Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
PROBLEM JP. 152
ROMANIAN MATHEMATICAL MAGAZINE
NO. 11, WINTER EDITION 2018

MARIN CHIRCIU

1. Let $A B C$ be a triangle, $h_{a}, h_{b}, h_{c}$ denote the lengths of altitudes, $l_{a}, l_{b}, l_{c}$ denote the lengths of inner bisectors, and $r_{a}, r_{b}, r_{c}$ be its exradii. Prove that:

$$
\frac{h_{a} r_{a}}{l_{a}^{2}}+\frac{h_{b} r_{b}}{l_{b}^{2}}+\frac{h_{c} r_{c}}{l_{c}^{2}} \geq 3
$$

## Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Proof.
We prove the following lemma:
Lemma.
2) In $\triangle A B C$ :

$$
\frac{h_{a} r_{a}}{l_{a}^{2}}+\frac{h_{b} r_{b}}{l_{b}^{2}}+\frac{h_{c} r_{c}}{l_{c}^{2}}=\frac{8 R^{2}+8 R r+3 r^{2}-s^{2}}{4 R r}
$$

Proof.
$U \operatorname{sing} h_{a}=\frac{2 S}{a}, r_{a}=\frac{S}{s-a}, l_{a}=\frac{2 b c}{b+c} \cos \frac{A}{2}, \cos ^{2} \frac{A}{2}=\frac{s(s-a)}{b c}$, we obtain:

$$
\begin{aligned}
& \sum \frac{h_{a} r_{a}}{l_{a}^{2}}=\sum \frac{\frac{2 S}{a} \cdot \frac{S}{s-a}}{\left(\frac{2 b c}{b+c} \cos \frac{A}{2}\right)^{2}}=\frac{2 S^{2}}{4 a b c s} \sum \frac{(b+c)^{2}}{(s-a)^{2}}= \\
= & \frac{r}{8 R} \cdot \frac{2\left(8 R^{2}+8 R r+3 r^{2}-s^{2}\right)}{r^{2}}=\frac{8 R^{2}+8 R r+3 r^{2}-s^{2}}{4 R r}
\end{aligned}
$$

Let's return to the main problem:
The inequality we have to prove: $\frac{8 R^{2}+8 R r+3 r^{2}-s^{2}}{4 R r} \geq 3 \Leftrightarrow s^{2} \leq 8 R^{2}-4 R r+3 r^{2}$ which follows from Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$

It remains to prove that:
$4 R^{2}+4 R r+3 r^{2} \leq 8 R^{2}-4 R r+3 r^{2} \Leftrightarrow 4 R^{2} \geq 8 R r \Leftrightarrow R \geq 2 r$ (Euler's inequality).

## Remark.

> The inequality can be strengthened.
3) In $\triangle A B C$ :

$$
\frac{h_{a} r_{a}}{l_{a}^{2}}+\frac{h_{b} r_{b}}{l_{b}^{2}}+\frac{h_{c} r_{c}}{l_{c}^{2}} \geq \frac{R}{r}+1
$$

Proposed by Marin Chirciu - Romania
Proof.
Using Lemma and Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ we obtain:

$$
\begin{gathered}
\sum \frac{h_{a} r_{a}}{l_{a}^{2}}=\frac{8 R^{2}+8 R r+3 r^{2}-s^{2}}{4 R r} \geq \frac{8 R^{2}+8 R r+3 r^{2}-4 R^{2}-4 R r-3 r^{2}}{4 R r}= \\
=\frac{4 R^{2}+4 R r}{4 R r}=\frac{R}{r}+1
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral.

## Remark.

Inequality 3) is stronger than inequality 1):

## 4) In $\triangle A B C$ :

$$
\frac{h_{a} r_{a}}{l_{a}^{2}}+\frac{h_{b} r_{b}}{l_{b}^{2}}+\frac{h_{c} r_{c}}{l_{c}^{2}} \geq \frac{R}{r}+1 \geq 3
$$

Proof.
See inequality 3) is $\frac{R}{r}+1 \geq 3 \Leftrightarrow R \geq 2 r$ (Euler's inequality).
Equality holds if and only if the triangle is equilateral.

## Remark.

Let's emphasises an inequality having an opposite sense:
5) In $\triangle A B C$ :

$$
\frac{h_{a} r_{a}}{l_{a}^{2}}+\frac{h_{b} r_{b}}{l_{b}^{2}}+\frac{h_{c} r_{c}}{l_{c}^{2}} \leq 2\left(\frac{R}{2}-\frac{r}{R}\right)
$$

Proof.
Using Lemma and Gerretsen's inequality: $s^{2} \geq 16 R r-5 r^{2}$ we obtain:

$$
\begin{aligned}
& \sum \frac{h_{a} r_{a}}{l_{a}^{2}}=\frac{8 R^{2}+8 R r+3 r^{2}-s^{2}}{4 R r} \leq \frac{8 R^{2}+8 R r+3 r^{2}-16 R r+5 r^{2}}{4 R r}= \\
& =\frac{8 R^{2}-8 R r+8 r^{2}}{4 R r}=\frac{2\left(R^{2}-R r+r^{2}\right)}{R r} \leq \frac{2\left(R^{2}-r^{2}\right)}{R r}=2\left(\frac{R}{r}-\frac{r}{R}\right)
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.

Remark.
We can write the double inequality:
6) In $\triangle A B C$ :

$$
\frac{R}{r}+1 \leq \frac{h_{a} r_{a}}{l_{a}^{2}}+\frac{h_{b} r_{b}}{l_{b}^{2}}+\frac{h_{c} r_{c}}{l_{c}^{2}} \leq 2\left(\frac{R}{r}-\frac{r}{R}\right)
$$

Proposed by Marin Chirciu - Romania
Proof.
See inequalities 3) and 5).
Equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, ROMANIA.

Email address: dansitaru63@yahoo.com

