-x+x^{2}\right)^{2}} \\
\frac{A}{1+x}+\frac{B}{(1+x)^{2}}+\frac{C x+D}{1-x+x^{2}}+\frac{E x+F}{\left(1-x+x^{2}\right)^{2}}= \\
\frac{2(x+2)}{9\left(x^{2}-x+1\right)}-\frac{1}{3\left(x^{2}-x+1\right)^{2}}-\frac{2}{9(x+1)}+\frac{1}{9(x+1)^{2}}
\end{gathered}
$$

Solution 4 by Shivam Sharma-New Delhi-India

$$
\begin{gathered}
\Rightarrow \int_{0}^{\infty} \frac{x^{4}}{\left(1+x^{3}\right)^{2}} d x \Rightarrow \int_{0}^{\infty} \frac{z^{4}}{\left(1+z^{3}\right)^{2}} d z \Rightarrow\left(\frac{1}{\sqrt{3}}\right) \operatorname{Resi}\left[(2 \pi i) \frac{z^{4}}{\left(1+z^{3}\right)^{2}} ;-1\right] \\
\Rightarrow\left(\frac{1}{\sqrt{3}}\right)\left(2 \pi i^{2}\right)\left(-\frac{2}{9}\right)(0 \mathrm{R}) I=\frac{4 \pi}{9 \sqrt{3}} \\
\text { (Q.E.D) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

111. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$

$$
\begin{gathered}
I(a)=\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{x+a+\sqrt{x^{2}+a^{2}}} d x \\
\text { then: } \\
I(a)+I(b)+I(c) \geq \frac{9 \pi}{2(a+b+c)}
\end{gathered}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Togrul Ehmedov-Baku-Azerbaidian, Solution 2 by Shivam
Sharma-New Delhi-India
Solution 1 by Togrul Ehmedov-Baku-Azerbaidian

$$
\begin{gathered}
I(a)=\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{a+\sqrt{x^{2}+a^{2}}+x} d x=\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{a+\sqrt{x^{2}+a^{2}}-x} d x \\
2 I(a)=\int_{-\pi}^{\pi} \cos ^{2} x\left(\frac{1}{a+\sqrt{x^{2}+a^{2}}+x}+\frac{1}{a+\sqrt{x^{2}+a^{2}}-x}\right) d x \\
2 I(a)=\int_{-\pi}^{\pi} \frac{1}{a} \cos ^{2} x d x \Rightarrow I(a)=\frac{1}{a} \int_{0}^{\pi} \cos ^{2} x d x=\frac{1}{2 a} \\
I(a)+I(b)+I(c)=\frac{9 \pi}{2(a+b+c)}
\end{gathered}
$$

Solution 2 by Shivam Sharma-New Delhi-India

$$
\begin{gathered}
\int_{-\pi}^{\pi} \frac{\cos ^{2}(-x)}{-x+a+\sqrt{x^{2}+a^{2}}} d x \\
2 I(a)=2 \int_{0}^{\pi}\left(\frac{\cos ^{2} x}{\sqrt{x^{2}+a^{2}}+a+x}+\frac{\cos ^{2} x}{\sqrt{x^{2}+a^{2}}+a-x}\right) d x
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
I(a)=\frac{1}{a} \int_{0}^{\pi} \cos ^{2}(x) d x \Rightarrow \frac{1}{a} \int_{-\pi}^{\pi} \frac{1+\cos (2 x)}{2} d x \Rightarrow \frac{1}{a}\left[\frac{\pi}{2}-0\right] \\
\text { (OR) } I(a)=\frac{\pi}{2 a} \text {. Now, } \sum_{c y c}(I(a)) \stackrel{A M-G M}{\geq} \frac{9 \pi}{2(a+b+c)}
\end{gathered}
$$

112. Find:

$$
\Omega=\int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \frac{\tan x+\tan \left(x+\frac{\pi}{3}\right)+\tan \left(x+\frac{2 \pi}{3}\right)}{\tan 3 x \tan 3 y} d x d y
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Ravi Prakash-New Delhi-India, Solution 2 by Togrul Ehmedov-Baku-Azerbaidian, Solution 3 by Shivam Sharma-New Delhi-India
Solution 1 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\tan x+\tan \left(x+\frac{\pi}{3}\right)+\tan \left(x+\frac{2 \pi}{3}\right) \\
=\tan x+\tan \left(x+\frac{\pi}{3}\right)+\tan \left\{\pi-\left(\frac{\pi}{3}-x\right)\right\} \\
=\tan x+\tan \left(x+\frac{\pi}{3}\right)-\tan \left(\frac{\pi}{3}-x\right) \\
=\tan x+\frac{(\sqrt{3}+\tan x)(1+\sqrt{3} \tan x)-(\sqrt{3}-\tan x)(1-\sqrt{3} \tan x)}{1-3 \tan x} \\
=\frac{\tan x+\sqrt{3}}{1-\sqrt{3} \tan x}-\frac{\sqrt{3}-\tan x}{1+\sqrt{3} \tan x} \\
=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\therefore \Omega=\int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \frac{3 \tan 3 x}{\tan 3 x \tan 3 y} d x d y=\int_{\frac{\pi}{18}}^{\frac{\pi}{12}} 3\left(\frac{\pi}{36}\right) \cot 3 y d y \\
=\left.\frac{\pi}{36} \log |\sin (3 y)|\right|_{\frac{\pi}{18}} ^{\frac{\pi}{12}}=\frac{\pi}{36}\left\{\log \left(\frac{1}{\sqrt{2}}\right)-\log \left(\frac{1}{2}\right)\right\}=\frac{\pi}{36} \log (\sqrt{2})=\frac{\pi}{72} \log 2
\end{gathered}
$$

Solution 2 by Togrul Ehmedov-Baku-Azerbaidian

$$
A=\frac{\left(\tan x+\tan \left(\frac{\pi}{3}+x\right)+\tan \left(\frac{2 \pi}{3}+x\right)\right)}{\tan 3 x}=3
$$

$$
\int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \frac{3}{\tan 3 y} d x d y=\int_{\frac{\pi}{18}}^{\frac{\pi}{12}}[\ln 3 y]_{\frac{\pi}{18}}^{\frac{\pi}{12}} d x=\ln \sqrt{2}\left(\frac{\pi}{12}-\frac{\pi}{18}\right)=
$$

$$
=\ln \sqrt{2} \frac{\pi}{36}=\ln 2 \frac{\pi}{72}
$$

$$
\int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \frac{\tan x+\tan \left(\frac{\pi}{3}+x\right)+\tan \left(\frac{2 \pi}{3}+x\right)}{\tan 3 x \tan 3 y} d x d y=\ln 2 \frac{\pi}{72}<\ln 2 \frac{\pi}{71}
$$

Solution 3 by Shivam Sharma-New Delhi-India

$$
\begin{aligned}
& \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \frac{\tan (x)+\tan \left(\frac{\pi}{3}+x\right)+\left(-\tan \left(\frac{\pi}{3}-x\right)\right)}{\tan (3 x) \tan (3 y)} d x d y \\
\Rightarrow & \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \tan (x)+\frac{\tan (x)+\tan \left(\frac{\pi}{3}\right)}{1-\tan (x) \tan \left(\frac{\pi}{3}\right)}+\frac{\frac{\tan (x)-\tan \left(\frac{\pi}{3}\right)}{1+\tan (x) \tan \left(\frac{\pi}{3}\right)}}{\tan (3 x) \tan (3 y)} d x d y
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Rightarrow \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \frac{\tan (x)+\frac{\tan (x)+\sqrt{3}}{1-\sqrt{3} \tan (x)}+\frac{\tan (x)-\sqrt{3}}{1+\sqrt{3} \tan (x)}}{\tan (3 x) \tan (3 y)} d x d y
$$

$$
\Rightarrow \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \frac{9 \tan (x)-3 \tan ^{3}(x)}{1-(\sqrt{3} \tan x)^{2}} d x d y
$$

$$
\begin{gathered}
\Rightarrow \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \frac{\frac{3\left[\tan (x)-\tan ^{3}(x)\right]}{1-3 \tan ^{2} x}}{\tan (3 x) \tan (3 y)} d x d y \Rightarrow \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \frac{3 \tan (3 x)}{\tan (3 x) \tan (3 y)} d x d y \\
\Rightarrow \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} 3 \cot (3 y) d x d y \Rightarrow \int_{\frac{\pi}{18}}^{\frac{\pi}{12}}\left(\frac{\pi}{12}-\frac{\pi}{18}\right) 3 \cot (3 y) d y \\
\Rightarrow \frac{\pi}{12} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \cot (3 y) d y \cdot \operatorname{Let} 3 y=u \Rightarrow \frac{\pi}{36} \int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \cot (u) d u \Rightarrow \frac{\pi}{36}[\ln |\sin (u)|]_{\frac{\pi}{6}}^{\frac{\pi}{4}} \Rightarrow \\
\Rightarrow \frac{\pi}{36} \cdot \frac{1}{2} \cdot \ln (2)(O R) I=\frac{\pi}{72} \ln (2) \text { (Answer) }
\end{gathered}
$$

113. If $a \in\left(0, \frac{\pi}{2}\right)$ find:

$$
\Omega=\int_{\tan a}^{\cot a} \frac{\ln x}{1+x^{2}} d x
$$

Solution 1 by Togrul Ehmedov-Baku-Azerbaidian
Solution 2 by Abinash Mohapatra-India

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Togrul Ehmedov-Baku-Azerbaidian

$$
\begin{gathered}
\int_{\tan a}^{\cot a \ln x} 1+x^{2} \\
\frac{\pi}{2}-b \\
I=\int_{b}^{\frac{\pi}{b}} \ln \tan b d b=\int_{b}^{\frac{\pi}{2}-b} \ln \cot b d b \\
I=\frac{1}{2} \int_{b}^{\frac{\pi}{2}-b}[\ln \tan b+\ln \cot b] d b=0
\end{gathered}
$$

Solution 2 by Abinash M ohapatra-India

$$
\text { Thus } \Omega=\mathbf{0}
$$

$$
\begin{aligned}
& \ln x \int_{c}^{c} \frac{1}{1+x^{2}}-\int_{c}^{c}\left(\frac{1}{x} \int \frac{1}{1+x^{2}}\right) d x ;\left.\ln x \tan ^{-1} \frac{1}{x}\right|_{c} ^{c}-\underbrace{\int_{c}^{c} \frac{\tan ^{-1} x}{x} d x}_{\alpha} \\
& \therefore \alpha=\int_{c}^{c} \frac{\tan ^{-1} x}{x} d x=\int_{\tan a}^{\cot a} \frac{1}{x} \cot ^{-1}\left(\frac{1}{x}\right) d x ; \int_{c}^{c} \frac{x}{x^{2}} \cdot \cot ^{-1}\left(\frac{1}{x}\right) d x \\
& \text { Let } \frac{1}{x}=t \Rightarrow-\frac{1}{x^{2}} d x=d t \Rightarrow \alpha=\int_{\cot a}^{\tan a \cot ^{-1}(t)} t_{t} d t \\
& \Rightarrow \alpha=\underbrace{\int_{\tan a}^{\cot a \tan ^{-1} x} x}_{\text {(I) }} d x=\underbrace{\int_{\tan a}^{\cot a \cot ^{-1} x} d x}_{\text {(II) }} \text { (variable change) } \\
& \Rightarrow \text { equating (I) and (II) we get } \\
& \int_{\tan a}^{\cot a} \frac{\pi}{2 x}=0 \Rightarrow \ln \left(\cot ^{2} a\right)=0 \Rightarrow \cot a=1 \Rightarrow a=\frac{\pi}{4}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

114. If $a>0, f: \mathbb{R} \rightarrow \mathbb{R}$ continuous one, $f(x)+f(-x)=a \cos x, \forall x \in \mathbb{R}$ then find:

$$
\Omega=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x)}{\cos ^{3} x} d x
$$

Proposed by D.M. Bătinețu - Giurgiu \& Neculai Stanciu - Romania Solution 1 by Serban George Florin-Romania, Solution 2 by Lazaros Zachariadis-Thessaloniki-Greece, Solution 3 by Shivam Sharma-New DelhiIndia, Solution 4 by Soumava Pal-Kolkata-India, Solution 5 by SK Rejuan-West Bengal-India
Solution 1 by Serban George Florin-Romania

$$
\begin{gathered}
x=-t \Rightarrow \Omega=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(-t)}{\cos ^{3} t} d t \\
2 \Omega=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x)+f(-x)}{\cos ^{3} x} d x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{a \cos x}{\cos ^{3} x}=a \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{\cos ^{2} x} \\
\Omega=\left.\frac{a}{2} \tan x\right|_{-\frac{\pi}{4}} ^{\frac{\pi}{4}}=\frac{a}{2}\left(\tan \frac{\pi}{4}-\tan \left(-\frac{\pi}{4}\right)\right) ; \Omega=\frac{a}{2}(1+1)=a, \Omega=a
\end{gathered}
$$

Solution 2 by Lazaros Zachariadis-Thessaloniki-Greece

$$
f(x)+f(-x)=a \cdot \cos x \Rightarrow \frac{f(x)}{\cos ^{3} x}+\frac{f(-x)}{\cos ^{3} x}=\frac{a}{\cos ^{2} x}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x)}{\cos ^{3} x} d x+\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(-x)}{\cos ^{3} x} d x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{a}{\cos ^{2} x} d x=(a \tan x)^{\frac{\pi}{4}} \frac{\pi}{4} \\
\Rightarrow \underline{0}+\underline{0}=a(1+1) \Rightarrow 2 \underline{0}=2 a \Rightarrow \underline{0}=a \\
* \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(-x)}{\cos ^{3} x} d x \xlongequal[x=-x, d x=-d u]{x=\frac{-\pi}{4}, u=\frac{\pi}{4}}-\int_{\frac{\pi}{4}}^{-\frac{\pi}{4}} \frac{f(u) d u}{\cos ^{3} u}=\underline{0} \\
x=\frac{\pi}{4}, u=-\frac{\pi}{4}
\end{gathered}
$$

Solution 3 by Shivam Sharma-New Delhi-India
As we know, the following Lemma,

$$
\int_{-a}^{a} f(x) d x=\left\{\begin{array}{c}
2 \int_{0}^{a} f(x) d x, \text { if } f(x) \text { is even function } \\
0, \text { if } f(x) \text { is an odd function }
\end{array}\right.
$$

Using this, we get, $\Omega=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(-x)}{\cos ^{3}(-x)} d x$ then, $2 \Omega=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x)+f(-x)}{\cos ^{3}(x)} d x$

$$
\begin{aligned}
2 \Omega=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{a \cos (x)}{\cos ^{3}(x)} d x ; \Omega & =a \int_{0}^{\frac{\pi}{4}} \sec ^{2}(x) d x \Rightarrow a[\tan (x)]_{0}^{\frac{\pi}{4}} \\
(0 \mathrm{R}) \Omega & =a \text { (Answer) }
\end{aligned}
$$

Solution 4 by Soumava Pal-Kolkata-India

$$
I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x)}{\cos ^{3} x} d x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f\left(\frac{\pi}{4}-\frac{\pi}{4}-x\right)}{\cos ^{3}\left(\frac{\pi}{4}-\frac{\pi}{4}-x\right)} d x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{a \cos x-f(x)}{\cos ^{3} x} d x
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
=a \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2} x d x-I \Rightarrow 2 I=a(\tan x)_{-\frac{\pi}{4}}^{\frac{\pi}{4}}=a(1-(-1))=2 a \Rightarrow I=a
$$

Solution 5 by SK Rejuan-West Bengal-India

$$
\begin{array}{r}
\Omega=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x)}{\cos ^{3} x} d x \tag{1}\\
=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f\left(\frac{\pi}{4}-\frac{\pi}{4}-x\right)}{\cos ^{3} x} d x \Rightarrow \Omega=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(-x)}{\cos ^{3} x} d x
\end{array}
$$

Adding (1) \& (2) we get $2 \Omega=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{f(x)+f(-x)}{\cos ^{3} x} d x$

$$
\begin{aligned}
& =\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{a \cos x}{\cos ^{3} x} d x[a s f(x)+f(-x)=a \cos x] \\
& =a \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2} x d x=a[\tan x]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}=a(1-(1))=2 a \Rightarrow 2 \Omega=2 a \Rightarrow \Omega=a
\end{aligned}
$$

115. Find the integral

$$
I=\int \frac{x^{2} \cos x+x+\sin x \cos x}{x \sin x(x+\cos x)} d x
$$

Proposed by Abdallah Almalih-Damascus-Syria
Solution 1 by Ravi Prakash-New Delhi-India, Solution 2 by Abdelhak M aoukouf-Casablanca-M orocco, Solution 3 by Nawar Alasadi-Babylon-Iraq

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
I=\int \frac{x^{2} \cos x+x+(\sin x)(\cos x)}{x \sin x(x+\cos x)} d x . \text { Note } \frac{d}{d x}\{x \sin x(x+\cos x)\} \\
=\frac{d}{d x}\left\{x^{2} \sin x+\frac{1}{2} x \sin 2 x\right\}=2 x \sin x+x^{2} \cos x+x \cos 2 x+\frac{1}{2} \sin 2 x \\
=x^{2} \cos x+x+\sin x \cos x+2 x \sin x-2 x \sin ^{2} x \\
=x^{2} \cos x+x+\sin x \cos x+2 x \sin x(1-\sin x) \\
\therefore I=I_{1}-2 I_{2} \text { where } \\
I_{1}=\int \frac{\frac{d}{d x}(x \sin x(x+\cos x))}{x \sin x(x+\cos x)} d x=\ln |x \sin x(x+\cos x)| \\
I_{2}=\int \frac{x \sin x(1-\sin x)}{x \sin x(x+\cos x)} d x=\ln |x+\cos x|+c
\end{gathered}
$$

Thus, $I=\ln |x \sin x(x+\cos x)|-2 \ln |x+\cos x|+c$
Solution 2 by Abdelhak M aoukouf-Casablanca-M orocco
Let us denote by $\varphi(x)=x \sin x(x+\cos x)$
$\Rightarrow \varphi^{\prime}(x)=x^{2} \cos x+2 x \sin x+\sin x \cos x+x \cos x$
then $\int \frac{x^{2} \cos x+x+\sin x \cos x}{x \sin x(x+\cos x)} d x=\int \frac{\varphi^{\prime}(x)}{\varphi(x)} d x+\int \frac{x-2 x \sin x-x \cos x}{\varphi(x)} d x$
$=\ln |\varphi(x)|-2 \int \frac{x \sin x(1-\sin x)}{x \sin x(x+\cos x)} d x=\ln |\varphi(x)|-2 \int \frac{(x+\cos x)^{\prime}}{x+\cos x} d x$
$=\ln |\varphi(x)|-2 \ln |x+\cos x|+\lambda=\ln \left|\frac{\varphi(x)}{(x+\cos x)^{2}}\right|+\lambda$, whith $\lambda \in \mathbb{R}$
Finally we get $\int \frac{x^{2} \cos x+x+\sin x \cos x}{x \sin x(x+\cos x)} d x=\ln \left|\frac{x \sin x}{x+\cos x}\right|+\lambda$
Solution 3 by Nawar Alasadi-Babylon-Iraq

$$
I=\int \frac{x^{2} \cos x+x+\sin x \cos x}{x \sin x(x+\cos x)} d x
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$=\int \frac{x^{2} \cos x+x\left(\sin ^{2} x+\cos ^{2} x\right)+\sin x \cos x+x \sin x-x \sin x}{x \sin x(x+\cos x)} d x$
$=\int \frac{x \sin x+\sin x \cos x+x^{2} \cos x+x \cos ^{2} x-x \sin x+x \sin ^{2} x}{x \sin x(x+\cos x)} d x$
$=\int \frac{\sin x(x+\cos x)+x \cos x(x+\cos x)-x \sin x(1-\sin x)}{x \sin x(x+\cos x)} d x$
$=\int\left(\frac{1}{x}+\frac{\cos x}{\sin x}-\frac{1-\sin x}{x+\cos x}\right) d x$
$=\ln |x|+\ln |\sin x|-\ln |x+\cos x|+c=\ln \left|\frac{x \sin x}{x+\cos x}\right|+c$
116. Find:

$$
\Omega=\int \frac{\cot x \cot 2 x d x}{\left(\cot ^{2} x-\tan ^{2} x\right) \sin ^{3} 2 x}
$$

Proposed by Geanina Tudose - Romania
Solution by proposer

$$
\begin{gathered}
\int \frac{\cot 2 x \cdot \cot x}{\left(\cot ^{2} x-\tan ^{2} x\right) \sin ^{3} 2 x} d x=\int \frac{\cos 2 x \cdot \cos x}{\sin 2 x \cdot \sin x} \cdot \frac{1}{\frac{\cos ^{2} x \cdot \sin ^{2} x}{\cos ^{2} x \cdot \sin ^{2} x}} \cdot \frac{1}{8 \sin ^{2} x \cos ^{3} x} d x \\
=\frac{1}{8} \int \frac{\cos x}{\sin 2 x \cdot \sin ^{2} x \cdot \cos x} d x=\frac{1}{16} \int \frac{1}{\sin ^{3} x \cos x} d x \\
=\frac{1}{16} \int \frac{1}{\sin ^{3} x \cdot \cos ^{2} x} \cdot \cos d x=\frac{1}{16} \int \frac{1}{y^{3} \cdot\left(1-y^{2}\right)} d x=(*), y=\sin x, d y=\cos x d x \\
\frac{1}{y^{3}\left(1-y^{2}\right)}=\frac{1-y^{2}+y^{2}}{y^{3}\left(1-y^{2}\right)}=\frac{1}{y^{3}}+\frac{1}{y\left(1-y^{2}\right)}=\frac{1}{y^{3}}+\frac{1}{y}+\frac{y}{1-y^{2}} \\
(*)=\frac{1}{16}\left(\int \frac{1}{y^{3}} d y+\int \frac{1}{y} d y+\int \frac{y}{1-y^{2}} d y\right)=\frac{1}{16}(\frac{y^{-2}}{-2}+\ln y-\frac{1}{2} \ln \underbrace{\left(1-y^{2}\right)}_{+})+C= \\
=\frac{1}{16}\left(-\frac{+1}{2 y^{2}}+\ln \frac{y}{\sqrt{1-y^{2}}}\right)+C=\frac{1}{16}\left(\frac{-1}{2 \sin ^{2} x}+\ln \frac{\sin x}{\cos x}\right)+C=\frac{1}{16}\left(\frac{-1}{2 \sin ^{2} x}+\ln (\tan x)\right)+C
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

117. Find:

$$
\Omega=\int \frac{\cos 2 x \cot x d x}{\left(\cot ^{2} x-\tan ^{2} x\right) \sin ^{3} 2 x}, x \in\left(0, \frac{\pi}{4}\right)
$$

Proposed by Daniel Sitaru - Romania
Solution by Nguyen Thanh Nho-Tra Vinh-Vietnam

$$
\begin{gathered}
\cos 2 x=\cos ^{2} x-\sin ^{2} x=\cos ^{4} x-\sin ^{4} x= \\
=\sin ^{2} x \cos ^{2} x\left(\cot ^{2} x-\tan ^{2} x\right) ; * \sin ^{3} 2 x=8 \sin ^{3} x \cos ^{3} x \\
\Rightarrow \Omega=\int \frac{\sin ^{2} x \cos ^{2} x\left(\cot ^{2} x-\tan ^{2} x\right) \frac{\cos x}{\sin x}}{\left(\cot ^{2} x-\tan ^{2} x\right) \cdot 8 \sin ^{3} \cos ^{3} x} d x=\frac{1}{8} \int \frac{1}{\sin ^{2} x} d x=-\frac{1}{8} \cot x+C
\end{gathered}
$$

118. If $f:[0,1] \rightarrow(0, \infty)$ is a continuous function such that

$$
\begin{gathered}
\int_{0}^{1} f(x) d x=1 \text {, then } \\
\left(\int_{0}^{1} \sqrt[3]{f(x)} d x\right)\left(\int_{0}^{1} \sqrt[5]{f(x)} d x\right)\left(\int_{0}^{1} \sqrt[7]{f(x)} d x\right) \leq 1
\end{gathered}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Chris Kyriazis-Greece,
Solution 2 by Soumitra Mandal-Chandar Nagore-India
Solution 1 by Chris Kyriazis-Greece
It's obvious that $f(x) \geq 0 \forall x \in[0,1]$. Because of AM-GM, we take:
$\sqrt[3]{f(x)}=\sqrt[3]{f(x) \cdot 1 \cdot 1}=\frac{f(x)+1+1}{3}$ so if we integrate, it follows that:

$$
\begin{equation*}
\int_{0}^{13} \sqrt[3]{f(x)} d x \leq \int_{0}^{1} \frac{f(x)+2}{3} d x=\frac{1}{3}\left(\int_{0}^{1} f(x) d x+2\right)=\frac{1}{3} \cdot 3=1 \tag{1}
\end{equation*}
$$

Doing it the same way we take that: $\int_{0}^{1} \sqrt[5]{f(x)} d x \leq 1$

$$
\begin{equation*}
\text { and } \int_{0}^{1} \sqrt[7]{f(x)} d x \leq 1 \tag{2}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Multiplying (1) $\times(2) \times(3)$ (every party is non negative!)

We have the result we want!

Solution 2 by Soumitra M andal-Chandar Nagore-India

$$
\begin{aligned}
& \int_{0}^{1} \sqrt[3]{f(x)} d x \stackrel{H^{\text {HOLDER'S InEQUALITY }}}{\leq} \sqrt{\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} f(x) d x\right)}=1 \\
& \int_{0}^{1} \sqrt[5]{f(x)} d x \stackrel{x^{\text {HoLDER'S INEQUALITY }} 5}{\leq} \sqrt{\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} f(x) d x\right)}=1 \\
& \int_{0}^{1} \sqrt[7]{f(x)} d x \sqrt{\text { HOLDER }} \sqrt[7]{\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} f(x) d x\right)}=1 \\
& \left(\int_{0}^{1} \sqrt[3]{f(x)} d x\right)\left(\int_{0}^{1} \sqrt[5]{f(x)} d x\right)\left(\int_{0}^{1} \sqrt[7]{f(x)} d x\right) \leq 1
\end{aligned}
$$

119. If $\boldsymbol{f}:[\boldsymbol{a}, \boldsymbol{b}] \rightarrow(\mathbf{0}, \infty), \boldsymbol{a}<b, f$ continuous, increasing then:

$$
\left(\int_{a}^{b} x f(x) d x\right)\left(\int_{a}^{b} f^{2}(x) d x\right)\left(\int_{a}^{b} x^{3} f(x) d x\right) \geq \frac{a^{2} b^{2}}{b-a}\left(\int_{a}^{b} f(x) d x\right)^{4}
$$

Proposed by Daniel Sitaru - Romania
Solution by Leonard Giugiuc - Romania
By Chebyshev,

$$
\int_{a}^{b} x f(x) d x \geq \frac{1}{b-a} \cdot\left(\int_{a}^{b} x d x\right)\left(\int_{a}^{b} f(x) d x\right)=\frac{a+b}{2} \cdot \int_{a}^{b} f(x) d x .
$$

Similarly,

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\int_{a}^{b} x^{3} f(x) d x \geq \frac{a^{3}+a^{2} b+a b^{2}+b^{3}}{4} \cdot \int_{a}^{b} f(x) d x$
By Cauchy, $\int_{a}^{b} f^{2}(x) d x \geq \frac{1}{b-a} \cdot\left(\int_{a}^{b} f(x) d x\right)^{2}$
By AM-GM, $\frac{a+b}{2} \cdot \frac{a^{3}+a^{2} b+a b^{2}+b^{3}}{4} \geq a^{2} b^{2}$. We multiply and get

$$
\left(\int_{a}^{b} x f(x) d x\right)\left(\int_{a}^{b} f^{2}(x) d x\right)\left(\int_{a}^{b} x^{3} f(x) d x\right) \geq \frac{a^{2} b^{2}}{b-a}\left(\int_{a}^{b} f(x) d x\right)^{4}
$$

120. From the book: "Math Accent"

$$
\Omega=\int_{0}^{1} \frac{\ln \left(1-x^{2}\right)^{2} \ln (1-x)}{x} d x
$$

Prove that: $\Omega>\frac{5}{2} \zeta(3)$
Proposed by Daniel Sitaru - Romania
Solution by Shivam Sharma-New Delhi-India

$$
\begin{gathered}
\text { If } I=\int_{0}^{1} \frac{\ln \left(1-x^{2}\right)^{2} \ln (1-x)}{x} d x \text {. Then, prove that: } I>-\frac{\pi^{2}}{2} \\
\Rightarrow 2 \int_{0}^{1} \frac{[\ln (1-x)+\ln (1+x)] \ln (1-x)}{x} d x \\
\Rightarrow 2 \int_{0}^{1} \frac{\ln ^{2}(1-x)}{x} d x+2 \int_{0}^{1} \frac{\ln (1-x) \ln (1+x)}{x} d x . \text { Let, } A=\int_{0}^{1} \frac{\ln ^{2}(1-x)}{x} d x \\
\Rightarrow \int_{0}^{1} \frac{\ln ^{2}(x)}{1-x} d x \Rightarrow \sum_{n=0}^{\infty} \int_{0}^{1} x^{n} \ln ^{2}(x) d x \Rightarrow \sum_{n=0}^{\infty} \frac{\partial^{2}}{\partial n^{2}}\left[\int_{0}^{1} x^{n} d x\right]
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\begin{aligned} \Rightarrow \sum_{n=0}^{\infty} \frac{\partial^{2}}{\partial n^{2}}\left[\frac{x^{n-1}}{n+1}\right]_{0}^{1} \Rightarrow & \sum_{n=0}^{\infty}\left[\frac{x^{n-1} \ln ^{2}(x)}{n+1}-2 \frac{x^{n+1} \ln (x)}{(n+1)^{2}}+2 \frac{x^{n-1}}{(n+1)^{3}}\right]_{0}^{1} \\ \Rightarrow & 2 \sum_{n=0}^{\infty}\left(\frac{1}{n^{3}}\right)(\mathrm{OR}) A=2 \zeta(3)\end{aligned}$
Let $B=\int_{0}^{1} \frac{\ln (1-x) \ln (1+x)}{x} d x$
$\Rightarrow \frac{1}{4}\left[\frac{1}{2} \int_{0}^{1} \frac{\ln ^{2}(1-x)}{x} d x-2 \int_{0}^{1} \frac{\ln ^{2}(x)}{(1-x)(1+x)} d x\right] \Rightarrow \frac{1}{4}\left[-\frac{1}{2} \int_{0}^{1} \frac{\ln ^{2}(x)}{1-x} d x-\int_{0}^{1} \frac{\ln ^{2}(x)}{1+x} d x\right]$
Now, applying I.B.P., we get, $\Rightarrow \frac{1}{4}\left[-\int_{0}^{1} \frac{\ln (x) \ln (1-x)}{x} d x+2 \int_{0}^{1} \frac{\ln (x) \ln (1+x)}{x} d x\right]$
Now, again applying I.B.P., we get $\Rightarrow \frac{1}{4}\left[-\int_{0}^{1} \frac{L i_{2}(x)}{x} d x+2 \int_{0}^{1} \frac{L i_{2}(-x)}{x} d x\right]$
Let, $x=-u$, in second integral, we get $d x=-d u$

$$
\begin{gathered}
\Rightarrow \frac{1}{4}\left(\left[-L i_{3}(x)\right]_{0}^{1}+2 \int_{0}^{1} \frac{L i_{2}(u)}{u} d u\right) \Rightarrow \frac{1}{4}\left(L i_{3}(1)+2\left[L i_{3}(x)\right]_{0}^{1}\right) \\
\Rightarrow \frac{1}{4}\left[-\frac{5}{2}\left(L i_{3}(1)\right)\right] \Rightarrow \frac{1}{4}\left[-\frac{5}{2} \zeta(3)\right](\mathrm{OR}) B=-\frac{5}{8} \zeta(3)
\end{gathered}
$$

Combining all, we get, $I=2 A+2 B \Rightarrow 2(2 \zeta(3))+2\left(-\frac{5}{8} \zeta(3)\right)$

$$
\text { (OR) } I=\frac{11}{4} \zeta(3)>\frac{5}{2} \zeta(3)
$$

121. If $[0,1] \rightarrow(0, \infty)$ continuous; $\int_{0}^{1} f^{3}(x) d x=\sqrt[7]{2}$ then:

$$
\left(\int_{0}^{1} f^{5}(x) d x\right)\left(\int_{0}^{1} f^{7}(x) d x\right)\left(\int_{0}^{1} f^{9}(x) d x\right) \geq 2
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by proposer
Solution 2 by Chris Kyriazis-Greece

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by proposer

$$
\begin{aligned}
& \left(\int_{0}^{1} f^{5}(x) d x\right)\left(\int_{0}^{1} f^{7}(x) d x\right)\left(\int_{0}^{1} f^{9}(x) d x\right)\left(\int_{0}^{1} f^{3}(x) d x\right)= \\
& =\int_{0}^{1}\left(f^{2}(x) \sqrt{f(x)}\right)^{2} d x \cdot \int\left(f^{3}(x) \sqrt{f(x)}\right)^{2} d x . \\
& \cdot \int_{0}^{1}\left(f^{4}(x) \sqrt{f(x)}\right)^{2} d x \cdot\left(\int_{0}^{1} f(x) \sqrt{f(x)}\right)^{2} d x \stackrel{C B S}{\geqq} \\
& \geq\left(\int_{0}^{1} f^{6}(x) d x\right)^{2} \cdot\left(\int_{0}^{1} f^{6}(x) d x\right)^{2} d x= \\
& =\left(\left(\int_{0}^{1} f^{6}(x) d x\right)\left(\int_{0}^{1} 1^{2} d x\right)\right)^{4} \stackrel{C B S}{\geq}\left(\int_{0}^{1} f^{3}(x) d x\right)^{8}=\sqrt[7]{2^{8}} \\
& \sqrt[7]{2}\left(\int_{0}^{1} f^{5}(x) d x\right)\left(\int_{0}^{1} f^{7}(x) d x\right)\left(\int_{0}^{1} f^{9}(x) d x\right) \geq \sqrt[7]{2^{8}} \\
& \left(\int_{0}^{1} f^{5}(x) d x\right)\left(\int_{0}^{1} f^{7}(x) d x\right)\left(\int_{0}^{1} f^{9}(x) d x\right) \geq 2
\end{aligned}
$$

Solution 2 by Chris Kyriazis-Greece
By Holder's Inequality (only if $\boldsymbol{f} \geq \mathbf{0}$)

$$
\left(\int_{0}^{1} f^{5}(x) d x\right)^{\frac{3}{5}} \cdot\left(\int_{0}^{1} d x\right)^{\frac{1}{5}}\left(\int_{0}^{1} d x\right)^{\frac{1}{5}} \geq \int_{0}^{1} f^{3}(x) d x
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gather*}
\Rightarrow \int_{0}^{1} f^{5}(x) d x \geq(\sqrt[7]{2})^{\frac{5}{3}}=2^{\frac{5}{21}} \text { (1). Working the same way, we have } \\
\qquad\left(\int_{0}^{1} f^{7}(x) d x\right)^{\frac{3}{7}} \geq \sqrt[7]{2} \Leftrightarrow \int_{0}^{1} f^{7}(x) d x \geq 2^{\frac{7}{21}} \quad \text { (2) and } \\
\left(\int_{0}^{1} f^{9}(x) d x\right)^{\frac{3}{9}} \geq \sqrt[7]{2} \Leftrightarrow \int_{0}^{1} f^{9}(x) d x \geq 2^{\frac{9}{21}} \quad \text { (3) } \tag{3}
\end{gather*}
$$

Multiplying (1) $\times(2) \times(3)$ we have

$$
\int_{0}^{1} f^{5}(x) d x \cdot \int_{0}^{1} f^{7}(x) d x \cdot \int_{0}^{1} f^{9}(x) d x \geq 2 \text { as we want! }
$$

122. In all $\triangle A B C$,

$$
\sum_{c y c} \int_{0}^{\frac{h_{a}^{2}}{h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}}} e^{-t^{2}} d t \leq 3 \tan ^{-1} \frac{R}{6 R}
$$

Proposed by Soumitra Mandal-Chandar Nagore-India
Solution by Daniel Sitaru - Romania

$$
\begin{aligned}
& e^{x^{2}} \geq x^{2}+1 \rightarrow e^{-x^{2}} \leq \frac{1}{x^{2}+1} \rightarrow \\
& \frac{h_{a}^{2}}{h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}} \\
& \int_{0} e^{-t^{2}} d t \leq \tan ^{-1}\left(\frac{h_{a}^{2}}{h_{a} h_{b}+h_{b} h_{c}+h_{c} h_{a}}\right) \\
& \sum_{c y c} \int_{0}^{\frac{h_{a}^{2}}{h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}}} e^{-t^{2}} d t \leq \sum \tan ^{-1}\left(\frac{h_{a}^{2}}{h_{a} h_{b}+h_{b} h_{c}+h_{c} h_{a}}\right)^{\text {JENSEN }} \stackrel{y}{m} \\
& \leq 3 \tan ^{-1}\left(\frac{1}{3} \sum \frac{h_{a}^{2}}{h_{a} h_{b}+h_{b} h_{c}+h_{c} h_{a}}\right) \stackrel{\text { LEMMA }}{\underset{\sim}{s}} 3 \tan ^{-1} \frac{R}{6 r}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
LEMMA:

$$
\frac{h_{a}^{2}+h_{b}^{2}+h_{c}^{2}}{h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}} \leq \frac{R}{2 r}
$$

By Adil Abdullayev

$$
\text { We have, } h_{a}=\frac{2 \Delta}{a}, h_{b}=\frac{2 \Delta}{b}, h_{c}=\frac{2 \Delta}{c}, a+b+c=2 p \text { and }
$$

$$
a b+b c+c a=p^{2}+r^{2}+4 R r
$$

$$
\frac{h_{a}^{2}+h_{b}^{2}+h_{c}^{2}}{h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}} \leq \frac{R}{2 r} \Leftrightarrow \frac{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}{\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}} \leq \frac{R}{2 r}
$$

$$
\Leftrightarrow \frac{a^{2} b^{2}+b^{2} c^{2}+a^{2} c^{2}}{a b c(a+b+c)} \leq \frac{R}{2 r} \Leftrightarrow \frac{\left(p^{2}+r^{2}+4 R r\right)^{2}}{a b c(a+b+c)} \leq \frac{R+4 r}{2 r}
$$

$$
\Leftrightarrow \frac{p^{4}+r^{4}+16 r^{2} r^{2}+2 p^{2} r^{2}+8 R r^{3}+8 R r p^{2}}{8 R r p^{2}} \leq \frac{R+4 r}{2 r}
$$

$$
\Leftrightarrow p^{4}+r^{4}+16 R^{2} r^{2}+2 p^{2} r^{2}+8 R r^{3}+8 R r p^{2} \leq 4 R^{2} p^{2}+16 R r p^{2}
$$

$$
\Leftrightarrow p^{4}+r^{4}+16 R^{2} r^{2}+2 p^{2} r^{2}+8 R r^{3} \leq 4 R^{2} p^{2}+8 R r p^{2}
$$

We know, $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$, then we need to prove,

$$
\begin{gathered}
p^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)+\left(r^{2}+4 R r\right)^{2}+2 p^{2} r^{2} \leq 4 R^{2} p^{2}+8 R r p^{2} \\
\Leftrightarrow p^{2}\left(5 r^{2}-4 R r\right)+\left(r^{2}+4 R r\right)^{2} \leq 0 \Leftrightarrow p^{2} \geq \frac{\left(r^{2}+4 R r\right)^{2}}{4 R r-5 r^{2}}
\end{gathered}
$$

Again, we know, $p^{2} \geq 16 R r-5 r^{2}$, we will show, $16 R r-5 r^{2} \geq \frac{\left(r^{2}+4 R r\right)^{2}}{4 R r-5 r^{2}}$

$$
\Leftrightarrow 4 R^{2}-9 R r+2 r^{2} \geq(R-2 r)(4 R-r) \geq 0, \text { which is true. }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

123. From the book: "Sinergy Math"

$$
\text { If } x, y, z \in(0, \infty)
$$

$$
\Omega(x)=\lim _{n \rightarrow \infty}\left(\frac{(x+3)^{\frac{1}{n}}+x^{\frac{1}{n}}}{(x+2)^{\frac{1}{n}}+(x+1)^{\frac{1}{n}}}\right)^{n}
$$

Then:

$$
\Omega^{2}(x)+\Omega^{2}(y)+\Omega^{2}(z)<3+2 \sum \frac{1}{x+2}
$$

Proposed by Daniel Sitaru - Romania
Solution by Quang Minh Tran-Vietnam
If x in positive real number we have $\Omega^{2}(x)=\frac{x(x+3)}{(x+2)(x+1)}$
Now we must prove $\sum\left[\frac{x(x+3)}{(x+2)(x+1)}-\frac{2}{x+2}\right]<3 \Leftrightarrow \sum \frac{x-1}{x+1}<3 \Leftrightarrow$

$$
\Leftrightarrow \sum\left(\mathbf{1}-\frac{\mathbf{2}}{\boldsymbol{x}+\mathbf{1}}\right)<3 \Leftrightarrow 3-2 \sum \frac{1}{x+1}<3
$$

124. $1<\int_{0}^{1} \int_{0}^{1}(x+4)^{4} d x d y<\frac{16}{5}$

$$
\begin{array}{r}
\int_{a}^{b} \int_{a}^{b}(x+y)^{4} d x d y \leq \int_{a}^{b} \int_{a}^{b} \int_{0}^{1}(t x+(1-t) y)^{4} d x d y d t, a<b \\
\text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution by Soumitra M andal-Chandar Nagore-India
We have, by $R . M \geq A . M \geq G . M ; 8\left(x^{4}+y^{4}\right) \geq(x+y)^{4} \geq 16 x^{2} y^{2}$
$8\left(\int_{0}^{1} d y\right)\left(\int_{0}^{1} x^{4} d x\right)+8\left(\int_{0}^{1} d x\right)\left(\int_{0}^{1} y^{4} d y\right) \geq \int_{0}^{1} \int_{0}^{1}(x+y)^{4} d x d y \geq$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\geq 16\left(\int_{0}^{1} x^{2} d x\right)\left(\int_{0}^{1} y^{2} d y\right) ; \frac{16}{5} \geq \int_{0}^{1} \int_{0}^{1}(x+y)^{4} d x d y \geq \frac{16}{9}>1 \text { (Proved) }
$$

We have, $0 \leq t \leq 1 \Rightarrow 0 \leq x t \leq x$, similarly, $0 \leq 1-t \leq 1$
$\Rightarrow \mathbf{0} \leq \boldsymbol{y}(\mathbf{1}-\boldsymbol{t}) \leq \boldsymbol{y}$. Adding we have, $0 \leq x t+y(1-t) \leq x+y$

$$
\int_{a}^{b} \int_{a}^{b} \int_{0}^{1}(x t+y(1-t))^{2} d x d y d t \leq \int_{a}^{b} \int_{a}^{b} \int_{0}^{1}(x+y)^{4} d x d y d t=\int_{a}^{b} \int_{a}^{b}(x+y)^{4} d x d y
$$

125. If $m, n \in \mathbb{N}, m \geq 2, n \geq 2$ then:

$$
\left(\int_{0}^{\frac{\pi}{2}} \sqrt[m]{\tan x} d x\right)\left(\int_{0}^{\frac{\pi}{2}} \sqrt[n]{\tan x} d x\right) \geq \frac{\pi^{2}}{\left(\cos \frac{\pi}{2 m}+\cos \frac{\pi}{2 n}\right)^{2}}
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumitra M andal-Chandar Nagore-India

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}} \sin ^{p} x \cos ^{q} x d x=\frac{1}{2} \cdot \frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{q+1}{2}\right)}{\Gamma\left(\frac{p+q+2}{2}\right)},-1<p, q<1 \\
\Gamma(p) \Gamma(1-p)=\pi \csc \pi p \\
\left(\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{1}{m}} x \cos ^{-\frac{1}{m}} x d x\right)\left(\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{1}{n}} x \cos ^{-\frac{1}{n}} x d x\right) \\
=\frac{1}{2} \Gamma\left(\frac{m+1}{2 m}\right) \Gamma\left(\frac{m-1}{2 m}\right) \cdot \frac{1}{2} \Gamma\left(\frac{n+1}{2 n}\right) \Gamma\left(\frac{n-1}{2 n}\right) \\
=\frac{1}{2} \Gamma\left(\frac{m+1}{2 m}\right) \Gamma\left\{1-\frac{m+1}{2 m}\right\} \cdot \frac{1}{2} \Gamma\left(\frac{n+1}{2 n}\right) \Gamma\left\{1-\frac{n+1}{2 n}\right\} \\
=\frac{\pi^{2}}{4} \csc \frac{\pi(m+1)}{2 m} \csc \frac{\pi(n+1)}{2 n}=\frac{\pi^{2}}{4 \cos \frac{\pi}{2 m} \cos \frac{\pi}{2 n}} \underset{A M \geq G M}{\left(\cos \frac{\pi}{2 m}+\cos \frac{\pi}{2 n}\right)}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

126. From the book: "Math Accent"

$$
\int_{1}^{\sqrt{3}} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\left(\tan ^{-1} x\right)^{2} d x<\frac{\pi^{3}}{27}(\sqrt{3}-1)
$$

Proposed by Daniel Sitaru - Romania
Solution by Togrul Ehmedov-Baku-Azerbaidian

$$
\begin{gathered}
\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\pi-2 \tan ^{-1} x ; J=\int_{1}^{\sqrt{3}}\left(\pi-2 \tan ^{-1} x\right)\left(\tan ^{-1} x\right)^{2} d x \\
\left(\pi-2 \tan ^{-1} x\right)\left(\tan ^{-1} x\right)^{2} \stackrel{A M-G M}{<}\left(\frac{\pi}{3}\right)^{3} ; \max _{[1, \sqrt{3}]}\left(\pi-2 \tan ^{-1} x\right)\left(\tan ^{-1} x\right)^{2}=\frac{\pi^{3}}{27} \\
\left(\pi-2 \tan ^{-1} x\right)\left(\tan ^{-1} x\right)^{2}<\frac{\pi^{3}}{27} ; \int_{1}^{\sqrt{3}}\left(\pi-2 \tan ^{-1} x\right)\left(\tan ^{-1} x\right)^{2} d x<\int_{1}^{\sqrt{3}} \frac{\pi^{3}}{27} d x \\
J<\frac{\pi^{3}}{27}(\sqrt{3}-1)
\end{gathered}
$$

127. Prove that if $a \in \mathbb{R}$ then:

$$
\int_{a+8}^{a+11} e^{x^{2}} d x+\int_{a+4}^{a+7} e^{x^{2}} d x \leq \int_{a}^{a+3} e^{x^{2}} d x+\int_{a+12}^{a+15} e^{x^{2}} d x
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Soumitra Mandal-Chandar Nagore-India
Solution 2 by Leonard Giugiuc - Romania
Solution 1 by Soumitra M andal-Chandar Nagore-India
Lemma: Let f be a convex function defined on $I \subseteq \mathbb{R}$ then for any

$$
x \leq y \leq z \text { in I we have, } f(x-y+z) \leq f(x)-f(y)+f(z)
$$

$$
\text { Now, }\left\{e^{m^{2}}\right\}^{\prime \prime}=2 e^{m^{2}}+4 m^{2} e^{m^{2}}>0 \text { for all } m \in \mathbb{R}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Let $z=n+12$ and $y=n+8$ then from $f(x-y+z) \leq f(z)-f(y)+f(x) \Rightarrow$

$$
\Rightarrow f(n+4)+f(n+8) \leq f(n)+f(n+12) \text { where } x \in[a, a+3] \text { then }
$$

$$
\begin{aligned}
& \int_{a}^{a+3} f(n+4) d n+\int_{a}^{a+3} f(n+8) d n \leq \int_{a}^{a+3} f(n) d n+\int_{a}^{a+3} f(n+12) d n \\
& \Rightarrow \int_{a+4}^{a+7} f(x) d x+\int_{a+8}^{a+11} f(x) d x \leq \int_{a}^{a+3} f(x) d x+\int_{a+12}^{a+15} f(x) d x \\
& \therefore \int_{a+8}^{a+11} e^{x^{2}} d x+\int_{a+4}^{a+7} e^{x^{2}} d x \leq \int_{a}^{a+3} e^{x^{2}} d x+\int_{a+12}^{a+15} e^{x^{2}} d x
\end{aligned}
$$

Solution 2 by Leonard Giugiuc - Romania

Let f be an antiderivative of $e^{x^{2}}$ on R. Then

$$
f^{\prime \prime \prime}(x)=2\left(1+2 x^{2}\right) e^{x^{2}}>0, \forall x \in R .
$$

Let $g: R \rightarrow R, g(t)=\int_{t}^{t+3} e^{x^{2}} d x$. Then $g^{\prime \prime}(t)=f^{\prime \prime}(t+3)-f^{\prime \prime}(t) \geq 0$, because $f^{\prime \prime}$ strictly increasing. Hence g is convex.
We need to prove $g(a+4)+g(a+8) \leq g(a)+g(a+12)$.
We have: $\boldsymbol{a}<a+4<a+8<a+12$ and $\boldsymbol{a}+\boldsymbol{a}+\mathbf{1 2}=\boldsymbol{a}+\mathbf{4}+\boldsymbol{a}+\mathbf{8}$,
hence by Karamata $g(a+4)+g(a+8) \leq g(a)+g(a+12)$.
128. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}, \boldsymbol{a}<b, p>1, p+q=p q$ then:

$$
(b-a)^{2} \sqrt{e^{a+b}} \leq \int_{a}^{b} \int_{a}^{b} e^{\frac{q x+p y}{p+q}} d x d y \leq(b-a)\left(e^{b}-e^{a}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Solution 1 by Soumitra M andal-Chandar Nagore-India
We have, $\frac{1}{p}+\frac{1}{q}=1$ and $p, q>0$ now, $e^{\frac{x}{p}}$ and $e^{\frac{y}{p}}$ are convex functions, hence by Hermite - Hadamard Inequality

$$
\begin{gathered}
\int_{a}^{b} e^{\frac{x}{p}} d x \geq(b-a) e^{\frac{a+b}{2 p}} \int_{a}^{b} e^{\frac{y}{q}} d y \geq(b-a) e^{\frac{a+b}{2 q}} \\
\therefore \int_{a}^{b} \int_{a}^{b} e^{\frac{q x+p y}{p+q}} d x d y=\left(\int_{a}^{b} e^{\frac{x}{p}} d x\right)\left(\int_{a}^{b} e^{\frac{y}{q}} d y\right) \geq(b-a)^{2} e^{\frac{a+b}{2}\left(\frac{1}{p}+\frac{1}{q}\right)} \\
=(b-a)^{2} \sqrt{e^{a+b}} . \text { Now, } e^{\frac{q x+p y}{p+q}} \leq \frac{e^{x}}{p}+\frac{e^{y}}{q}\left[\begin{array}{c}
\because e^{m} \text { is a convex function } \\
\text { and } \frac{1}{p}+\frac{1}{q}=1
\end{array}\right] \\
\Rightarrow \int_{a}^{b} \int_{a}^{b} e^{\frac{q x+p y}{p+q}} d x d y \leq \frac{1}{p} \int_{a}^{b} \int_{a}^{b} e^{x} d x d y+\frac{1}{q} \int_{a}^{b} \int_{a}^{b} e^{y} d x d y \\
=(b-a)\left(e^{b}-e^{a}\right)\left(\frac{1}{p}+\frac{1}{q}\right)=(b-a)\left(e^{b}-e^{a}\right) \\
\therefore(b-a)^{2} \sqrt{e^{a+b}} \leq \int_{a}^{b} \int_{a}^{b} e^{\frac{q x+p y}{p+q}} d x d y \leq(b-a)\left(e^{b}-e^{a}\right)
\end{gathered}
$$

Solution 2 by Saptak Bhattacharya-Kolkata-India
$f(t)=e^{t}$ is a convex function, so by first half of Hermite Hadamard inequality; (note that $q=\frac{p}{p-1}>0$)

$$
\begin{gather*}
\int_{a}^{b} e^{\frac{p y}{b+q}} \int_{a}^{b} e^{\frac{d x}{p+q}} d x d y \geq \int_{a}^{b} e^{\frac{p y}{b+q}} \cdot(b-a) e^{\frac{q}{p+q} \cdot\left(\frac{a+b}{2}\right)} d y \\
\geq(b-a)^{2} e^{\frac{a+b}{2}\left(\frac{p+q}{p+q}\right)}=(b-a)^{2} e^{\frac{a+b}{2}} \tag{i}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Since $q>0$; let $\lambda=\frac{q}{p+q} \in(\mathbf{0}, \mathbf{1})$. Then $1-\lambda=\frac{p}{p+q} \in(\mathbf{0}, \mathbf{1})$
Also $f(t)=e^{t}$ is convex. Thus; by Jensen

$$
f(2 x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

$$
\Rightarrow \int_{a}^{b} \int_{a}^{b} e^{2 x+(1-\lambda) y} d x d y \leq \int_{a}^{b} \int_{a}^{b}\left(\lambda e^{x}+(1-\lambda) e^{y}\right) d x d y
$$

$$
\begin{equation*}
=(\lambda+(1-\lambda))(b-a)\left(e^{b}-e^{a}\right)=(b-a)\left(e^{b}-e^{a}\right) \text { (Proved) } \tag{ii}
\end{equation*}
$$

129. For $a_{i} \in(0,1], \forall i \in[1, n]$

Prove:

$$
\frac{1}{\pi^{n}} \cdot \prod_{i=1}^{n} a_{i}^{2} \leq \int_{o}^{a_{n}} \ldots \int_{o}^{a_{1}}\left(\prod_{i=1}^{n} \sin x_{i}\right) d x_{1} \ldots d x_{n} \leq \frac{1}{2^{n}} \cdot\left(\prod_{i=1}^{n} a_{i}\right)^{2}
$$

Proposed by Uche Eliezer Okeke-Anambra-Nigeria

Solution by Daniel Sitaru - Romania

$$
\begin{gathered}
\frac{2 x_{1}}{\pi}<\sin x_{1}<x_{1} \quad \text { (Jordan) } \\
\frac{2}{\pi} \int_{0}^{a_{1}} x_{1} d x \leq \int_{0}^{a_{1}} \sin x_{1} d x_{1} \leq \int_{0}^{a_{1}} x_{1} d x_{1} \\
\frac{1}{\pi} \cdot a_{1}^{2} \leq \int_{0}^{a_{1}} \sin x_{1} d x_{1} \leq \frac{1}{2} \cdot a_{1}^{2}, \\
\frac{1}{\pi} \cdot a_{2}^{2} \leq \int_{0}^{a_{2}} \sin x_{2} d x_{1} \leq \frac{1}{2} \cdot a_{2}^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\frac{1}{\pi} \cdot a_{n}^{2} \leq \int_{0}^{a_{n}} \sin x_{n} d x_{1} \leq \frac{1}{2} \cdot a_{n}^{2} \\
\frac{1}{\pi^{n}} \cdot \prod_{i=1}^{n} a_{i}^{2} \leq \prod_{i=1}^{n} \int_{0}^{a_{1}} \sin x_{i} d x_{i} \leq \frac{1}{2^{n}} \prod_{i=1}^{n} a_{i}^{2} \\
\frac{1}{\pi^{n}} \cdot \prod_{i=1}^{n} a_{i}^{2} \leq \int_{0}^{a_{n}} \ldots \int_{0}^{a_{1}}\left(\prod_{i=1}^{n} \sin x_{i}\right) d x_{1} \ldots d x_{n} \leq \frac{1}{2^{n}} \prod_{i=1}^{n} a_{i}^{2}
\end{gathered}
$$

130. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}, \boldsymbol{a}<b, p>1, p+q=p q$ then:

$$
\frac{a^{2}+2 a b+b^{2}}{4}<\frac{\int_{a}^{b} \int_{a}^{b}(p x+q y)^{2} d x d y}{(b-a)^{2}(p+q)^{2}}<\frac{a^{2}+a b+b^{2}}{3}
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumitra M andal-Chandar Nagore-India

$$
\begin{gathered}
\left(\frac{p x+q y}{p+q}\right)^{2}=\left(\frac{x}{q}+\frac{y}{p}\right)^{2}=\frac{x^{2}}{q^{2}}+\frac{2 x y}{p q}+\frac{y^{2}}{p^{2}} \\
\int_{a}^{b} \int_{a}^{b}\left(\frac{p x+q y}{p+q}\right)^{2} d x d y=\frac{1}{q^{2}} \int_{a}^{b} \int_{a}^{b} x^{2} d x d y+\frac{2}{p q}\left(\int_{a}^{b} x d x\right)\left(\int_{a}^{b} y d y\right)+\frac{1}{p^{2}} \int_{a}^{b} \int_{a}^{b} y^{2} d y d x \\
=\frac{(b-a)\left(b^{3}-a^{3}\right)}{3 q^{2}}+\frac{(b-a)\left(b^{3}-a^{3}\right)}{3 p^{2}}+\frac{\left(b^{2}-a^{2}\right)^{2}}{2 p q} \\
\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}\left(\frac{p x+q y}{p+q}\right)^{2} d x d y=\frac{a^{2}+a b+b^{2}}{3}\left(\frac{1}{p^{2}}+\frac{1}{q^{2}}\right)+\frac{(b+a)^{2}}{2 p q} \\
\geq \frac{(a+b)^{2}}{4}\left(\frac{1}{p^{2}}+\frac{1}{q^{2}}\right)+\frac{(a+b)^{2}}{2 p q}\left[\because a^{2}+a b+b^{2} \geq \frac{3(a+b)^{2}}{4}\right] \\
=\frac{(a+b)^{2}}{4}\left(\frac{1}{p}+\frac{1}{q}\right)^{2}=\frac{a^{2}+2 a b+b^{2}}{4} . \text { Similarly, } \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}\left(\frac{p x+q y}{p+q}\right)^{2} d x d y
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\leq \frac{a^{2}+a b+b^{2}}{3}\left(\frac{1}{p^{2}}+\frac{1}{q^{2}}\right)+\frac{2\left(a^{2}+a b+b^{2}\right)}{3 p q}=\frac{a^{2}+a b+b^{2}}{3}\left(\frac{1}{p}+\frac{1}{q}\right)^{2}=\frac{a^{2}+a b+b^{2}}{3}
$$

131. Prove:

$$
\int_{0}^{1} \ln ^{2}(1+\sqrt{\sin x}) d x<\frac{1}{2}
$$

Proposed by Uche Eliezer Okeke-Anambra-Nigeria
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
e^{x} \geq 1+x, x \in \mathbb{R}, \log (1+x) \leq x, x>-1 \rightarrow \log (1+\sqrt{\sin x}) \leq \sqrt{\sin x} \rightarrow \\
\log ^{2}(1+\sqrt{\sin x}) \leq \sin x \leq x ; \int_{0}^{1} \log ^{2}(1+\sqrt{\sin x})<\int_{0}^{1} x d x=\frac{1}{2}
\end{gathered}
$$

132. $I(a, b)=\int_{a}^{b}\left(\arctan \left(\frac{a \sin x}{b+a \cos x}\right)+\arctan \left(\frac{b \sin x}{a+b \cos x}\right)\right) d x$,

$$
\mathbf{0}<a<b<c<\frac{\pi}{2}
$$

Prove that:

$$
\frac{2}{b-a} I(a, b)+\frac{2}{c-b} I(b, c)+\frac{2}{c-a} I(a, c) \geq \sum\left(\sqrt{a b}+\sqrt{\frac{a^{2}+b^{2}}{2}}\right)
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Ravi Prakash-New Delhi-India, Solution 2 by Saptak
Bhattacharya - Kolkata-India, Solution 3 by Soumitra Mandal-Chandar

Nagore-India

Solution 1 by Ravi Prakash-New Delhi-India

$$
\frac{a \sin x}{b+a \cos x}=\frac{a\left(2 \tan \frac{x}{2}\right)}{b\left(1+\tan ^{2} \frac{x}{2}\right)+a\left(1-\tan ^{2} \frac{x}{2}\right)}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\frac{2 a \tan \left(\frac{x}{2}\right)}{(a+b)+(b-a) \tan ^{2}\left(\frac{x}{2}\right)}=\frac{\frac{2 a}{b+a} \tan \left(\frac{x}{2}\right)}{1+\frac{b-a}{b+a} \tan ^{2} \frac{x}{2}}=\frac{\tan \frac{x}{2}-\frac{b-a}{b+a} \tan \frac{x}{2}}{1+\frac{b-a}{b+a} \tan ^{2}\left(\frac{x}{2}\right)} \\
\text { Put } \frac{b-a}{b+a} \tan \frac{x}{2}=\tan \theta \therefore \frac{a \sin x}{b+a \cos x}=\frac{\tan \frac{x}{2}-\tan \theta}{1+\tan \frac{x}{2} \tan \theta}=\tan \left(\frac{x}{2}+\theta\right) \\
\Rightarrow \arctan \left(\frac{a \sin x}{b+a \cos x}\right)=\frac{x}{2}+\theta=\frac{x}{2}+\tan ^{-1}\left(\frac{b-a}{b+a} \tan \frac{x}{2}\right) \\
\text { Similarly, } \arctan \left(\frac{b \sin x}{a+b \cos x}\right)
\end{gathered}
$$

$$
=\frac{x}{2}+\arctan \left(\frac{a-b}{a+b} \tan \frac{x}{2}\right)=\frac{x}{2}-\arctan \left(\frac{b-a}{b+a} \tan \frac{x}{2}\right)
$$

$$
\therefore I(a, b)=\int_{a}^{b}\left(\frac{x}{2}+\frac{x}{2}\right) d x=\frac{1}{2}\left(b^{2}-a^{2}\right) \Rightarrow \frac{2}{b-a} I(a, b)=b+a
$$

$$
\text { Thus, } \frac{2}{b-a} I(a, b)+\frac{2}{c-b} I(b, c)+\frac{2}{c-a} I(c, a)=2(a+b+c)
$$

$$
\text { Now, } \frac{a+b}{2} \geq \sqrt{a b} \quad[A M \geq G M] \text { and } \frac{a+b}{2} \geq \sqrt{\frac{a^{2}+b^{2}}{2}}
$$

$$
\Leftrightarrow(a+b)^{2}-\mathbf{2}\left(a^{2}+b^{2}\right) \geq 0 \Leftrightarrow(a-b)^{2} \geq 0
$$

$$
\therefore a+b \geq \sqrt{a b}+\sqrt{\frac{a^{2}+b^{2}}{2}} \Rightarrow \sum(a+b) \geq \sum\left(\sqrt{a b}+\sqrt{\frac{a^{2}+b^{2}}{2}}\right)
$$

Solution 2 by Saptak Bhattacharya-Kolkata-India

$$
\begin{gathered}
f(a, b)=\int_{a}^{b} \tan ^{-1}\left(\frac{\frac{a \sin x}{b+a \cos x}+\frac{b \sin x}{a+b \cos x}}{1-\frac{a b \sin ^{2} x}{(b+a \cos x)(a+b \cos x)}}\right) d x \\
=\int_{a}^{b} \tan ^{-1} \frac{\sin x\left(a^{2}+b^{2}+2 a b \cos x\right)}{\left(a^{2}+b^{2}\right) \cos x+a b(1+\cos 2 x)} d x
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\int_{a}^{b} \tan ^{-1} \frac{\sin x\left(a^{2}+b^{2}+2 a b \cos x\right)}{\cos x\left(a^{2}+b^{2}+2 a b \cos x\right)} d x=\int_{a}^{b} \tan ^{-1} \tan x d x=\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2} \\
\text { Now, } \frac{1}{b-a} f(a, b)=\frac{a+b}{2}=\frac{\sqrt{(a+b)^{2}}}{2}=\frac{\sqrt{a^{2}+b^{2}+2 a b}}{2}=\frac{\sqrt{\left(\frac{a^{2}+b^{2}}{2}+a b\right)}}{2} \\
\text { Power mean } \\
\geq \frac{\sqrt{a b}+\sqrt{\frac{a^{2}+b^{2}}{2}}}{2} . \text { Hence } \frac{2}{b-a} f(a, b) \geq \sqrt{a b}+\sqrt{\frac{a^{2}+b^{2}}{2}} \\
\Rightarrow \sum \frac{2 f(a, b)}{b-a} \geq \sum\left(\sqrt{a b}+\sqrt{\frac{a^{2}+b^{2}}{2}}\right)
\end{gathered}
$$

Solution 3 by Soumitra M andal-Chandar Nagore-India

$$
\begin{aligned}
& I(a, b)=\int_{a}^{b}\left(\tan ^{-1}\left(\frac{a \sin x}{b+a \cos x}\right)+\tan ^{-1}\left(\frac{b \sin x}{a+b \cos x}\right)\right) d x \\
& =\int_{a}^{b}\left(\tan ^{-1} \frac{\tan \frac{x}{2}-\frac{b-a}{b+a} \tan \frac{x}{2}}{1+\frac{b-a}{b+a} \tan ^{2} \frac{x}{2}}+\tan ^{-1} \frac{\tan \frac{x}{2}+\frac{b-a}{b+a} \tan \frac{x}{2}}{1-\frac{b-a}{b+a} \tan ^{2} \frac{x}{2}}\right) d x \\
& =\int_{a}^{b}\left(\frac{x}{2}-\tan ^{-1}\left(\frac{b-a}{b+a} \tan \frac{x}{2}\right)+\frac{x}{2}+\tan ^{-1}\left(\frac{b-a}{b+a} \tan \frac{x}{2}\right)\right) d x \\
& =\int_{a}^{b} x d x=\frac{b^{2}-a^{2}}{2} \Rightarrow \frac{2}{b-a} I(a, b)=a+b \\
& \therefore \sum_{c y c} \frac{2}{b-a} I(a, b)=2(a+b+c)=\sum_{c y c}(a+b)=\sum_{c y c} \sqrt{(1+1) \frac{(a+b)^{2}}{2}} \\
& \underset{\substack{\text { Cauchy-Schwarz }}}{\sum}\left(\sqrt{a b}+\sqrt{\frac{a^{2}+b^{2}}{2}}\right)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

133. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0, a+b+c=\pi$ then:

$$
2 \sum \int_{0}^{a} \frac{\arctan ^{2} x}{x} d x+\log \left(1+a^{2}\right) \log \left(1+b^{2}\right) \log \left(1+c^{2}\right)<\pi^{2}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Saptak Bhattacharya-Kolkata-India,
Solution 2 by Soumitra Mandal-Chandar Nagore-India
Solution 1 by Saptak Bhattacharya-Kolkata-India

$$
\begin{align*}
& \text { Let } \boldsymbol{f}(\boldsymbol{x})=x-\tan ^{-1} x ; \boldsymbol{f}^{\prime}(\boldsymbol{x})=1-\frac{1}{1+x^{2}}>0 . \text { So, } \forall x>0 ; \\
& f(x)>f(0)=0 \text { thus: }\left(\tan ^{-1} x\right)^{2}<x^{2} \Rightarrow \frac{\left(\tan ^{-1} x\right)^{2}}{x}<x ; \\
& \int_{0}^{a\left(\tan ^{-1} x\right)^{2} d x} \frac{a^{2}}{x} \text {. Thus, } 2 \sum \int_{0}^{a\left(\tan ^{-1} x\right)^{2} d x} \frac{x}{x}<\sum a^{2} \tag{I}\\
& \text { Now, consider } \phi(x)=x-\ln \left(1+x^{2}\right) \\
& \phi(0)=0 ; \phi^{\prime}(x)=1-\frac{2 x}{1+x^{2}}=\frac{(x-1)^{2}}{1+x^{2}}>0 \tag{ii}
\end{align*}
$$

So, $\boldsymbol{\phi}(\boldsymbol{x})>0 \quad \forall x>0 \Rightarrow \ln \left(\mathbf{1}+\boldsymbol{x}^{\mathbf{2}}\right)<x$. Thus, $\Pi \ln \left(\mathbf{1}+\boldsymbol{a}^{\mathbf{2}}\right)<a b c$
Now, by $\boldsymbol{A} M \geq \boldsymbol{H} \boldsymbol{M} \sum \frac{1}{\boldsymbol{a}} \geq \frac{9}{\boldsymbol{\pi}^{2}} \Rightarrow \sum \frac{2}{a} \geq \frac{18}{\pi^{2}}>1 \quad\left[\because \boldsymbol{\pi}<4 ; \boldsymbol{\pi}^{2}<16<18\right]$
Thus, $a b c<\sum 2 a b=2 \sum a b$ (iii). Combining (i) \& (iii)

$$
L H S<\sum a^{2}+2 \sum a b=(a+b+c)^{2}=\pi^{2}
$$

Solution 2 by Soumitra M andal-Chandar Nagore-India
Let $t=a \tan \theta, d t=a \sec ^{2} \theta d \theta$
when $t=0, \theta=0$, when $t=x, \theta=\tan ^{-1} x$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\Omega(a)=\lim _{x \rightarrow \infty} \int_{0}^{x} \frac{\log t}{t^{2}+a^{2}} d t=\frac{1}{a} \lim _{x \rightarrow \infty} \int_{a}^{\tan ^{-1} x} \log (a \tan \theta) d \theta \\
=\frac{1}{a} \lim _{x \rightarrow \infty} \int_{0}^{\tan ^{-1} x} \log \left(a \tan \left(\tan ^{-1} x-\theta\right)\right) d \theta=\frac{1}{a} \lim _{x \rightarrow \infty} \int_{0}^{\tan ^{-1} x} \log \left(a \cdot \frac{x-\tan \theta}{1+x \tan \theta}\right) d \theta \\
=\frac{1}{a} \lim _{x \rightarrow \infty} \int_{0}^{\tan ^{-1} x} \log \left(a \cdot \frac{1-\frac{\tan \theta}{x}}{\frac{1}{x}+\tan \theta}\right) d \theta=\frac{1}{a} \int_{0}^{\frac{\pi}{2}} \log \left(\frac{a^{2}}{a \tan \theta}\right)=\pi \log a^{\frac{1}{a}}-\Omega(a) \\
\Rightarrow 2 \Omega(a)=\pi \log a^{\frac{1}{a}} \Rightarrow \Omega(a)=\frac{\pi}{2} \log a^{\frac{1}{a}} \cdot \operatorname{So}_{0}, \sum_{c y c} \Omega^{2}(a)=\frac{\pi^{2}}{4} \log ^{2}\left(a^{\frac{1}{a}}\right) \\
\geq \frac{\pi^{2}}{12}\left(\sum_{c y c} \log \left(a^{\frac{1}{a}}\right)\right)^{2}=\frac{\pi^{2}}{12} \log ^{2}\left(a^{\frac{1}{a}} \cdot b^{\frac{1}{b}} \cdot c^{\frac{1}{c}}\right)
\end{gathered}
$$

134. If $\mathbf{0}<a<b$ then:

$$
\frac{2}{\pi} \ln \left(\frac{b}{a}\right)+b-a<\frac{\pi}{2} \int_{a}^{b} \frac{d x}{\arctan x}<\frac{\pi}{2} \ln \left(\frac{b}{a}\right)+b-a
$$

Proposed by Daniel Sitaru - Romania
Solution by Khanh Hung Vu-Ho Chi Minh-Vietnam
If $0<a<b$ then $\frac{2}{\pi} \ln \left(\frac{b}{a}\right)+\boldsymbol{b}-\boldsymbol{a}<\frac{\pi}{2} \int_{a}^{\boldsymbol{b}} \frac{d x}{\arctan x}<\frac{\pi}{2} \ln \left(\frac{b}{a}\right)+\boldsymbol{b}-\boldsymbol{a}$
We need to prove that $\frac{2}{\pi x}+1<\frac{1}{2 \arctan x}<\frac{\pi}{2 x}+1$ (1) $\forall x>0$
Put $\arctan x=t \Rightarrow 0<t<\frac{\pi}{2}$. We have (1) $\Rightarrow \frac{2}{\pi \tan t}+1<\frac{\pi}{2 t}<\frac{\pi}{2 \tan t}+1$
$* f(t)=\frac{\pi}{2 t}-\frac{2}{\pi \cdot \tan t}-1$. We have $f^{\prime}(t)=\frac{2}{\pi \cdot \sin ^{2} t}-\frac{\pi}{2 t^{2}}=\frac{4 t^{2}-\pi^{2} \cdot \sin ^{2} t}{2 t^{2} \cdot \pi \cdot \sin ^{2} t}$
On the other hand, by Jordan's inequality, we have

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
\sin t>\frac{2 t}{\pi} \Rightarrow \sin ^{2} t>\frac{4 t^{2}}{\pi^{2}} \Rightarrow 4 t^{2}-\pi^{2} \cdot \sin ^{2} t<4 t^{2}-\pi^{2} \cdot \frac{4 t^{2}}{\pi^{2}}=0 \Rightarrow f^{\prime}(t)<0 \\
\Rightarrow f(t) \text { is a decreasing function } \Rightarrow \\
\Rightarrow f(t)>\lim _{t \rightarrow \frac{\pi}{2}}\left(\frac{\pi}{2 t}-\frac{2}{\pi \cdot \tan t}-1\right) \Rightarrow f(t)>0 \Rightarrow \frac{2}{\pi \cdot \tan t}+1<\frac{\pi}{2 t}(2) \\
* g(t)=\frac{\pi}{2 \tan t}+1-\frac{\pi}{2 t}
\end{gathered}
$$

We have $g^{\prime}(t)=\frac{\pi}{2 t^{2}}-\frac{\pi}{2 \sin ^{2} t}=\frac{2 \pi \cdot \sin ^{2} t-2 \pi \cdot t^{2}}{4 t^{2} \cdot \sin ^{2} t}=\frac{2 \pi(\sin t-t)(\sin t+t)}{4 t^{2} \cdot \sin ^{2} t}$
On the other hand, by Jordan's inequality, we have

$$
\sin t \leq t \Rightarrow g^{\prime}(t) \leq 0 \Rightarrow g(t) \text { is a decreasing functioin }
$$

$$
\begin{gather*}
\Rightarrow f(t)>\lim _{t \rightarrow \frac{\pi}{2}}\left(\frac{\pi}{2 \tan t}+1-\frac{\pi}{2 t}\right) \Rightarrow f(t)>0 \Rightarrow \frac{\pi}{2 t}<\frac{\pi}{2 \cdot \tan t}+1 \tag{3}\\
\text { (2) and (3) } \Rightarrow \frac{2}{\pi \cdot \tan t}+1<\frac{\pi}{2 t}<\frac{\pi}{2 \cdot \tan t}+1 \Rightarrow \text { (1) True } \Rightarrow
\end{gather*}
$$

$$
\Rightarrow \int_{a}^{b}\left(\frac{2}{\pi \cdot x}+1\right) d x<\int_{a}^{b} \frac{\pi}{2 \arctan x} d x<\int_{a}^{b}\left(\frac{\pi}{2 x}+1\right) d x
$$

$$
\Rightarrow \frac{2}{\pi} \ln \left(\frac{b}{a}\right)+b-a<\frac{\pi}{2} \int_{a}^{b} \frac{d x}{\arctan x}<\frac{\pi}{2} \ln \left(\frac{b}{a}\right)+b-a
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

so, it suffices to prove that $\frac{1}{2} \ln \left(\frac{b}{a}\right)<\frac{13}{25} \ln \left(\frac{b}{a}\right)$ or $25<26$ which holds!
136. If:

$$
\begin{gathered}
\Omega(a)=\iint_{(x, y)=(0,0)}^{(x, y)=(a, a)}\left(\sqrt{x^{2}+2 x y}+\sqrt{y^{2}+2 x y}\right) d x d y, a>0 \\
\text { then: } \\
\frac{\Omega(a)}{b^{3}}+\frac{\Omega(b)}{c^{3}}+\frac{\Omega(c)}{a^{3}} \geq 2 \sqrt{3}
\end{gathered}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Ravi Prakash-New Delhi-India, Solution 2 by Antonis Anastasiadis-Katerini-Greece

Solution 1 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\text { Let } f(x, y)=\sqrt{x^{2}+2 x y}+\sqrt{y^{2}+2 x y}, x, y \geq 0 \\
\Omega(a)=\int_{0}^{a} \int_{0}^{a} f(x, y) d x d y=\iint_{R_{1}} f(x, y) d x d y+\iint_{R_{2}} f(x, y) d x d y
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{aligned}
\iint_{R_{1}} f(x, y) d x d y=\int_{0}^{a} \int_{y=0}^{y=x} f(x, y) d x d y \geq \int_{0}^{a} \int_{y=0}^{y=x}\left(\sqrt{y^{2}+2 y y}+\sqrt{y^{2}+2 y y}\right) d y d x \\
=\int_{0}^{a} \int_{y=0}^{y=x} 2 \sqrt{3} y d y d x=\int_{0}^{a} \sqrt{3}\left[y^{2}\right]_{0}^{x} d x=\int_{0}^{a} \sqrt{3} x^{2} d x=\frac{1}{\sqrt{3}} a^{3}
\end{aligned}
$$

Similarly, $\iint_{R_{2}} f(x, y) d x d y \geq \frac{1}{\sqrt{3}} a^{3} \therefore \Omega(a) \geq \frac{2}{\sqrt{3}} a^{3}$. Now

$$
\frac{\Omega(a)}{b^{3}}+\frac{\Omega(b)}{c^{3}}+\frac{\Omega(c)}{a^{3}} \geq \frac{2}{\sqrt{3}}\left(\frac{a^{3}}{b^{3}}+\frac{b^{3}}{c^{3}}+\frac{c^{3}}{a^{3}}\right) \geq 2 \sqrt{3}
$$

Solution 2 by Antonis Anastasiadis-Katerini-Greece

$$
\begin{aligned}
& x^{2}+x y+x y \stackrel{A M-G M}{\geq} 3 \sqrt[3]{x^{4} y^{2}} \Leftrightarrow \sqrt{x^{2}+2 x y} \geq \sqrt{3} \sqrt[3]{x^{2} y} \\
& y^{2}+x y+x y \stackrel{A M-G M}{\geq} 3 \sqrt[3]{x^{2} y^{4}} \Leftrightarrow \sqrt{y^{2}+2 x y} \geq \sqrt{3} \sqrt[3]{x y^{2}} \\
& \text { So : } \sqrt{x^{2}+2 x y}+\sqrt{y^{2}+2 x y} \geq \sqrt{3} \sqrt[3]{x^{2} y}+\sqrt{3} \sqrt[3]{x^{2} y^{2}} \geq 2 \sqrt{\sqrt{3} \sqrt{3} \sqrt[3]{x^{2} y} \sqrt[3]{x y^{2}}}=2 \sqrt{3 x y} \geq \frac{3}{2} \sqrt{3 x y} \\
& \text { So : } \sqrt{x^{2}+2 x y}+\sqrt{y^{2}+2 x y} \geq \frac{3}{2} \sqrt{3 x y} \\
& \text { and } \Omega(a) \geq \int_{0}^{a} \int_{0}^{a} \frac{3}{2} \sqrt{3 x y} d x d y=\int_{0}^{a} \frac{3 / 2}{\frac{3}{3} \frac{a^{\frac{3}{2}}}{3} \sqrt{y} d y=\int_{0}^{a} \sqrt{3} a^{\frac{3}{2}} y^{\frac{1}{2}} d y=\frac{2 \sqrt{3} a^{\frac{3}{2}} a^{\frac{3}{2}}}{3}=\frac{2 \sqrt{3} a^{3}}{3}} \\
& \text { So: } \Omega(a) \geq \frac{2 \sqrt{3} a^{3}}{3} . \text { Likewise } \Omega(b) \geq \frac{2 \sqrt{3} b^{3}}{3} \text { and } \Omega(c) \geq \frac{2 \sqrt{3} c^{3}}{3} \\
& \text { So : } \frac{\Omega(a)}{b^{3}}+\frac{\Omega(b)}{c^{3}}+\frac{\Omega(c)}{a^{3}} \geq \frac{2 \sqrt{3} a^{3}}{3 b^{3}}+\frac{2 \sqrt{3} b^{3}}{3 c^{3}}+\frac{2 \sqrt{3} c^{3}}{3 a^{3}}=\frac{2 \sqrt{3}}{3}\left(\frac{a^{3}}{b^{3}}+\frac{b^{3}}{c^{3}}+\frac{c^{3}}{a^{3}}\right)^{A M-G M} \geq \frac{2 \sqrt{3}}{3} 3 \sqrt[3]{\frac{a^{3} b^{3} c^{3}}{b^{3} c^{3} a^{3}}}=2 \sqrt{3}
\end{aligned}
$$

137. If $n \in \mathbb{N}^{*}$ then:

$$
\int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} \prod_{i=1}^{n}\left(1+x_{i}^{2}\right) d x_{i}+\int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} \prod_{i=1}^{n}\left(1-x_{i}^{2}\right) d x_{i} \leq 2^{n}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Chris Kyriazis-Greece, Solution 2 by Abdelhak Maoukouf-
Casablanca-M orocco, Solution 3 by Kays Tomy-Nador-Tunisia, Solution 4 by Michel Rebeiz-Lebanon, Solution 5 by Hasan Bostanlik-Sarkisla-Turkey

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Chris Kyriazis-Greece
We have that $\int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1}\left(1+x_{1}^{2}\right) d x_{1} d x_{2} \ldots d x_{2}=$

$$
\int_{0}^{1}\left(1+x_{1}^{2}\right) d x_{i} \int_{0}^{1}\left(1+x_{2}^{2}\right) d x_{x} \ldots \cdot \int_{0}^{1}\left(1+x_{n}^{2}\right) d x_{n}=\left(\frac{4}{3}\right)^{2}
$$

Doing the same $\int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1}\left(1-x_{i}^{2}\right) d x_{1} d x_{2} \ldots d x_{n}=\left(\frac{2}{3}\right)^{n}$
So it suffices to prove that $\left(\frac{4}{3}\right)^{n}+\left(\frac{2}{3}\right)^{n} \leq 2^{n}$ or $2^{n}+1 \leq 3^{n}$ or

$$
1 \leq 3^{n}-2^{n}\left({ }^{*}\right) \text { which clearly holds for every } n \in \mathbb{N}^{*}
$$

$\left.\mathbf{(}^{*}\right) 3^{n}-2^{n}=3^{n-1}+3^{n-2} \cdot 2+\cdots+2^{n-2} \cdot 3+2^{n-1}>1$ when $n>1$
Solution 2 by Abdelhak M aoukouf-Casablanca-M orocco

$$
\begin{gathered}
I_{n}=\int_{0}^{1^{(n)}} \prod_{i=1}^{n}\left(1+x_{i}^{2}\right) d x_{i}+\int_{0}^{1^{(n)}} \prod_{i=1}^{n}\left(1-x_{i}^{2}\right) d x_{i} \\
=\prod_{i=1}^{n}\left(\int_{0}^{1}\left(1+x_{i}^{2}\right) d x_{i}\right)+\prod_{i=1}^{n}\left(\int_{0}^{1}\left(1-x_{i}^{2}\right) d x_{i}\right)=\prod_{i=1}^{n}\left(\frac{4}{3}\right)+\prod_{i=1}^{n}\left(\frac{2}{3}\right) \\
=\left(\frac{4}{3}\right)^{n}+\left(\frac{2}{3}\right)^{n}=\left(\frac{2}{3}\right)^{n}\left(2^{n}+1\right) \leq\left(\frac{2}{3}\right)^{n} \times 3^{n}=2^{n} \quad \forall n \in \mathbb{N}^{*}
\end{gathered}
$$

Solution 3 by Kays Tomy-Nador-Tunisia
Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ and $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ be two positive sequences of length
n. Then $\prod_{k=1}^{n}\left(\alpha_{k}+b_{k}\right)=\prod_{k=1}^{n} \alpha_{k}+\prod_{k=1}^{n} \beta_{k}+R_{n}$ with $0<R_{n}$ it implies $\prod_{k=1}^{n} \alpha_{k}+\prod_{k=1}^{n} \beta_{k} \leq \prod_{k=1}^{n}\left(\alpha_{k}+\beta_{k}\right)$

Let us apply inequality (*) for the case when $\alpha_{k}=1+x_{k}^{2}$ and $b_{k}=1-x_{k}^{2}$ with $x_{k} \in(0,1)$ we get

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\prod_{k=1}^{n}\left(1+x_{k}^{2}\right)+\prod_{k=1}^{n}\left(1-x_{k}^{2}\right) \leq \prod_{k=1}^{n}\left(1+x_{k}^{2}+1-x_{k}^{2}\right) \\
\Rightarrow \prod_{k=1}^{n}\left(1+x_{k}^{2}\right)+\prod_{k=1}^{n}\left(1-x_{k}^{2}\right) \leq \prod_{k=1}^{n} 2=2^{n} \\
\Rightarrow \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} \prod_{k=1}^{n}\left(1+x_{k}^{2}\right) d x_{1} \ldots d x_{n}+\int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} \prod_{k=1}^{n}\left(1+x_{k}^{2}\right) d x_{1} \ldots d x_{n} \\
\leq \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} 2^{n} d x_{1} \ldots d x_{n}=2^{n}
\end{gathered}
$$

Solution 4 by Michel Rebeiz - Lebanon
Let $a_{n}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1} \Pi_{i=1}^{n}\left(1+x_{i}^{2}\right) d x \text { so } a_{n}+b_{n} \leq 2^{n} ? ? a_{n}>0 \text { and } b_{n}>0}_{n}$

$$
\begin{gathered}
\text { and } b_{n}=\underbrace{\int_{0}^{1} \ldots \int_{0}^{1} \Pi_{i=1}^{n}\left(1-x_{i}^{2}\right) d x_{i} . \text { For } n=1}_{n} \\
a_{1}+b_{1}=1+\frac{1}{3}+1-\frac{1}{3}=2 \leq 2^{1} . \text { Suppose that } a_{n}+b_{n} \leq 2^{n}
\end{gathered}
$$

So $a_{n+1}+b_{n+1}=a_{n} \times \int_{0}^{1}\left(1+x_{x+1}^{2}\right) d x_{i+1}+b_{n} \times \int_{0}^{1}\left(1-x_{i+1}^{2}\right) d x_{i+1}$

$$
=\frac{4}{3} a_{n}+\frac{2}{3} b_{n} \leq \frac{4}{3} a_{n}+\frac{4}{3} b_{n} \leq \frac{4}{3} \times 2^{n} \leq \frac{2}{3} \times 2^{n+1} \leq 2^{n+1}
$$

Solution 5 by Hasan Bostanlik-Sarkisla-Turkey

$$
\begin{gathered}
\left.\left(x_{1}+\frac{x_{1}^{3}}{3}\right)\right|_{0} ^{1}=\frac{4}{3} ;\left.\frac{4}{3} \cdot\left(x_{1}+\frac{x_{2}^{3}}{3}\right)\right|_{0} ^{1}=\left(\frac{4}{3}\right)^{2} ; \iint \prod\left(1+x_{1}^{2}\right) d x_{1}=\left(\frac{4}{3}\right)^{n} \\
\left.\Rightarrow\left(x_{1}-\frac{x_{1}^{3}}{3}\right)\right|_{0} ^{1}=\frac{2}{3} ;\left.\frac{2}{3} \cdot\left(x_{2}-\frac{x_{2}^{3}}{3}\right)\right|_{0} ^{1}=\left(\frac{2}{3}\right)^{2}, \iint \ldots \int \Pi\left(1-x_{1}^{2}\right)=\left(\frac{2}{3}\right)^{n} \\
\left(\frac{4}{3}\right)^{n}+\left(\frac{2}{3}\right)^{n} \leq\left(\frac{4}{3}+\frac{2}{3}\right)^{n} \leq 2^{n} ; n \in \mathbb{N}^{*}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
138. $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x \sqrt{x^{2}+z^{2}}+y \sqrt{y^{2}+z^{2}}\right) d x d y d z \leq 1$.

Proposed by Daniel Sitaru - Romania
Solution 1 by Chris Kyriazis-Greece, Solution 2 by Abdelhak Maoukouf-
Casablanca-M orocco, Solution 3 by Anisoara Dudu-Romania, Solution 4 by Hasan Bostanlik-Sarkisla-Turkey
Solution 1 by Chris Kyriazis-Greece
By Cauchy - Schwarz inequality we have that:

$$
\begin{gathered}
x \sqrt{x^{2}+z^{2}}+y \sqrt{y^{2}+z^{2}} \leq \sqrt{x^{2}+y^{2}+z^{2}} \sqrt{x^{2}+y^{2}+z^{2}} \Leftrightarrow \\
\Leftrightarrow x \sqrt{x^{2}+z^{2}}+y \sqrt{y^{2}+z^{2}} \leq x^{2}+y^{2}+z^{2} \Rightarrow
\end{gathered}
$$

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x \sqrt{x^{2}+z^{2}}+y \sqrt{y+z^{2}}\right) d x d y d z \leq \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z
$$

But $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z=1$ cause

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{2} d x d y d z+\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} y^{2} d x d y d z+ \\
& \quad+\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} z^{2} d x d y d z=\left[\frac{x^{3}}{3}\right]_{0}^{1}+\left[\frac{y^{3}}{3}\right]_{0}^{1}+\left[\frac{z^{3}}{3}\right]_{0}^{1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1
\end{aligned}
$$

Solution 2 by Abdelhak M aoukouf-Casablanca-M orocco

$$
\begin{aligned}
& I=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x \sqrt{x^{2}+z^{2}}+y \sqrt{y^{2}+z^{2}} d x d y d z \\
& =\int_{0}^{1} \int_{0}^{1}\left[\frac{1}{3} \sqrt{\left(x^{2}+z^{2}\right)^{3}}+x y \sqrt{y^{2}+z^{2}}\right]_{0}^{1} d y d z
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\leq \int_{0}^{1} \int_{0}^{1} \frac{1}{3} \sqrt{\left(1+z^{2}\right)^{3}}+y \sqrt{y^{2}+z^{2}} d y d z \\
=\int_{0}^{1}\left[\frac{y}{3} \sqrt{\left(1+z^{2}\right)^{3}}+\frac{1}{3} \sqrt{\left(y^{2}+z^{2}\right)^{3}}\right]_{0}^{1} d z \\
=\int_{0}^{1} \frac{1}{3} \sqrt{\left(1+z^{2}\right)^{3}}+\frac{1}{3} \sqrt{\left(1+z^{2}\right)^{3}} d z \\
I=\frac{2}{3} \int_{0}^{1} \sqrt{\left(1+z^{2}\right)^{3}} d z=\frac{2}{3} \int_{0}^{1}\left(\frac{1}{\sqrt{1+z^{2}}}+z^{2} \sqrt{1+z^{2}}\right) d z \\
=\frac{2}{3}\left(\left[\ln \left(z+\sqrt{1+z^{2}}\right)\right]_{0}^{1}+\left[1 \times \frac{1}{3} \sqrt{\left(1+3^{2}\right)^{3}}\right]_{0}^{1}-\int_{0}^{1} \frac{1}{3} \sqrt{\left(1+z^{2}\right)^{3}} d z\right) \\
=\frac{2}{3}\left(\ln (1+\sqrt{2})+\frac{2 \sqrt{2}}{3}\right)-\frac{1}{3} I \\
\Leftrightarrow 2 I=\ln (1+\sqrt{2})+\frac{2 \sqrt{2}}{3} \Leftrightarrow I \leq \frac{\ln (1+\sqrt{2})}{2}+\frac{\sqrt{2}}{3}<1
\end{gathered}
$$

Solution 3 by Anisoara Dudu-Romania

$$
x \sqrt{x^{2}+z^{2}}+y \sqrt{y^{2}+z^{2}}==\sqrt{x^{2}\left(x^{2}+z^{2}\right)}+\sqrt{y^{2}\left(y^{2}+z^{2}\right)}
$$

Means Inequality

$$
\stackrel{\text { Inequality }}{\substack{\text { nn }}} \frac{x^{2}+x^{2}+z^{2}}{2}+\frac{y^{2}+y^{2}+z^{2}}{2} \leq \frac{2 x^{2}+2 y^{2}+2 z^{2}}{2}=x^{2}+y^{2}+z^{2}
$$

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x \sqrt{x^{2}+z^{2}}+y \sqrt{y^{2}+z^{2}}\right) d x d y d y \leq\left.\frac{x^{3}}{3}\right|_{0} ^{1}+\left.\frac{y^{3}}{3}\right|_{0} ^{1}+\left.\frac{z^{3}}{3}\right|_{0} ^{1}=1
$$

Solution 4 by Hasan Bostanlik-Sarkisla-Turkey

$$
A^{2} \leq\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+2 z^{2}\right) \quad\{C-S\}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
A^{2} \leq\left(x^{2}+y^{2}+z^{2}\right)^{2}-z^{4} \leq\left(x^{2}+y^{2}+z^{2}\right)^{2} ; A \leq x^{2}+y^{2}+z^{2} \\
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right)=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1
\end{gathered}
$$

139. If $a, b \geq 1$ then:

$$
2 \int_{1}^{b}\left(y \int_{1}^{a} \log \frac{x}{y} d x\right) d y \leq(a-1)(b-1)(a-b)
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Chris Kyriazis-Greece, Solution 2 by Abdelhak Maoukouf-

Casablanca-M orocco

Solution 1 by Chris Kyriazis-Greece
From the well - known inequality $\ln a \leq \underset{a}{a-1,} \forall a>\underset{a}{0}$ we have that:

$$
\begin{aligned}
\ln \frac{x}{y} \leq \frac{x}{y}-1 & \Rightarrow 2 y \ln \frac{x}{y} \leq 2 x-2 y=0 ; 2 y \int_{1}^{a} \ln \frac{x}{y} d x \leq \int_{1}^{a} 2 x d x-\int_{1}^{a} 2 y d x \\
\Rightarrow & 2 \int_{1}^{b}\left(y \int_{1}^{a} \ln \frac{x}{y} d x\right) d y \leq\left(a^{2}-1\right)(b-1)-(a-1)\left(b^{2}-1\right) \\
& \Rightarrow 2 \int_{1}^{b}\left(y \int_{1}^{a} \ln \frac{x}{y} d x\right) d y \leq(a-1)(b-1)(a+1-b-1) \\
& \Rightarrow 2 \int_{1}^{b}\left(y \int_{1}^{a} \ln \frac{x}{y} d x\right) d y \leq(a-1)(b-1)(a-b)
\end{aligned}
$$

Solution 2 by Abdelhak M aoukouf-Casablanca-M orocco

$$
I=2 \int_{1}^{b} y\left(\int_{1}^{a} \ln \frac{x}{y} d x\right) d y<2 \int_{1}^{b} y\left(\int_{1}^{a}\left(\frac{x}{y}-1\right) d x\right) d y
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
=a^{2} b-b^{2} a=a b(a-b) \leq(a-1)(b-1)(a-b)
$$

140. If $\mathbf{0}<a<b$ then:

$$
\frac{\int_{a}^{b} e^{x^{2}} d x}{\int_{a}^{b} x^{5} e^{x^{2}} d x}<\frac{1}{4}\left(\frac{1}{a b^{4}}+\frac{1}{a^{2} b^{3}}+\frac{1}{a^{3} b^{2}}+\frac{1}{a^{4} b}\right)
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Chris Kyriazis-Greece, Solution 2 by Subhajit Chattopadhyay-Bolpur-India

Solution 1 by Chris Kyriazis-Greece

$$
\text { Set } f(x)=\frac{1}{x^{5}}, x>0 \text { and } g(x)=x^{5} \cdot e^{x^{2}}, x>0
$$

It's $\boldsymbol{f}^{\prime}(\boldsymbol{x})=-\frac{5}{x^{6}}<0, x>0$ and $\boldsymbol{g}^{\prime}(\boldsymbol{x})=\boldsymbol{x}^{4} \boldsymbol{e}^{x^{2}}\left(\mathbf{2} \boldsymbol{x}^{2}+\mathbf{5}\right)>0, \forall x>0$.
So \boldsymbol{f} strictly decreasing when $\boldsymbol{x}>0$ and \boldsymbol{g} strictly increasing
Using the Chebyshev's integral inequality, we have that:

$$
\begin{gathered}
\int_{a}^{b} \frac{1}{x^{5}} d x \cdot \int_{a}^{b} x^{5} \cdot e^{x^{2}} d x>\int_{a}^{b} \frac{1}{x^{5}} \cdot x^{5} e^{x^{2}} d x \cdot(b-a) \\
\Rightarrow\left[-\frac{1}{4 x^{4}}\right]_{a}^{b} \cdot \int_{a}^{b} x^{5} e^{x^{2}} d x>\int_{a}^{b} e^{x^{2}} d x \cdot(b-a) \\
\Rightarrow \frac{1}{4}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \int_{a}^{b} x^{5} e^{x^{2}} d x>\int_{a}^{b} e^{x^{2}} d x(b-a) \\
\Rightarrow \frac{1}{4}(b-a) \cdot \frac{(b+a)}{a^{2} b^{2}}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \int_{a}^{b} x^{5} e^{x^{2}} d x>\int_{a}^{b} e^{x^{2}} d x(b-a)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\Rightarrow \frac{1}{4}\left(\frac{1}{a^{4} b}+\frac{1}{a^{2} b^{3}}+\frac{1}{a^{3} b^{2}}+\frac{1}{a b^{4}}\right) \int_{a}^{b} x^{5} e^{x^{2}} d x>\int_{a}^{b} e^{x^{2}} d x
$$

Solution 2 by Subhajit Chattopadhyay-Bolpur-India

$$
0<a<b ; \frac{\int_{a}^{b} e^{x^{2}} d x}{\int_{a}^{b} x^{5} e^{x^{2}} d x}<\frac{1}{4}\left(\frac{1}{a b^{4}}+\frac{1}{a^{2} b^{3}}+\frac{1}{a^{3} b^{2}}+\frac{1}{a^{4} b}\right)
$$

Using Chebyshev's inequality, $\because e^{x^{2}} \& x^{5}$ are monotone increasing,

$$
\begin{aligned}
\text { L.H. } S & <\frac{b-a}{\int_{a}^{b} x^{5} d x}=\frac{6(b-a)}{b^{6}-a^{6}}=\frac{6}{\left(b^{3}+a^{3}\right)\left(b^{2}+a b+a^{2}\right)} \\
& =\frac{4+2}{2\left(\frac{a^{5}+b^{5}}{2}\right)+4 \cdot\left(\frac{a^{4} b+a^{3} b^{2}+\cdots}{4}\right)}<\frac{\frac{4}{a^{5}+b^{5}}+\frac{16}{a^{4} b+a^{3} b^{2}+a^{2} b^{3}+a b^{4}}}{6}
\end{aligned}
$$

By using $A M>H M$ strict inequality. $\because \boldsymbol{a} \neq \boldsymbol{b}$.

$$
\begin{gathered}
=\frac{1}{3}\left(\frac{2}{a^{5}+b^{5}}+\frac{8}{a^{4} b+a^{3} b^{2}+a^{2} b^{3}+a b^{4}}\right) . \text { Now, } \frac{a^{5}+b^{5}}{2}>(a b)^{\frac{5}{2}} \Rightarrow \frac{2}{a^{5}+b^{5}}<(a b)^{-\frac{5}{2}} \\
\frac{1}{4}\left(\frac{1}{a b^{4}}+\frac{1}{a^{2} b^{3}}+\frac{1}{a^{3} b^{2}}+\frac{1}{a^{4} b}\right)=M>(a b)^{-\frac{5}{2}}[B y, A M>G M] \\
\frac{1}{4}\left(\frac{1}{a b^{4}}+\frac{1}{a^{2} b^{3}}+\frac{1}{a^{3} b^{2}}+\frac{1}{a^{4} b}\right)>\frac{4}{a^{4} b+a^{3} b^{2}+a^{2} b^{3}+a b^{4}} \\
\text { Hence, } L H S<\frac{1}{3}(m+2 m)=m=\frac{1}{4}\left(\frac{1}{a b^{4}}+\frac{1}{a^{2} b^{3}}+\frac{1}{a^{3} b^{2}}+\frac{1}{a^{4} b}\right)
\end{gathered}
$$

141. If $a, b, c \geq 0, m, n \geq 2$

$$
\Omega(a)=\sqrt[n]{\int_{0}^{a} \sqrt[m]{e^{(m+n) x^{2}}} d x} \cdot \sqrt[m]{\int_{0}^{a} \frac{d x}{\sqrt[n]{e^{(m+n) x^{2}}}}}
$$

then: $\Omega^{2}(a)+\Omega^{2}(b)+\Omega^{2}(c) \geq a b+b c+c a$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Subhajit Chattopadhyay-Bolpur-India, Solution 2 by Soumitra M andal-Chandar Nagore-India

Solution 1 by Subhajit Chattopadhyay-Bolpur-India

$$
\Omega(\boldsymbol{a})=\left[\int_{0}^{a} e^{\frac{m+n}{m} x^{2}} d x\right]^{\frac{1}{n}}\left[\int_{0}^{a}\left(\frac{1}{e^{x^{2}}}\right)^{\frac{m+n}{n}} d x\right]^{\frac{1}{m}}
$$

Using Hölder's inequality, $[\Omega(a)]^{\frac{m n}{m+n}} ; \frac{m}{m+n}=1-\frac{n}{m+n}$

$$
\begin{gathered}
=\left[\int_{0}^{a} e^{\frac{m+n}{m} x^{2}} d x\right]^{\frac{m}{m+n}}\left[\int_{0}^{a}\left(\frac{1}{e^{x^{2}}}\right)^{\frac{m+n}{n}} d x\right]^{\frac{n}{m+n}} \geq \int_{0}^{a} e^{x^{2}} \cdot \frac{1}{e^{x^{2}}} d x=a \\
\therefore \Omega^{2}(a) \geq a^{\frac{2(m+n)}{m n}} \because a>0, \Omega(a)>0 ; m, n \geq 2 . \text { Put } m=n=2 \\
\therefore \Omega^{2}(a)+\Omega^{2}(b)+\Omega^{2}(c) \geq a^{2}+b^{2}+c^{2} .
\end{gathered}
$$

Now for any $a, b, c \in \mathbb{R}$

$$
\begin{gathered}
(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0 \\
\Rightarrow 2\left(a^{2}+b^{2}+c^{2}\right)-2(a b+b c+c a) \geq 0 \\
\Rightarrow a^{2}+b^{2}+c^{2} \geq a b+b c+c a \therefore L H S \geq a b+b c+c a
\end{gathered}
$$

Solution 2 by Soumitra M andal-Chandar Nagore-India

$$
\begin{aligned}
& \Omega(a)=\sqrt[n]{\int_{0}^{a} \sqrt[m]{e^{(m+n) x^{2}}} d x} \cdot \sqrt[m]{\int_{0}^{a} \sqrt[n]{e^{-(m+n) x^{2}}} d x} \\
& \stackrel{\text { HOLDER }}{\geq} \int_{0}^{a} \left\lvert\, e^{\frac{(m+n) x^{2}}{m n}} \cdot \frac{1}{\left.e^{\frac{(m+n) x^{2}}{m n}} \right\rvert\, d x=a}\right.
\end{aligned}
$$

Similarly, $\Omega(b) \geq b, \Omega(c) \geq c: \sum_{c y c} \Omega^{2}(a)=\sum_{c y c} a^{2} \geq \sum_{c y c} a b$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

142. If $a>0$ then:

$$
\left(\int_{0}^{a} e^{3 x^{2}} d x\right)\left(\int_{0}^{a} e^{-3 x^{2}} d x\right)>\frac{1}{a^{4}}\left(\int_{0}^{a} e^{x^{2}} d x\right)^{3}\left(\int_{0}^{a} e^{-x^{2}} d x\right)^{3}
$$

Proposed by Daniel Sitaru - Romania

Solution by Chris Kyriazis-Greece

Using Hölder inequality for integrals, I have that.

$$
\begin{gather*}
\left(\int_{0}^{a} 1^{\frac{3}{2}} d x\right)^{\frac{2}{3}} \cdot\left(\int_{0}^{a} e^{3 x^{2}} d x\right)^{\frac{1}{3}} \geq \int_{0}^{a} e^{x^{2}} d x \Rightarrow \\
a^{\frac{2}{3}}\left(\int_{0}^{a} e^{3 x^{2}} d x\right)^{\frac{1}{3}} \geq \int_{0}^{a} e^{x^{2}} d x \Rightarrow \int_{0}^{a} e^{3 x^{2}} d x \geq \frac{1}{a^{2}}\left(\int_{0}^{a} e^{x^{2}} d x\right)^{3} \\
\text { Just the same: } \\
\left(\int_{0}^{a} 1^{\frac{3}{2}} d x\right)^{\frac{2}{3}} \cdot\left(\int_{0}^{a} e^{-3 x^{2}} d x\right)^{\frac{1}{3}} \geq \int_{0}^{a} e^{-x^{2}} d x \Rightarrow \Rightarrow \cdots \int_{0}^{a} e^{-3 x^{2}} d x \geq \frac{1}{a^{2}}\left(\int_{0}^{a} e^{-x^{2}} d x\right)^{3} \tag{2}
\end{gather*}
$$

(1) $\times(2)$ (everything is positive) we have that

$$
\int_{0}^{a} e^{3 x^{2}} d x \cdot \int_{0}^{a} e^{-3 x^{2}} d x \geq \frac{1}{a^{4}}\left(\int_{0}^{a} e^{x^{2}} d x \int_{0}^{a} e^{-x^{2}} d x\right)^{3}
$$

143. If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0, \alpha \in\left(\mathbf{0}, \frac{\pi}{2}\right)$
$\Omega(a, b)=\int_{0}^{b}\left(\int_{0}^{a}\left(x \sin ^{2} \alpha+y \cos ^{2} \alpha\right)\left(x \cos ^{2} \alpha+y \sin ^{2} \alpha\right) d x\right) d y$
then:

$$
4 \Omega(b, c)+4 \Omega(c, a)+4 \Omega(a, b) \geq a b c(a+b+c)
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Chris Kyriazis-Greece
We have that $\left(x \sin ^{2} a+y \cos ^{2} a\right)\left(x \cos ^{2} a+y \sin ^{2} a\right)=$

$$
\begin{gathered}
{\left[(\sqrt{x} \sin a)^{2}+(\sqrt{y} \cos a)^{2}\right] \cdot\left[(\sqrt{x} \cos a)^{2}+(\sqrt{y} \sin a)^{2}\right]} \\
\stackrel{B-C-S}{\geq}\left(\sqrt{x y} \sin ^{2} a+\sqrt{x y} \cos ^{2} a\right)^{2}=x y \\
\operatorname{so~} \Omega(a, b)=\int_{0}^{a} \int_{0}^{b} x y d x d y=\int_{0}^{a} x d x \cdot \int_{0}^{b} y d y=\frac{(a b)^{2}}{4}
\end{gathered}
$$

Doing exactly the same work, we have that $\Omega(b, c) \geq \frac{(b c)^{2}}{4}, \Omega(c, a) \geq \frac{(c a)^{2}}{4}$
So $\mathbf{4 \Omega}(a, b)+4 \Omega(b, c)+4 \Omega(c, a) \geq 4 \frac{(a b)^{2}}{4}+4 \cdot \frac{(b c)^{2}}{4}+4 \frac{(c a)^{2}}{4}=$

$$
(a b)^{2}+(b c)^{2}+(c a)^{2} \geq a b^{2} c+a^{2} c b+a b c^{2}=a b c(a+b+c)
$$

144. $\int_{0}^{\frac{\pi}{4}}\left(\frac{1-\sin ^{2} x}{1+\sin ^{2} x}+\frac{1-\cos ^{2} x}{1+\cos ^{2} x}\right) \ln (1+\tan x) d x>\frac{\pi \ln 2}{12}$

Proposed by Daniel Sitaru - Romania

Solution 1 by Abdelhak M aoukouf-Casablanca-M orocco, Solution 2 by Ravi Prakash-New Delhi-India

Solution 1 by Abdelhak M aoukouf-Casablanca-M orocco

$$
\begin{aligned}
J= & \int_{0}^{\frac{\pi}{4}} \ln (1+\tan x) d x \stackrel{x=\frac{\pi}{4}-t}{=} \int_{0}^{\frac{\pi}{4}} \ln \left(1+\tan \left(\frac{\pi}{4}-t\right)\right) d t \\
& =\int_{0}^{\frac{\pi}{4}} \ln \left(1+\frac{1-\tan t}{1+\tan t}\right) d t=\int_{0}^{\frac{\pi}{4}} \ln \left(\frac{2}{1+\tan t}\right) d t
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
=\int_{0}^{\frac{\pi}{4}} \ln (2) d t-\int_{0}^{\frac{\pi}{4}} \ln (1+\tan t) d t=\frac{\pi}{4} \ln 2-J \rightarrow J=\frac{\pi}{8} \ln 2 \\
I=\int_{0}^{\frac{\pi}{4}}\left(\frac{1-\sin ^{2} x}{1+\sin ^{2} x}+\frac{1-\cos ^{2} x}{1+\cos ^{2} x}\right) \ln (1+\tan x) d x \\
=\int_{0}^{\frac{\pi}{4}}\left(\frac{2}{1+\sin ^{2} x}+\frac{2}{1+\cos ^{2} x}-2\right) \ln (1+\tan x) d x \\
=2 \int_{0}^{\frac{\pi}{4}}\left(\frac{1}{1+\sin ^{2} x}+\frac{1}{2-\sin ^{2} x}-1\right) \ln (1+\tan x) d x \\
\therefore \operatorname{let} f(x)=\frac{1}{1+x^{2}}+\frac{1}{2-x^{2}} \quad \forall x \in\left[0 ; \frac{1}{\sqrt{2}}\right] \\
f^{\prime}(x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}}+\frac{2 x}{\left(2-x^{2}\right)^{2}}=2 x\left(\frac{1}{\left(x^{2}-2\right)^{2}}-\frac{1}{\left(x^{2}+1\right)^{2}}\right) \\
=\frac{2 x\left(\left(x^{2}+1\right)^{2}-\left(x^{2}-2\right)^{2}\right)}{\left(x^{2}-2\right)^{2}\left(x^{2}+1\right)^{2}}=\frac{6 x\left(2 x^{2}-1\right)}{\left(x^{2}-2\right)^{2}\left(x^{2}+1\right)^{2}} \leq 0 \quad \forall x \in\left[0 ; \frac{1}{\sqrt{2}}\right] \\
0 \leq x \leq \frac{\pi}{4} \Rightarrow 0 \leq \sin x \leq \frac{1}{\sqrt{2}} \Rightarrow f(\sin x) \geq f\left(\frac{1}{\sqrt{2}}\right)=\frac{4}{3} \\
\Rightarrow \frac{1}{1+\sin ^{2} x}+\frac{1}{2-\sin ^{2} x}-1 \geq \frac{1}{3} \Rightarrow I \geq 2 \int_{0}^{3} \frac{1}{3} \ln (1+\tan x) d x \\
\Leftrightarrow I \geq \frac{2}{3} J \Leftrightarrow I \geq \frac{\pi}{12} \ln 2
\end{gathered}
$$

Solution 2 by Ravi Prakash-New Delhi-India

$$
\text { Let } g(x) \frac{1-\sin ^{2} x}{1+\sin ^{2} x}+\frac{1-\cos ^{2} x}{1+\cos ^{2} x} \quad 0 \leq x \leq \frac{\pi}{4}=\frac{\cos ^{2} x\left(1+\cos ^{2} x\right)+\sin ^{2} x\left(1+\sin ^{2} x\right)}{\left(1+\sin ^{2} x\right)\left(1+\cos ^{2} x\right)}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
=\frac{\cos ^{2} x+\sin ^{2} x+\cos ^{4} x+\sin ^{4} x}{1+1+\cos ^{2} x \sin ^{2} x} \\
=\frac{1+1-2 \sin ^{2} x \cos ^{2} x}{2+\cos ^{2} x \sin ^{2} x}=\frac{2\left(1-\sin ^{2} x \cos ^{2} x\right)}{2+\sin ^{2} x \cos ^{2} x} \\
\text { Now, } g(x) \geq \frac{2}{3} \Leftrightarrow \frac{1-\sin ^{2} x \cos ^{2} x}{2+\sin ^{2} x \cos ^{2} x} \geq \frac{1}{3}
\end{gathered}
$$

$$
\Leftrightarrow 3-3 \sin ^{2} x \cos ^{2} x \geq 2+\sin ^{2} x \cos ^{2} x \Leftrightarrow 1-4 \sin ^{2} x \cos ^{2} x \geq 0
$$

$$
\Leftrightarrow 1-\sin ^{2} 2 x \geq 0 \Leftrightarrow \cos ^{2} 2 x \geq 0, \text { which is true. }
$$

Note that $g(x)=\frac{2}{3} \Leftrightarrow x=\frac{\pi}{4} . \therefore g(x)>\frac{2}{3}$ for $0 \leq x<\frac{\pi}{4}$. Now,

$$
\begin{gathered}
I=\int_{0}^{\frac{\pi}{4}}\left(\frac{1-\sin ^{2} x}{1+\sin ^{2} x}+\frac{1-\cos ^{2} x}{1+\cos ^{2} x}\right) \ln (1+\tan x) d x \\
>\frac{2}{3} \int_{0}^{\frac{\pi}{4}} \ln (1+\tan x) d x=\frac{2}{3} I_{1}, \text { where } \\
I_{1}=\int_{0}^{\frac{\pi}{4}} \ln (1+\tan x) d x=\int_{0}^{\frac{\pi}{4}} \ln \left(1+\tan \left(\frac{\pi}{4}-x\right)\right) d x \\
=\int_{0}^{\frac{\pi}{4}} \ln \left(1+\frac{1-\tan x}{1+\tan x}\right) d x=\int_{0}^{\frac{\pi}{4}} \ln 2 d x-I_{1} \Rightarrow 2 I_{1}=\frac{\pi}{4} \ln 2 \Rightarrow I_{1}=\frac{\pi}{8} \ln 2 \\
\therefore I>\frac{2}{3}\left(\frac{\pi}{8} \ln 2\right) \Rightarrow I>\frac{\pi}{12} \ln 2
\end{gathered}
$$

145. If $a>1$ then:

$$
\int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x \leq \frac{3 e^{a}\left(e^{a}-1\right)}{8 a^{3}}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Chris Kyriazis-Greece, Solution 2 by Abdelhak Maoukouf-
Casablanca-M orocco, Solution 3 by Dimitris Kastriotis-Greece, Solution 4 by Michel Rebeiz-Lebanon

Solution 1 by Chris Kyriazis-Greece
If we consider the functions

$$
\begin{aligned}
& \left.f(x)=\frac{1}{x^{3}}, x \in[a, 2 a] \text { (Strictly decreasing on }[a, 2 a]\right) \\
& g(x)=e^{x}, x \in[a, 2 a] \text { (Strictly increasing on }[a, 2 a] \text {) }
\end{aligned}
$$

Using Chebyshev integral inequality we have:

$$
\begin{aligned}
& a \cdot \int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x<\int_{a}^{2 a} \frac{1}{x^{3}} d x \cdot \int_{a}^{2 a} e^{x} d x=\left[-\frac{1}{2 x^{2}}\right]_{a}^{2}\left(e^{2 a}-e^{a}\right) \\
\Rightarrow & a \int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x<\frac{3}{8 a^{2}}\left(e^{2 a}-e^{a}\right) \Rightarrow \int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x<\frac{3}{8 a^{3}} e^{a}\left(e^{a}-1\right)
\end{aligned}
$$

Solution 2 by Abdelhak M aoukouf-Casablanca-M orocco

$$
\begin{gathered}
\text { We have }\left(\int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x\right)\left(\int_{a}^{2 a} x^{3} d x\right) \stackrel{\text { Chebyshev }}{\leq}(2 a-a)\left(\int_{a}^{2 a} e^{x} d x\right) \\
\Leftrightarrow \frac{15 a^{4}}{4}\left(\int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x\right) \leq a e^{a}\left(e^{a}-1\right) \Leftrightarrow\left(\int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x\right) \leq \frac{4}{15} \cdot \frac{e^{a}\left(e^{a}-1\right)}{a^{3}} \\
\Rightarrow\left(\int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x\right) \leq \frac{3}{8} \cdot \frac{e^{a}\left(e^{a}-1\right)}{a^{3}}
\end{gathered}
$$

Solution 3 by Dimitris Kastriotis-Greece

$$
\text { Let }(x)=e^{x}, g(x)=\frac{1}{x^{3}}, f \uparrow[a, 2 a] . g \downarrow[a, 2 a]
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\int_{a}^{2 a} e^{x} \cdot \frac{1}{x^{3}} d x \stackrel{\text { Chebyshev }}{\leq} \frac{1}{2 a-a} \int_{a}^{2 a} e^{x} d x \cdot \int_{a}^{2 a} \frac{1}{x^{3}} d x \\
=\frac{1}{a}\left(e^{2 a}-e^{a}\right) \cdot \frac{3}{8 a^{2}}=\frac{3}{8 a^{3}} e^{a}\left(e^{a}-1\right)
\end{gathered}
$$

Solution 4 by Michel Rebeiz-Lebanon

$$
\begin{gathered}
f(a)=\int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x-\frac{3 e^{a}\left(e^{a}-1\right)}{8 a^{3}} \\
f^{\prime}(a)=2 \cdot \frac{e^{2 a}}{(2 a)^{3}}-\frac{3}{8} \cdot \frac{1}{a^{6}}\left[\left(2 e^{2 a}-e^{a}\right) a^{3}-3 a^{2}\left(e^{2 a}-e^{a}\right)\right] \\
=\frac{e^{a}}{8 a^{4}}\left[-4 a e^{a}+3 a+3 e^{a}-9\right] \cdot g(a)=-4 a e^{a}+3 a+3 e^{a}-9 \\
g^{\prime}(a)=-e^{a}-4 a e^{a}+3 \\
g^{\prime \prime}(a)=e^{a}(-\mathbf{5}-4 a)<0 \rightarrow g^{\prime} \downarrow \rightarrow\left[a>1 ; g^{\prime}(a)<g^{\prime}(\mathbf{1})\right] \\
g^{\prime}(\mathbf{1})<0 \rightarrow g^{\prime}(a)<0 \rightarrow g \downarrow \rightarrow[a>1 ; g(a)<g(\mathbf{1})] \\
g(\mathbf{1})<0 \rightarrow g(a)<0 \rightarrow f^{\prime}(a)<0 \rightarrow f \downarrow \\
a>1 \rightarrow f(a)<f(\mathbf{1}) f(\mathbf{1})<0 \rightarrow f(a)<0 \rightarrow \int_{a}^{2 a} \frac{e^{x}}{x^{3}} d x<\frac{3 a^{a}\left(e^{a}-\mathbf{1}\right)}{8 a^{3}}
\end{gathered}
$$

146. If $\mathbf{1}<a<b$ then:

$$
\int_{1}^{a} \log ^{2} x d x+\int_{1}^{b} \log ^{2} x d x \geq \int_{1}^{\frac{3 a+b}{4}} \log ^{2} x d x+\int_{1}^{\frac{a+3 b}{4}} \log ^{2} x d x
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Abdelhak M aoukouf-Casablanca-M orocco

$$
\begin{array}{r}
\forall x>1: f(x)=\int_{1}^{x} \log ^{2} t d t \therefore f^{\prime}(x)=\log ^{2} x \& f^{\prime \prime}(x)=2 \frac{\log x}{x} \geq 0 \\
\forall x>1 . \text { So by Jensen's inequality: }\left\{\begin{array}{l}
f\left(\frac{a+3 b}{4}\right) \leq \frac{f(a)+3 f(b)}{4} \\
f\left(\frac{3 a+b}{4}\right) \leq \frac{3 f(a)+f(b)}{4}
\end{array}\right. \\
\Rightarrow f(a)+f(b) \geq f\left(\frac{a+3 b}{4}\right)+f\left(\frac{3 a+b}{4}\right)
\end{array} \quad \begin{aligned}
& \Leftrightarrow \int_{1}^{a} \log ^{2} t d t+\int_{1}^{b} \log ^{2} d t \geq \int_{1}^{\frac{a+3 b}{4}} \log ^{2} t d t+\int_{1}^{\frac{3 a+b}{4}} \log ^{2} t d t
\end{aligned}
$$

147. If $\mathbf{0}<a<b ; 0<c<\boldsymbol{d} ; \boldsymbol{f}, \boldsymbol{g}$ integrable functions

$$
\begin{gathered}
f, g:[a, b] \rightarrow[c, d] \text { then: } \\
c d\left(\int_{a}^{b} \frac{f(x)}{g(x)} d x+\int_{a}^{b} \frac{g(x)}{f(x)} d x\right)<\left(c^{2}+d^{2}\right)(b-a)
\end{gathered}
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumitra M andal-Chandar Nagore-India

$$
\begin{aligned}
c \leq f(x) & \leq d \text { and } c \leq g(x) \leq d ; \frac{c}{d} \leq \frac{f}{g} \leq \frac{d}{c} \text { for all } x \in[a, b] \\
& \Rightarrow\left(\frac{f}{g}-\frac{c}{d}\right)\left(\frac{f}{g}-\frac{d}{c}\right) \leq 0 \Rightarrow \frac{f}{g}+\frac{g}{f} \leq \frac{c}{d}+\frac{d}{c} \\
& \Rightarrow \int_{a}^{b} \frac{f(x)}{g(x)} d x+\int_{a}^{b} \frac{g(x)}{f(x)} d x \leq\left(\frac{c}{d}+\frac{d}{c}\right)(b-a)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\Rightarrow c d\left(\int_{a}^{b} \frac{f(x)}{g(x)} d x+\int_{a}^{b} \frac{g(x)}{f(x)} d x\right)<\left(c^{2}+d^{2}\right)(b-a)
$$

148. If $f:[a, b] \rightarrow \mathbb{R}, f$ - continuous, f - increasing then:

$$
(\sqrt{a}+\sqrt{b}) \int_{a}^{\sqrt{a b}} f(x) d x \leq \sqrt{a} \int_{a}^{b} f(x) d x
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Chris Kyriazis-Greece, Solution 2 by Abdallah El Farissi-BecharAlgerie
Solution 1 by Chris Kyriazis-Greece
First we mention that: $a \leq \sqrt{a b} \leq b \quad$ (supposing that $a b \geq 0$) It suffices to prove that

$$
\begin{gathered}
\sqrt{b} \cdot \int_{a}^{\sqrt{a b}} f(x) d x \leq \sqrt{a}\left(\int_{a}^{b} f(x) d x-\int_{a}^{\sqrt{a b}} f(x) d x\right) \\
\text { or } \sqrt{b} \cdot \int_{a}^{\sqrt{a b}} f(x) d x \leq \sqrt{a} \int_{\sqrt{a b}}^{b} f(x) d x
\end{gathered}
$$

Using the integral mean value theorem it suffices to prove that:

$$
\begin{gathered}
\qquad \sqrt{b}(\sqrt{a b}-a) f\left(z_{1}\right) \leq \sqrt{a}(b-\sqrt{a b}) f\left(z_{2}\right) \\
\text { where } z_{1} \in[a, \sqrt{a b}] \text { and } z_{2} \in[\sqrt{a b}, b] \\
\text { or } \sqrt{b} \sqrt{a}(\sqrt{b}-\sqrt{a}) f\left(z_{1}\right) \leq \sqrt{a} \sqrt{b}(\sqrt{b}-\sqrt{a}) f\left(z_{2}\right) \\
\text { or } f\left(z_{1}\right) \leq f\left(z_{2}\right) \text { which holds } \\
\text { due to monotonicity of the function } f \text { (increasing). }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 2 by Abdallah El Farissi-Bechar-Algerie
f is increasing function then for all $s \in[a, \sqrt{a b}]$ and $t \in[\sqrt{a b}, b]$ we have

$$
\begin{aligned}
& f(s) \leq f(t) \text { then }(b-\sqrt{a b}) \int_{a}^{\sqrt{a b}} f(s) d x=\sqrt{b}(\sqrt{b}-\sqrt{a}) \int_{a}^{\sqrt{a b}} f(s) d s \leq \\
& \quad \leq \sqrt{a}(\sqrt{b}-\sqrt{a}) \int_{\sqrt{a b}}^{b} f(t) d t=(\sqrt{a b}-a) \int_{\sqrt{a b}}^{b} f(t) d t \text { it follow that }
\end{aligned}
$$

$$
\sqrt{b} \int_{a}^{\sqrt{a b}} f(x) d x \leq \sqrt{a} \int_{\sqrt{a b}}^{b} f(x) d x=\sqrt{a}\left(\int_{a}^{b} f(x) d x-\int_{a}^{\sqrt{a b}} f(x) d x\right)
$$

$$
\text { then }(\sqrt{b}+\sqrt{a}) \int_{a}^{\sqrt{a b}} f(x) d x \leq \sqrt{a} \int_{a}^{b} f(x) d x
$$

149. For acute triangle $A B C$

$$
\begin{gathered}
\text { If: } \zeta(A)=\int_{0}^{A} \frac{1}{\sqrt{\cos x+x\left(1+\frac{2}{\pi}\right)}} d x \\
\text { Prove: } \zeta(A)+\zeta(B)+\zeta(C) \leq 2 \sqrt{3(\pi+3)}-6
\end{gathered}
$$

Proposed by Uche Eliezer Okeke-Anambra-Nigeria
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\sin \left(\frac{\pi}{2}-x\right) \stackrel{\text { JORDAN }}{\underset{\sim}{2}} \frac{2}{\pi}\left(\frac{\pi}{2}-x\right) \rightarrow \cos x \geq 1-\frac{2}{\pi} x \rightarrow \cos x+\frac{2}{\pi} x+x \geq 1+x \\
\zeta(A)=\int_{0}^{A} \frac{1}{\sqrt{\cos x+\frac{2}{\pi} x+x}} d x \leq \int_{0}^{A} \frac{1}{\sqrt{1+x}} d x=2 \sqrt{1+A}-2 \\
\sum \zeta(A) \leq 2 \sum \sqrt{1+A}-6 \stackrel{\text { JENSEN }}{\leq} 2 \cdot 3 \sqrt{1+\frac{A+B+C}{3}}-6=2 \sqrt{3(1+\pi)}-6
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

150. If $x, y, z \in(0,1]$,

$$
\Omega(x)=\int_{0}^{x} \frac{\ln (1+a x)}{1+a^{2}} d a
$$

then:

$$
2(\Omega(x)+\Omega(y)+\Omega(z)) \geq 3 \ln 2+\ln (x y z)
$$

Proposed by Daniel Sitaru - Romania
Solution by Subhajit Chattopadhyay-Bolpur-India

$$
\begin{gathered}
\Omega(x)=\int_{0}^{x} \frac{\ln (1+a x)}{1+a^{2}} d a ; \\
=\int_{0}^{x} \int_{0}^{x} \frac{a d a d t}{(1+a t)\left(1+a^{2}\right)}=\int_{0}^{x} \int_{0}^{x} \frac{a\left(1+t^{2}\right) d t d a}{\left(1+t^{2}\right)(1+a t)\left(1+a^{2}\right)} \\
=\int_{0}^{x}\left[\frac{1}{1+t^{2}} \int_{0}^{x} \frac{a d a}{1+a^{2}}\right] d t+\int_{0}^{x}\left[\frac{t}{1+t^{2}} \int_{0}^{x} \frac{d a}{1+a^{2}}\right] d t-\int_{0}^{x}\left[\frac{t}{1+t^{2}} \int_{0}^{x} \frac{d a}{1+a t}\right] d t \\
=\left(\int_{0}^{x} \frac{d t}{1+t^{2}}\right)\left(\int_{0}^{x} \frac{a d a}{1+a^{2}}\right)+\left(\int_{0}^{x} \frac{t d t}{1+t^{2}}\right)\left(\int_{0}^{x} \frac{d a}{1+a^{2}}\right)-\int_{0}^{x} \frac{\ln (x t+1)}{1+t^{2}} d t \\
\therefore 2 \Omega(x)=\frac{\tan ^{-1} x}{2} \ln \left(1+x^{2}\right)+\frac{\ln \left(1+x^{2}\right)}{2} \tan ^{-1} x=\tan ^{-1} x \ln \left(1+x^{2}\right) \\
\quad H e n c e, 2(\Omega(x)+\Omega(y)+\Omega(z)) \\
=\tan ^{-1} x \ln \left(1+x^{2}\right)+\tan ^{-1} y \ln \left(1+y^{2}\right)+\tan ^{-1} z \ln \left(1+z^{2}\right)
\end{gathered}
$$

Now, $x \in(0,1)$. By $A M \geq G M \ln \left(1+x^{2}\right) \geq \ln (2 x) ; \tan ^{-1} x \geq 1$ for

$$
x \in(0,1) \therefore L H S \geq \ln (2 x)+\ln (2 y)+\ln (2 z)=3 \ln 2+\ln (x y z)
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

151. If $a, b, c>0$ then:

$$
\int_{a}^{2 a}\left(\int_{b}^{2 b}\left(\int_{c}^{2 c}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right) d x\right) d y\right) d z \leq \ln \sqrt{2^{a b+b c+c a}}
$$

Proposed by Daniel Sitaru - Romania
Solution by Chris Kiryazis-Greece
We have that $(x+y)^{2} \geq 4 x y \frac{x+y}{4 x y} \geq \frac{1}{x+y} \Rightarrow \frac{1}{x+y} \leq \frac{1}{9}\left(\frac{1}{x}+\frac{1}{9}\right)$
So, using (1) (integrating (1)), we have:

$$
\begin{gathered}
\int_{a}^{2 a} \int_{b}^{2 b} \int_{c}^{2 c}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right) d x d y d z \leq \frac{1}{2} \int_{a}^{2 a} \int_{b}^{2 b} \int_{c}^{2 c}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) d x d y d z \\
=\frac{1}{2}(b c \ln 2+c a \ln 2+a b \ln 2)=\frac{1}{2}\left(\ln 2^{b c+c a+a b}\right)=\ln 2^{\frac{a b+b c+c a}{2}}= \\
=\ln \sqrt{2^{a b+b c+c a}}
\end{gathered}
$$

152. Let $f:[1,13] \rightarrow \mathbb{R}$ be a convexe and integrable function. Prove that

$$
\int_{1}^{3} f(x) d x+\int_{11}^{13} f(x) d x \geq \int_{5}^{9} f(x) d x
$$

Proposed by Nitin Gurbani-India
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
1 \leq x_{n}^{k} \leq y_{n}^{k} \leq z_{n}^{k} \leq t_{n}^{k} \leq 13 \\
x_{n}^{k}=1+\frac{2 k}{n}, y_{n}^{k}=5+\frac{2 k}{n}, z_{n}^{k}=7+\frac{2 k}{n}, t_{n}^{k}=11+\frac{2 k}{n} \\
f-\text { convexe } \rightarrow \frac{f\left(y_{n}^{k}\right)-f\left(x_{n}^{k}\right)}{y_{n}^{k}-x_{n}^{k}} \leq \frac{f\left(t_{n}^{k}\right)-f\left(z_{n}^{k}\right)}{t_{n}^{k}-z_{n}^{k}} \rightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{n=1}^{n} f\left(y_{n}^{k}\right)+\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{k=1}^{n} f\left(z_{n}^{k}\right) \geq \lim _{n \rightarrow \infty} \frac{2}{n} \sum_{k=1}^{n} f\left(t_{n}^{k}\right)+\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{\substack{k=1 \\
n \rightarrow \infty}}^{n} f\left(x_{n}^{k}\right) \\
\int_{5}^{7} f(x) d x+\int_{7}^{9} f(x) d x \leq \int_{11}^{13} f(x) d x+\int_{1}^{3} f(x) d x \\
\int_{5}^{9} f(x) d x \leq \int_{11}^{13} f(x) d x+\int_{1}^{3} f(x) d x
\end{gathered}
$$

153. $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(\sqrt[3]{x y z}+\sqrt[3]{y z t}+\sqrt[3]{z t x}+\sqrt[3]{t x y}) d x d y d z d t \leq 2$

Proposed by Daniel Sitaru - Romania

Solution 1 by Abdelhak M aoukouf-Casablanca-M orocco, Solution 2 by Lazaros
Zachariadis-Thessaloniki-Greece, Solution 3 by Geanina Tudose-Romania
Solution 1 by Abdelhak M aoukouf-Casablanca-M orocco

$$
\begin{gathered}
\sum \sqrt[3]{x y z} \stackrel{A M-G M}{\leq} \sum \frac{x+y+z}{3} \leq(x+y+z+t) \\
\rightarrow I=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(\sqrt[3]{x y z}+\sqrt[3]{y z t}+\sqrt[3]{z t x}+\sqrt[3]{t x y}) d x d y d z d t \\
\leq \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(x+y+z+t) d x d y d z d t=\left[\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{y^{2}}{2}\right]_{0}^{1}+\left[\frac{z^{2}}{2}\right]_{0}^{1}+\left[\frac{t^{2}}{2}\right]_{0}^{1}=2
\end{gathered}
$$

Solution 2 by Lazaros Zachariadis-Thessaloniki-Greece

$$
\begin{gathered}
\sqrt[3]{x y z}+\sqrt[3]{y z t}+\sqrt[3]{z t x}+\sqrt[3]{t x y} \leq \frac{x+y+z+y+z+t+z+t+x+t+x+y}{3} \\
=\frac{3(x+y+z+t)}{3}=x+y+z+t
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
I=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(x+y+z+t) d x d y d z d t=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{x^{2}}{2}+y x+z x+t x\right)_{0}^{1} d y d z d t= \\
=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{2}+y+z+t\right) d y d z d t \\
=\int_{0}^{1} \int_{0}^{1}\left(\frac{1}{2} y+\frac{y^{2}}{2}+z y+t y\right)_{0}^{1} d z d t=\int_{0}^{1} \int_{0}^{1}\left(\frac{1}{2}+\frac{1}{2}+z+t\right) d z d t=\int_{0}^{1}\left(z+\frac{z^{2}}{2}+t z\right)_{0}^{1} d t \\
=\int_{0}^{1}\left(1+\frac{1}{2}+t\right) d t=\left(t+\frac{t}{2}+\frac{t^{2}}{2}\right)_{0}^{1}=1+\frac{1}{2}+\frac{1}{2}=2 \Rightarrow I \leq 2
\end{gathered}
$$

Solution 3 by Geanina Tudose-Romania
By $G M \leq A M$ we have $\sqrt[3]{x y z} \leq \frac{x+y+z}{3} \Rightarrow \sum_{c y c} \sqrt[3]{x y z} \leq x+y+z+t$

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(\sqrt[3]{x y z}+\sqrt[3]{y z t}+\sqrt[3]{z t x}+\sqrt[3]{t x y}) d x d y d z d t \\
\leq \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{2}+y+z+t\right) d y d z d t=\left.\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{x^{2}}{2}+(y+z+t) x\right)\right|_{0} ^{1} d y d z d t= \\
=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{2}+y+z+t\right) d y d z d t=\int_{0}^{1} \int_{0}^{1}\left(\frac{y}{z}+\frac{y^{2}}{2}+(z+t) y\right) d z d x \\
=\int_{0}^{1} \int_{0}^{1}(1+z+t) d z d t=\left.\int_{0}^{1}\left(z+\frac{z^{2}}{2}+t z\right)\right|_{0} ^{1} d t=\int_{0}^{1}\left(1+\frac{1}{2}+t\right) d t=\frac{3}{2} t+\left.\frac{t^{2}}{2}\right|_{0} ^{1}=2
\end{gathered}
$$

154. If $0<a<b$ then:

$$
\int_{a}^{b} \frac{d x}{\left(x^{3}+1\right)^{2}}>\frac{5}{9\left(b^{5}-a^{5}\right)} \ln ^{2}\left(\frac{b^{3}+1}{a^{3}+1}\right)
$$

Proposed by Daniel Sitaru - Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Soumitra M andal-Chandar Nagore-India
Applying Cauchy - Schwarz,

$$
\begin{gathered}
\left(\int_{a}^{b} \frac{x^{2}}{x^{3}+1} d x\right)^{2} \leq\left(\int_{a}^{b} \frac{d x}{\left(x^{3}+1\right)^{2}}\right)\left(\int_{a}^{b} x^{4} d x\right)=\frac{\left(b^{5}-a^{5}\right)}{5}\left(\int_{a}^{b} \frac{d x}{\left(x^{3}+1\right)^{2}}\right) \\
\Rightarrow\left(\frac{1}{3}\left[\ln \left(x^{3}+1\right)\right]_{x=a}^{x=b}\right)^{2} \leq \frac{b^{5}-a^{5}}{5}\left(\int_{a}^{b} \frac{d x}{\left(x^{3}+1\right)^{2}}\right) \\
\therefore \ln ^{2}\left(\frac{b^{3}+1}{a^{3}+1}\right) \cdot \frac{5}{9\left(b^{5}-a^{5}\right)} \leq \int_{a}^{b} \frac{d x}{\left(x^{3}+1\right)^{2}}
\end{gathered}
$$

155. Evaluate

$$
\lim _{x \rightarrow 0} \frac{2 \sqrt{1+x}+2 \sqrt{2^{2}+x}+\cdots+2 \sqrt{n^{2}+x}-n(n+1)}{x}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Serban George Florin-Romania, Solution 2 by Shivam SharmaNew Delhi-India, Solution 3 by Ravi Prakash-New Delhi-India , Solution 4 by Bedri Hadriji-M itrovica-Kosovo

Solution 1 by Serban George Florin-Romania

$$
\begin{gathered}
l=\lim _{x \rightarrow 0} \frac{2 \sqrt{1+x}+2 \sqrt{2^{2}+x}+\cdots+2 \sqrt{n^{2}+x}-n(n+1)}{x}=\frac{0}{0} \\
l=2 \lim _{x \rightarrow 0} \frac{\sqrt{1+x}+\sqrt{2^{2}+x}+\cdots+\sqrt{n^{2}+x}-\frac{n(n+1)}{2}}{x}, \\
l=2 \cdot \lim _{x \rightarrow 0} \frac{(\sqrt{1+x}-1)+\left(\sqrt{2^{2}+x}-2\right)+\cdots+\left(\sqrt{n^{2}+x}-n\right)}{x}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
L_{n}=\lim _{x \rightarrow 0} \frac{\sqrt{n^{2}+x}-n}{x}=\frac{0}{0}=\lim _{x \rightarrow 0} \frac{n^{2}+x-n^{2}}{x\left(\sqrt{n^{2}+x}+n\right)}=\lim _{x \rightarrow 0} \frac{x}{x\left(\sqrt{n^{2}+x}+n\right)} \\
L_{n}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{n^{2}+x}+n}=\frac{1}{n+n}=\frac{1}{2 n} \\
l=2 \cdot\left(L_{1}+L_{2}+\cdots+L_{n}\right)=2 \cdot\left(\frac{1}{2 \cdot 1}+\frac{1}{2 \cdot 2}+\cdots+\frac{1}{2 n}\right) ; l=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}
\end{gathered}
$$

Solution 2 by Shivam Sharma-New Delhi-India

$$
\begin{gathered}
\Rightarrow \lim _{x \rightarrow 0} \frac{2 \sum_{k=1}^{n} \sqrt{k^{2}+x}-n(n+1)}{x} \text {. Applying L. Hospital's rule, we get, } \\
\Rightarrow \lim _{x \rightarrow 0} 2 \sum_{k=1}^{n} \frac{1}{2 \sqrt{k^{2}+x}} \Rightarrow \lim _{x \rightarrow 0} \sum_{k=1}^{n} \frac{1}{\sqrt{k^{2}+x}} \text { (OR) } L=\sum_{k=1}^{n} \frac{1}{k} \\
\text { (OR) } L=H_{n}
\end{gathered}
$$

Solution 3 by Ravi Prakash-New Delhi-India
For $1 \leq \boldsymbol{k} \leq \boldsymbol{n}$,

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sqrt{k^{2}+x}-k}{x}=\lim _{x \rightarrow 0} \frac{k^{2}+x-k^{2}}{x\left(\sqrt{k^{2}+x}+k\right)}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{k^{2}+x}+k}=\frac{1}{2 k} \\
\Rightarrow \lim _{x \rightarrow 0} \frac{2 \sqrt{k^{2}+x}-2 k}{x}=\frac{1}{k} \Rightarrow \sum_{k=1}^{n} \lim _{x \rightarrow 0} \frac{2 \sqrt{k^{2}+x}-2 k}{x}=\sum_{k=1}^{n} \frac{1}{k} \\
\Rightarrow \lim _{x \rightarrow 0} \frac{\sum_{k=1}^{n} 2 \sqrt{k^{2}+x}-n(n+1)}{x}=\sum_{k=1}^{n} \frac{1}{k}
\end{gathered}
$$

Solution 4 by Bedri Hadriji-M itrovica-Kosovo

$$
\begin{gathered}
L=2 \lim _{x \rightarrow 0} \sum_{k=1}^{n} \frac{\sqrt{k^{2}+x}-k}{x}=2 \sum_{k=1}^{n} \lim _{x \rightarrow 0} \frac{x}{x\left(\sqrt{k^{2}+x}+k\right)} \\
=2 \sum_{k=1}^{n} \frac{1}{2 k}=\sum_{k=1}^{n} \frac{1}{k}=H_{n}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

156. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{n}^{n+1} e^{\frac{1}{x}} d x
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Ravi Prakash-New Delhi-India, Solution 2 by Shivam SharmaNew Delhi-India

Solution 1 by Ravi Prakash-New Delhi-India
For $n \leq x \leq n+1 ; \frac{1}{n+1} \leq \frac{1}{x} \leq \frac{1}{n} \Rightarrow e^{\frac{1}{(n+1)}} \leq e^{\frac{1}{x}} \leq e^{\frac{1}{n}}$
$\Rightarrow \int_{n}^{n+1} e^{\frac{1}{(n+1)}} d x \leq \int_{n}^{n+1} e^{\frac{1}{x}} d x \leq \int_{n}^{n+1} e^{\frac{1}{n}} d x \Rightarrow e^{\frac{1}{n+1}} \leq \int_{n}^{n+1} e^{\frac{1}{x}} d x \leq e^{\frac{1}{n}}$
Since $e^{\frac{1}{n}} \rightarrow e^{0}=1$ as $n \rightarrow \infty ; e^{\frac{1}{(n+1)}} \rightarrow e^{0}=1$ as $n \rightarrow \infty$
we get $\lim _{n \rightarrow \infty} \int_{n}^{n+1} e^{\frac{1}{x}} d x=1$
Solution 2 by Shivam Sharma-New Delhi-India

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \int_{n}^{n+1} e^{\frac{1}{x}} d x . \text { Let, } h(x)=e^{\frac{1}{n+1}} . \text { And, } g(x)=e^{\frac{1}{n}} . \text { So, } h(x) \leq L \leq g(x) \\
e^{\frac{1}{n+1}} \leq e^{\frac{1}{x}} \leq e^{\frac{1}{n} .} \text { Then, } \int_{n}^{n+1} e^{\frac{1}{n-1}} d x \leq \int_{n}^{n-1} e^{\frac{1}{x}} d x \leq \int_{n}^{n-1} e^{\frac{1}{n}} d x \\
e^{\frac{1}{n+1}[n+1-n] \leq} \int_{n}^{n-1} e^{\frac{1}{x}} d x \leq e^{\frac{1}{n}}[n+1-n] \\
\quad \lim _{n \rightarrow \infty}\left(e^{\frac{1}{n-1}}\right) \leq \lim _{n \rightarrow \infty} \int_{n}^{n+1} e^{\frac{1}{x}} d x \leq \lim _{n \rightarrow \infty}\left(e^{\frac{1}{n}}\right)
\end{gathered}
$$

$1 \leq L \leq 1$. Then, by Squeeze theorem, we get, $L=1$
(Q.E.D)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

157. If

$$
\begin{aligned}
& \Omega(a)=\lim _{n \rightarrow \infty} n^{2}\left(\sqrt[n+5]{e^{a^{2}+a+1}}-\sqrt[n+7]{e^{a^{2}+a+1}}\right), a>0 \\
& \text { then: } \\
& \frac{\Omega(a)}{b+c}+\frac{\Omega(b)}{c+a}+\frac{\Omega(c)}{a+b}>a+b+c \\
& \quad \text { Proposed Daniel Sitaru - Romania }
\end{aligned}
$$

Solution 1 by Soumitra Mandal-Chandar Nagore-India
Solution 2 by Subhajit Chattopadhyay-Bolpur-India
Solution 1 by Soumitra M andal-Chandar Nagore-India
Let $f(x)=e^{x\left(a^{2}+a+1\right)}$ for all $x \in\left[\frac{1}{n+7}, \frac{1}{n+5}\right]$
\therefore by Lagrange's Mean Value Theorem;

$$
\begin{gathered}
\frac{\sqrt[n+5]{e^{a^{2}+a+1}}-\sqrt[n+7]{e^{a^{2}+a+1}}}{\frac{1}{n+5}-\frac{1}{n+7}}=\left(a^{2}+a+1\right) e^{\xi_{n}\left(a^{2}+a+1\right)} \text { where } \xi \in\left[\frac{1}{n+7}, \frac{1}{n+5}\right] \\
\sqrt[n+5]{e^{a^{2}+a+1}}-\sqrt[n+7]{e^{a^{2}+a+1}}=\frac{2\left(a^{2}+a+1\right)}{(n+5)(n+7)} e^{\xi_{n}\left(a^{2}+a+1\right)} \\
\text { Now }, \frac{1}{n+7} \leq \xi_{n} \leq \frac{1}{n+5} \Rightarrow \frac{a^{2}+a+1}{n+7} \leq \xi_{n}\left(a^{2}+a+1\right) \leq \frac{a^{2}+a+1}{n+5} \\
\sqrt[n+7]{e^{a^{2}+a+1}} \leq e^{\xi_{n}\left(a^{2}+a+1\right)} \leq \lim _{n \rightarrow \infty} \sqrt[n+5]{e^{a^{2}+a+1}} \\
\lim _{n \rightarrow \infty} \sqrt[n+7]{e^{a^{2}+a+1}} \leq e^{\xi_{n}\left(a^{2}+a+1\right)} \leq \lim _{n \rightarrow \infty} \sqrt[n+5]{e^{a^{2}+a+1}} \\
\text { So, by Sandwich Theorem, } \lim _{n \rightarrow \infty} e^{\xi_{n}\left(a^{2}+a+1\right)}=1 \\
\therefore \lim _{n \rightarrow \infty} n^{2}\left(\sqrt[n+5]{e^{a^{2}+a+1}}-\sqrt[n+7]{e^{a^{2}+a+1}}\right)=\lim _{n \rightarrow \infty} \frac{2\left(a^{2}+a+1\right)}{\left(1+\frac{5}{n}\right)\left(1+\frac{7}{n}\right)} \cdot \lim _{n \rightarrow \infty} e^{\xi_{n}\left(a^{2}+a+1\right)} \\
=2\left(a^{2}+a+1\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\therefore \sum_{c y c} \frac{\Omega(a)}{b+c}=2 \sum_{c y c} \frac{a^{2}}{b+c}+\sum_{c y c} \frac{2 a}{b+c}+2 \sum_{c y c} \frac{1}{b+c} \\
\quad \geq a+b+c+3+\frac{9}{a+b+c}>a+b+c
\end{gathered}
$$

Solution 2 by Subhajit Chattopadhyay-Bolpur-India

$$
\Omega(a)=\lim _{n \rightarrow \infty} n^{2}\left(\sqrt[n+5]{c^{a^{2}+a+1}}-\sqrt[n+7]{e^{a^{2}+a+1}}\right), a>0
$$

Expanding by $c^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\sqrt[n+5]{\boldsymbol{c}^{a^{2}+a+1}}-\sqrt[n+7]{\boldsymbol{c}^{a^{2}+a+1}}$

$$
\begin{aligned}
& =1+\frac{a^{2}+a+1}{n+5}+\frac{\left(a^{2}+a+1\right)^{2}}{2(n+5)^{2}}+\cdots \\
& -1-\frac{a^{2}+a+1}{n+7}-\frac{\left(a^{2}+a+1\right)^{2}}{2(n+7)^{2}}-\cdots \\
= & \frac{2\left(a^{2}+a+1\right)}{(n+5)(n+7)}+\frac{\left(a^{2}+a+1\right)^{2}}{2}+\mathbf{0}\left(\frac{1}{n^{4}}\right)
\end{aligned}
$$

$\therefore \lim _{n \rightarrow \infty} n^{2}\left(e^{\frac{a^{2}+a+1}{n+5}}-e^{\frac{a^{2}+a+1}{n+7}}\right)=\lim _{n \rightarrow \infty} \frac{2\left(a^{2}+a+1\right)}{\left(1+\frac{5}{n}\right)\left(1+\frac{7}{n}\right)}+0=2\left(a^{2}+a+1\right)$

$$
\text { Now, } \frac{\Omega(a)}{b+c}+\frac{\Omega(b)}{c+a}+\frac{\Omega(c)}{a+b}=\frac{2\left(a^{2}+a+1\right)}{b+c}+\frac{2\left(b^{2}+b+1\right)}{c+a}+\frac{2\left(c^{2}+c+1\right)}{a+b}
$$

without loss of generality assume, $a \geq b \geq \boldsymbol{c}$, Apply Chebyshev inequality, $\mathrm{LHS} \geq \frac{2}{3}\left(a^{2}+b^{2}+c^{2}+a+b+c+3\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)$

$$
\text { By } \mathrm{AM} \geq \mathrm{HM} \frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b} \geq \frac{9}{2(a+b+c)}
$$

158. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n}\left(k^{2} \cdot \sqrt[k]{\binom{2 k}{k}}\right)}{n(n+1)(2 n+1)}
$$

Proposed by Daniel Sitaru - Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by Ravi Prakash-New Delhi-India, Solution 2 by Shivam SharmaNew Delhi-India

Solution 1 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
\text { Let } a_{n}=\binom{2 n}{n} ; \lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \\
=\lim _{n \rightarrow \infty}\binom{2 n+2}{n+1} /\binom{2 n}{n}=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{(n+1)(n+1)}=4 \lim _{n \rightarrow \infty}\left(-\frac{1}{2 n+2}\right)=4
\end{gathered}
$$

Let $0<\epsilon<1$, there exists a positive integer m such that

$$
\begin{gathered}
\left|\left(\boldsymbol{a}_{\boldsymbol{n}}\right)^{\frac{1}{n}}-4\right|<\epsilon \quad \forall n>m \Rightarrow 4-\epsilon<\left(\boldsymbol{a}_{\boldsymbol{n}}\right)^{\frac{1}{n}}<4+\epsilon \quad \forall n>m \\
\text { Let } \boldsymbol{b}_{\boldsymbol{k}}=\boldsymbol{k}^{2}\binom{\mathbf{2 k}}{\boldsymbol{k}}^{\frac{1}{k}}=\boldsymbol{k}^{2}\left(\boldsymbol{a}_{\boldsymbol{k}}\right)^{\frac{1}{k}}
\end{gathered}
$$

Let $A=b_{1}+b_{2}+\cdots+b_{m}-\left(1^{2}+2^{2}+\cdots+m^{2}\right)(4-\epsilon)$ and $B=b_{1}+b_{2}+\cdots+b_{m}-\left(1^{2}+2^{2}+\cdots+m^{2}\right)(4+\epsilon)$ Now, for $n>m$ $\left(2^{2}+3^{2}+\cdots+n^{2}\right)(4-\epsilon)+A<$
$<b_{2}+b_{3}+\cdots+b_{n}<\left(2^{2}+\cdots+n^{2}\right)(4+\epsilon)+B \Rightarrow \frac{\left[\frac{1}{6} n(n+1)(2 n+1)-1\right](4-\epsilon)+A}{n(n+1)(2 n+1)}$

$$
<\frac{\sum_{k=2}^{n} b_{k}}{n(n+1)(2 n+1)}<\frac{\left(\frac{1}{6} n(n+1)(2 n+1)-1\right)(4+\epsilon)+B}{n(n+1)(2 n+1)}
$$

Taking limit as $n \rightarrow \infty$, we get $\frac{1}{6}(4-\epsilon) \leq \lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n} b_{k}}{n(n+1)(2 n+1)} \leq \frac{1}{4}(4+\epsilon)$

$$
\Rightarrow \frac{2}{3}-\epsilon \leq \Omega \leq \frac{2}{3}+\epsilon \text {. Its true for each } \epsilon>0, \therefore \Omega=\frac{2}{3}
$$

Solution 2 by Shivam Sharma-New Delhi-India

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n}\left(k^{2}\left(\frac{(2 k!)}{(k)^{2}}\right)^{\frac{1}{k}}\right)}{n(2 n+1)(n+1)} \text {. As we know, the Stirling's formula, }
$$

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{\sum_{k=2}^{n}\left(\frac{k^{3}}{2 k}\right)}{n(n+1)(2 n+1)} \Rightarrow \frac{2}{3} \lim _{n \rightarrow \infty} \frac{2 n^{3}+3 n^{2}+n-6}{2 n^{3}+3 n^{2}+n}
$$

$$
\Rightarrow \frac{2}{3} \lim _{n \rightarrow \infty} \frac{2 n^{3}+3 n+n-6}{2 n^{3}+3 n^{2}+n} \Rightarrow \frac{2}{3}\left(\frac{2+0+0-0}{2+0+0}\right)(\mathrm{OR}) \Omega=\frac{2}{3}
$$

159. $\boldsymbol{f}: \mathbb{R} \rightarrow[\boldsymbol{a}, \boldsymbol{b}], \boldsymbol{a}<b$

Find:

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{(n-k+1)^{2} f(k)}{k\left(1^{2}+2^{2}+\cdots+n^{2}\right)} \\
& \quad \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

Solution by Saptak Bhattacharya-Kolkata-India

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} 6 \sum_{k=1}^{n} \frac{(n-k+1)^{2}(k)}{k n((n+1)(2 n+1)}=\lim _{n \rightarrow \infty} \frac{6}{n(n+1)(2 n+1)} \sum_{k=1}^{n} \frac{(n-k+1)^{2} f(k)}{k} \\
& \quad \text { Now, } a \leq f(k) \leq b, \operatorname{And}, \lim _{n \rightarrow \infty} \frac{6}{n(n+1)(2 n+1)} \sum_{k=1}^{n} \frac{(n-k+1)^{2} a}{k} \\
& =\lim _{n \rightarrow \infty} \frac{6 a}{n(n+1)(2 n+1)} \cdot \sum_{k=1}^{n} \frac{n^{2}+k^{2}+1-2 k-2 n k+2 n}{k} \\
& =\lim _{n \rightarrow \infty} \frac{6 a}{n(n+1)(2 n+1)} \cdot\left[(n+1)^{2} H_{n}+\frac{n(n+1)}{2}-2 n(n+1)\right]
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
= & \lim _{n \rightarrow \infty} \frac{6 a}{n(n+1)(2 n+1)}\left((n+1)^{2} H_{n}-\frac{3 n(n+1)}{2}\right) \\
= & a \lim _{n \rightarrow \infty} 6\left(\frac{(n+1) H_{n}}{n(2 n+1)}-\frac{3}{2(2 n+1)}\right)=6 a\left(\frac{1}{2} \lim _{n \rightarrow \infty} \frac{H_{n}}{n}\right) \\
= & 3 a \lim _{n \rightarrow \infty} \frac{H_{n}}{n}=0 \text { (Cauchy first theorem). Similarly, } \\
& \lim _{n \rightarrow \infty} \frac{6 b}{n(n+1)(2 n+1)} \sum_{k=1}^{n} \frac{(n-k+1)^{2}}{k}=0
\end{aligned}
$$

Thus by squezze theorem, the given limit is 0
160. Evaluate

$$
\frac{\pi}{2}\left(1+\frac{1}{2}\left(1+\frac{3}{4}\left(1+\frac{5}{6}(1+\cdots)\right)\right)\right)-\left(1+\frac{2}{3}\left(1+\frac{4}{5}\left(1+\frac{6}{7}(1+\cdots)\right)\right)\right)
$$

Proposed by Vidyamanohar Sharma Astakala-Hydebarad-India
Solution by proposer

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\cos x} d x=\int_{0}^{\frac{\pi}{2}}(1+\cos x)^{-1} d x \\
=\int_{0}^{\frac{\pi}{2}}\left[\sum_{\gamma}^{\infty}(\cos x)^{2 \gamma}-\sum_{\gamma=0}^{\infty}(\cos x)^{2 \gamma+1}\right] d x \\
=\frac{\pi}{2}+\frac{1}{2} \cdot \frac{\pi}{2}+\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}+\frac{5 \cdot 3 \cdot 1}{6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2} \\
\cdots \\
\\
-\left(1+\frac{2}{3}+\frac{4}{5} \cdot \frac{2}{3}+\frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \cdot \ldots\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

\therefore Given sum $=1$
161. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{(n-k+1) e^{-k^{2}}}{1+2+\cdots+n}
$$

Proposed by Daniel Sitaru - Romania

Solution by Ravi Prakash-New Delhi-India

$$
\text { Let } a_{k}=\frac{(n-k+1) e^{-k^{2}}}{1+2+\cdots+n}=\frac{2}{n(n+1)}[(n+1)-k] e^{-k^{2}}=\frac{2}{n}\left(1-\frac{k}{n+1}\right) e^{-k^{2}}
$$

$$
\text { Let } b_{k}=e^{-k^{2}}, c_{k}=k e^{-k^{2}} ; \lim _{n \rightarrow \infty} b_{k}=0, \lim _{n \rightarrow \infty} c_{k}=0
$$

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{b_{1}+b_{2}+\cdots+b_{n}}{n}=0 \text { and } \lim _{n \rightarrow \infty} \frac{c_{1}+c_{2}+\cdots+c_{n}}{n}=0
$$

Now, $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=2 \lim _{n \rightarrow \infty} \frac{b_{1}+b_{2}+\cdots+b_{n}}{n}-\lim _{n \rightarrow \infty} \frac{2}{n+1} \lim _{n \rightarrow \infty} \frac{c_{1}+c_{2}+\cdots+c_{n}}{n}=0$
162. Find:

$$
\Omega=\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1} \frac{x^{2}+\arctan x}{e^{n x}} d x
$$

Proposed by Daniel Sitaru - Romania

Solution by Soumitra M andal-Chandar Nagore-India

$$
\begin{gathered}
\text { For } x \geq 0,0 \leq x^{2} n^{2} e^{-n x}<\frac{4!}{x^{2} n^{2}}, \text { since, } e^{n x}>\frac{(n x)^{4}}{4!} \\
\text { Similarly, for } x \geq 0,0 \leq n^{2} e^{-n x} \tan ^{-1} x<\frac{4!\tan ^{-1} x}{x^{4} n^{2}} \\
0 \leq \lim _{n \rightarrow \infty} n^{2} \int_{0}^{1} \frac{x^{2}+\tan ^{-1} x}{e^{n x}} d x<\lim _{n \rightarrow \infty} \int_{0}^{1}\left(\frac{4!}{x^{2} n^{2}}+\frac{4!\tan ^{-1} x}{x^{4} n^{2}}\right) d x= \\
\int_{0}^{1} \lim _{n \rightarrow \infty}\left(\frac{4!}{x^{2} n^{2}}+\frac{4!\tan ^{-1} x}{x^{4} n^{2}}\right) d x=0
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

so, by sandwich theorem $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{x^{2}+\tan ^{-1} x}{e^{n x}} d x=0$
163. If $\boldsymbol{a}_{\boldsymbol{n}}>0, n \geq 1, \lim _{n \rightarrow \infty} \boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$ then find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{a_{k}}{b+c a_{k}}
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania
Solution 1 by Nirapada Pal-Jhargram-India, Solution 2 by Ravi Prakash-New Delhi-India, Solution 3 by Abdallah El Farissi-Bechar-Algerie, Solution 4 by

Soumitra Mandal-Chandar Nagore-India

Solution 1 by Nirapada Pal-Jhargram-India
By Cauchy's limit theorem $\lim _{n \rightarrow \infty} A_{n}=A \Rightarrow \lim _{n \rightarrow \infty} \frac{A_{1}+A_{2}+A_{3}+\cdots+A_{n}}{n}=A$
Now, we have $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\frac{\lim _{n \rightarrow \infty} f(n)}{\lim _{n \rightarrow \infty} g(n)}$ provided $\lim _{n \rightarrow \infty} g(n) \neq 0$
Given $\lim _{n \rightarrow \infty} a_{n}=a$. So $\lim _{n \rightarrow \infty} \frac{a_{n}}{b+c a_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty}\left(b+c a_{n}\right)}=\frac{a}{b+c a}$

So by Cauchy's limit theorem we get

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{a_{k}}{b+c a_{k}}=\lim _{n \rightarrow \infty} \frac{a_{n}}{b+c a_{n}}=\frac{a}{b+c a}
$$

Solution 2 by Ravi Prakash-New Delhi-India
As $a>0$, we choose $\boldsymbol{\epsilon}>0$ such that $0<a<\epsilon$. Since $\lim _{n \rightarrow \infty} \boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}$ these exists $\boldsymbol{k} \in \mathbb{N}$ such that $\left|\boldsymbol{a}_{\boldsymbol{n}}-\boldsymbol{a}\right|<\boldsymbol{\epsilon} \quad \forall \boldsymbol{n}>k$

$$
\begin{equation*}
\Rightarrow \mathbf{0}<a-\boldsymbol{\epsilon}<\boldsymbol{a}_{\boldsymbol{n}}<a+\epsilon \quad \forall n>k \tag{1}
\end{equation*}
$$

$$
\text { Let } A=\sum_{j=1}^{k} \frac{a_{j}}{b+c a_{j}} \text {. From (1) } \forall n>k
$$

$$
\begin{equation*}
b+c(a-\epsilon)<b+c a_{n}<b+c(a+\boldsymbol{\epsilon}) \Rightarrow \frac{1}{b+c(a+\epsilon)}<\frac{1}{b+c a_{n}}<\frac{1}{b+c(a-\epsilon)} \tag{2}
\end{equation*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

From (1), (2) we get $\frac{a-\epsilon}{b+c(a+\epsilon)}<\frac{a_{n}}{b+c a_{n}}<\frac{a+\epsilon}{b+c(a+\epsilon)} \forall \boldsymbol{n}>k$

$$
\begin{gathered}
\Rightarrow(n-k) \frac{a-\epsilon}{b+c(a+\epsilon)}<\sum_{j=k}^{n} \frac{a_{j}}{b+\boldsymbol{c} a_{j}}<(n-k) \frac{a+\epsilon}{b+\boldsymbol{c}(\boldsymbol{a}-\boldsymbol{\epsilon})} \quad \forall n>k \\
\Rightarrow \frac{1}{n}\left\{A+(n-k) \frac{a-\epsilon}{b+c(a+\epsilon)}\right\}<\sum_{j=1}^{n} \frac{a_{j}}{b+c a_{j}}<\frac{1}{n}\left\{A+(n-k) \frac{a+\epsilon}{b+c(a-\epsilon)}\right\} \quad \forall n>k
\end{gathered}
$$

Taking limit as $n \rightarrow \infty$, we get $0+(1-0) \frac{a-\epsilon}{b+c(a+\epsilon)} \leq \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \frac{a_{j}}{b+c a_{j}}$

$$
\begin{gathered}
\leq 0+(1-0) \frac{a+\epsilon}{b+c(a-\epsilon)} . \text { Taking limit as } \epsilon \rightarrow 0_{+} \text {, we get } \\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \frac{a_{j}}{b+c a_{j}}=\frac{a}{b+c a}
\end{gathered}
$$

Solution 3 by Abdallah El Farissi-Bechar-Algerie
Theorem of Cesaro: If $\boldsymbol{u}_{\boldsymbol{n}} \rightarrow \boldsymbol{l}$ in $\overline{\mathbb{R}}$, then $\frac{\sum_{k=1}^{n} u_{n}}{\boldsymbol{n}} \rightarrow \boldsymbol{l}$
Let $u_{n}=\frac{a_{n}}{b+c a_{n}}$, we have $u_{n} \rightarrow \frac{a}{b+c a}$ then $\frac{\sum_{k=\frac{a_{n}}{n} \frac{a_{n}}{b+c a_{n}}}^{n} \rightarrow \frac{a}{b+c a}}{}$
Solution 4 by Soumitra M andal-Chandar Nagore-India

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=a \text { now, } \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{a_{k}}{b+c a_{k}} \\
& \stackrel{\text { Caesaro-Stolz }}{=} \lim _{n \rightarrow \infty} \frac{1}{n+1-n}\left(\sum_{k=1}^{n+1} \frac{a_{k}}{b+c a_{k}}-\sum_{k=1}^{n} \frac{a_{k}}{b+c a_{k}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{a_{n+1}}{b+c a_{n+1}}=\frac{a}{b+c a}
\end{aligned}
$$

164. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{k}{(k+1)!}\right)\left(\sum_{k=1}^{n} \frac{k(k+2)}{((k+1)!)^{2}}\right)\left(\sum_{k=1}^{n} \frac{k\left(k^{2}+3 k+3\right)}{((k+1)!)^{3}}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 1 by Abdelhak M aoukouf-Casablanca-M orocco, Solution 2 by Khanh Hung Vu-Ho Chi Minh-Vietnam, Solution 3 by Ravi Prakash-New Delhi-India Solution 4 by șerban George Florin-Romania, Solution 5 by Shivam SharmaNew Delhi-India

Solution 1 by Abdelhak M aoukouf-Casablanca-M orocco

$$
\begin{gathered}
\sum_{h=1}^{n} \frac{h}{(h+1)!}=\sum_{h=1}^{n}\left(\frac{h+1}{(h+1)!}-\frac{1}{(h+1)!}\right) \\
=\sum_{h=1}^{n}\left(\frac{1}{h!}-\frac{1}{(h+1)!}\right)=\frac{1}{1!}-\frac{1}{(n+1)!}=1-\frac{1}{(n+1)!} \\
\sum_{h=1}^{n} \frac{k(h+1)}{((h+1)!)^{2}}=\sum_{h=1}^{n} \frac{k^{2}+2 k}{((h+1)!)^{2}} \\
=\sum_{h=1}^{n}\left(\frac{(h+1)^{2}}{((h+1)!)^{2}}-\frac{1}{((h+1)!)^{2}}\right)=\sum_{h=1}^{n}\left(\frac{1}{(h!)^{2}}-\frac{1}{((h+1)!)^{2}}\right) \\
=\frac{1}{(1!)^{2}}-\frac{1}{((n+1)!)^{2}}=\left(1-\frac{1}{((n+1)!)^{2}}\right) \\
\sum_{h=1}^{n} \frac{h\left(h^{2}+8 h+3\right)}{((h+1)!)^{3}}=\sum_{h=1}^{n} \frac{h^{3}+3 h^{2}+3 k}{((h+1)!)^{3}}=\sum_{h=1}^{n} \frac{(h+1)^{3}}{((h+1)!)^{3}}-\frac{1}{((k+1)!)^{3}} \\
=\sum_{h=1}^{n} \frac{1}{(h!)^{3}}-\frac{1}{((h+1)!)^{3}}=1-\frac{1}{((n+1)!)^{3}} \\
\Rightarrow \Omega=h+\infty\left(1-\frac{1}{(n+1)!}\right)\left(1-\frac{1}{(n+1) l^{2}}\right)\left(1-\frac{1}{(n+1)!3}\right)=1
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 2 by KHanh Hung Vu-Ho Chi Minh-Vietnam

$$
\begin{gathered}
s_{1}=\sum_{k=1}^{n} \frac{k}{(k+1)!}=\sum_{k=1}^{n} \frac{k+1-1}{(k+1)!}=\sum_{k=1}^{n} \frac{1}{k!}-\frac{1}{(k+1)!}=1-\frac{1}{(n+1)!} \\
s_{2}=\sum_{k=1}^{n} \frac{k(k+2)}{[(k+1)!]^{2}}=\sum_{k=1}^{n} \frac{(k+1)^{2}-\mathbf{1}^{2}}{[(k+1)]^{2}}=\sum_{k=1}^{n} \frac{1}{(k!)^{2}}-\frac{1}{[(k+1)!]^{2}}=1-\frac{1}{[(n+1)!]^{2}} \\
s_{3}=\sum_{k=1}^{n} \frac{k\left(k^{2}+3 k+3\right)}{[(k+1)]^{3}}=\sum_{k=1}^{n} \frac{(k+1)^{3}-\mathbf{1}^{3}}{[(k+1)]^{3}}=\sum_{k=1}^{n} \frac{1}{(k!)^{3}}-\frac{1}{[(k+1)!]^{3}}=1-\frac{1}{[(n+1)]^{3}} \\
\Omega=\lim _{n \rightarrow \infty}\left[1-\frac{\mathbf{1}}{(n+\mathbf{1})!}\right]\left[1-\frac{1}{\left.[(n+1)!]^{2}\right]\left[1-\frac{1}{[(n+1)!]^{3}}\right]}\right. \\
=\lim _{t \rightarrow 0}[\mathbf{1}-t]\left[1-t^{2}\right]\left[\mathbf{1}-t^{3}\right]=1
\end{gathered}
$$

Solution 3 by Ravi Prakash-New Delhi-India

$$
\text { Let } \begin{aligned}
& a_{n}= \sum_{k=1}^{n} \frac{k}{(k+1)!}=\sum_{k=1}^{n} \frac{k+1-1}{(k+1)!}=\sum_{k=1}^{n}\left(\frac{1}{k!}-\frac{1}{(k+1)!}\right)=\left(1-\frac{1}{(n+1)!}\right) \\
& b_{n}=\sum_{k=1}^{n} \frac{k(k+2)}{((k+1)!)^{2}}=\sum_{k=1}^{n} \frac{(k+1)^{2}-1}{((k+1)!)^{2}} \\
&= \sum_{k=1}^{n}\left(\frac{1}{(k!)^{2}}-\frac{1}{((k+1)!)^{2}}\right)=\left(1-\frac{1}{((n+1)!)^{2}}\right) \\
& c_{n}=\sum_{k=1}^{n} \frac{k\left(k^{2}+3 k+3\right)}{((k+1)!)^{3}}=\sum_{k=1}^{n} \frac{(k+1)^{3}-1}{((k+1)!)^{3}} \\
&= \sum_{k=1}^{n}\left(\frac{1}{(k!)^{3}}-\frac{1}{((k+1)!)^{3}}\right)=1-\frac{1}{((n+1)!)^{3}}
\end{aligned}
$$

We have $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=1$

$$
\therefore \Omega=\lim _{n \rightarrow \infty} a_{n} b_{n} c_{n}=1
$$

