

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro PROPERTIES OF THE EIGENVALUES OF SOME CLASSES OF

 REAL M ATRICES

 REAL M ATRICES}

By Marian Ursărescu - Romania

In this article we will prove some interesting properties about the eigenvalues of some real matrices, followed by applications. For start, we will remember some of the classic results from matrices theory and their determinants.

Definition:

Let be $A \in M_{n}(\mathbb{R})$ and $X \in M_{n, 1}(\mathbb{R})$. If it exists $\lambda \in \mathbb{C}$ such that $A X=\lambda X$, then X is called own vector, and λ eigenvalue for the matrix A.

Observation:

The matricial equation $\left(A-\lambda I_{n}\right) X=O_{n}$ is equivalent with the system:

$$
\text { (1) }\left\{\begin{array}{c}
\left(a_{11}-\lambda\right) x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+\left(a_{22}-\lambda\right) x_{2}+\cdots+a_{2 n} x_{n}=0 \\
\cdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+\left(a_{n n}-\lambda\right) x_{n}=0
\end{array}\right.
$$

The system (1) has nonzero solutions $\Leftrightarrow \operatorname{det}\left(A-\lambda I_{n}\right)=\mathbf{0}$.

Definition:

The polynom $p_{\lambda}(x)=\operatorname{det}\left(A-\lambda I_{n}\right)$ is called characteristic polynom of the matrix A, and the equation $p_{\lambda}(x)=\operatorname{det}\left(A-\lambda I_{n}\right)=0$ is called characteristic equation of the matrix A. Observation. The eigenvalues of matrix A are the solutions of the characteristic equation.

Theorem:

The characteristic polynom has the expression $p_{\lambda}(x)=\lambda^{n}-\Delta_{1} \lambda^{n-1}+\Delta_{2} \lambda^{n-2}+\cdots+$ $(-1)^{n} \Delta_{n}$, where Δ_{i} represents the sum of the principal minors having the order i of the matrix $A-\lambda I_{n}$.

Observation:

1. $\lambda_{1} \lambda_{2} \ldots \lambda_{n}=\operatorname{det} A$
2. $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\boldsymbol{T r} A$
3. $\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\cdots+\lambda_{n-1} \lambda_{n}=\operatorname{Tr} A^{*}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Cayley - Hamilton Theorem.
If $p_{\lambda}(x)$ is the characteristic polynom of matrix A, then $p_{\lambda}(A)=O_{n}$.

Definitions:

Let be $\boldsymbol{A} \in \boldsymbol{M}_{\boldsymbol{n}}(\mathbb{R})$

1. Matrix A is called symmetric if: $A^{T}=A$
2. Matrix A is called antisymmetric if $A^{T}=-A$.
3. Matrix A is called orthogonal if: $A \cdot A^{T}=I_{n}$ (we have denoted $A^{T}=$ transposed matrix).

Theorem 1:
The eigenvalues of some real symmetric matrix are real.
Proof:
Let be $A \in M_{\boldsymbol{n}}(\mathbb{R})$ with $\boldsymbol{A}^{T}=A$. Let's suppose that it exists an eigenvalue λ such that:
$\lambda \in \mathbb{C} \Rightarrow A X=\lambda X$ (1)
We multiply to the left relation (1) with $\bar{X}^{T} \Rightarrow \bar{X}^{T} A X=\lambda \bar{X}^{T} \cdot X$
We conjugate relation (1) $\Rightarrow A \bar{X}=\bar{\lambda} \bar{X}$ (3) $\left(A \in M_{n}(\mathbb{R})\right)$
We multiply to the left relationship (3) with $X^{T} \Rightarrow X^{T} A \bar{X}=\bar{\lambda} X^{T} \cdot \bar{X} \Rightarrow$

$$
\begin{gather*}
\Rightarrow\left(X^{T} A \bar{X}\right)^{T}=\bar{\lambda}\left(X^{T} \cdot \bar{X}\right)^{T} \Rightarrow \\
\bar{X}^{T} A X=\bar{\lambda}^{T} \bar{X}^{T} \cdot X \tag{4}
\end{gather*}
$$

From (2) and (4) $\Rightarrow \bar{\lambda} \bar{X}^{T} \cdot X=\lambda \bar{X}^{T} \cdot X \Rightarrow$

$$
\begin{gathered}
\left.\begin{array}{c}
(\bar{\lambda}-\lambda)\left(\bar{X}^{T} \cdot X\right)=0_{n} \\
\text { But } \bar{X}^{T} \cdot X=\overline{X_{1}} \cdot X_{1}+\overline{X_{2}} X_{2}+\cdots+\overline{X_{n}} \cdot X_{n}=\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\cdots+\left(x_{n}\right)^{2}>0
\end{array}\right\} \Rightarrow \\
\Rightarrow \bar{\lambda}-\lambda=0 \Rightarrow \bar{\lambda}=\lambda \Rightarrow \lambda \in \mathbb{R} .
\end{gathered}
$$

Theorem 2:

The eigenvalues of some real antisymmetric matrix are or nonzero or purely imaginary.
Proof:
Let $A \in M_{n}(\mathbb{R})$ with $A^{T}=-\boldsymbol{A}$. For start let's prove that the only eigenvalues are nonzero.
Let $\lambda \in \mathbb{R}$ be an eigenvalue $\Rightarrow A X=\lambda X \Rightarrow$ by multiplying to the left with $X^{T} \Rightarrow$

$$
\begin{gather*}
X^{T} A X=\lambda X^{T} X(1) \\
\Rightarrow\left(X^{T} A X\right)^{T}=\lambda\left(X^{T} X\right)^{T} \Rightarrow-X^{T} A X=\lambda X^{T} X \tag{2}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 From (1)+(2) $\Rightarrow \lambda X^{T} X=-\lambda X^{T} X \Rightarrow 2 \lambda \underbrace{X^{T} \cdot X}_{>0}=0 \Rightarrow \lambda=0$

Let $\lambda \in \mathbb{C}$ be an eigenvalue $\Rightarrow A X=\lambda X \Rightarrow \bar{X}^{T} A X=\lambda \bar{X}^{T} X(3) \Rightarrow \overline{\bar{X}^{T} A X}=\overline{\lambda \bar{X}^{T} X} \Rightarrow$

$$
\begin{gathered}
\bar{X}^{T} A \bar{X}=\bar{\lambda} X^{T} \cdot \bar{X} \Rightarrow\left(X^{T} A \bar{X}\right)^{T}=\bar{\lambda}\left(X^{T} \cdot \bar{X}\right)^{T} \Rightarrow \\
-\bar{X}^{T} A X=\bar{\lambda} \bar{X}^{T} \cdot X
\end{gathered}
$$

From (3)+(4) $\Rightarrow \lambda \bar{X}^{T} \cdot X=-\bar{\lambda} \bar{X}^{T} \cdot X \Rightarrow$
$(\lambda+\bar{\lambda}) \underbrace{\bar{X}^{T} \cdot X}_{>0}=0 \Rightarrow \lambda+\bar{\lambda}=0 \Rightarrow \bar{\lambda}=-\lambda \Rightarrow \lambda$ is purely imaginary, namely $\lambda=b i$
Theorem 3:
The eigenvalues of an orthogonal real matrix have an absolute value equal with 1.
Proof:
Let be $A \in M_{n}(\mathbb{R})$ with $A A^{T}=I_{n}$. Let λ be an eigenvalue $\Rightarrow A X=\lambda X \Rightarrow$ by multiplying to the left with $\bar{X}^{T} \Rightarrow \bar{X}^{T} A X=\lambda \bar{X}^{T} X$ (1)

$$
A X=\lambda X \Rightarrow \overline{A X}=\overline{\lambda X} \Rightarrow A \bar{X}=\bar{\lambda} \bar{X} \Rightarrow
$$

by multiplying to the left with $X^{T} \Rightarrow X^{T} A \bar{X}=\bar{\lambda} X^{T} \bar{X} \Rightarrow\left(X^{T} A \bar{X}\right)^{T}=\bar{\lambda}\left(X^{T} \cdot \bar{X}\right)^{T} \Rightarrow$

$$
\Rightarrow \bar{X}^{T} A^{T} X=\bar{\lambda} \bar{X}^{T} \cdot x \text { (2) }
$$

$$
\left.\begin{array}{c}
\text { From }(1)+(2) \Rightarrow \bar{X}^{T} A X \cdot \bar{X}^{T} \cdot A^{T} \cdot X=|\lambda|^{2} \cdot\left(\bar{X}^{T} \cdot X\right)^{2} \\
\text { But } X \bar{X}^{T}=\left|X_{1}\right|^{2}+\left|X_{2}\right|^{2}+\cdots+\left|X_{n}\right|^{2}
\end{array}\right\} \Rightarrow
$$

Applications:

1. Let $\boldsymbol{A} \in \boldsymbol{M}_{\boldsymbol{n}}(\mathbb{R})$ an antisymmetric matrix
a) If \boldsymbol{n} is odd, then $\operatorname{det} \boldsymbol{A}=\mathbf{0}$
b) If \boldsymbol{n} is even, then $\operatorname{det} \boldsymbol{A}$ is a perfect square.

Proof:
a) $n=2 k+1 \Rightarrow p_{A}(x)$ has an odd number of pairs \Rightarrow at least one is real \Rightarrow from theorem $2 \Rightarrow$ the real root is $\Rightarrow \operatorname{det} A=\lambda_{1} \lambda_{2} \ldots \lambda_{n}=0$.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

b) $n=2 k \Rightarrow p_{A}(x)$ has an even number of pairs, $p_{A}(X) \in \mathbb{R}[X] \Rightarrow$ the roots are complex conjugate, from theorem $2 \Rightarrow \lambda_{1}=b_{1 i}$ and $\overline{\lambda_{1}}=-b_{1 i}, \lambda_{2}=b_{2 i}$ and $\overline{\lambda_{2}}=-b_{2 i} \ldots \lambda_{k}=$ $b_{k} i$ and $\overline{\lambda_{k}}=-b_{k} i \Rightarrow \operatorname{det} A=\lambda_{1} \lambda_{2} \ldots \lambda_{n}=\left(b_{1} \cdot b_{2} \ldots b_{k}\right)^{2}>0$
2. Let $A \in M_{3}(\mathbb{R})$ such that $A A^{T}=I_{3}$ and $\operatorname{Tr} A=0$. Prove that: $|\operatorname{Tr} A|=3$
(Mathematical Gazette)
Proof:
Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be the eigenvalues of matrix A from theorem $3 \Rightarrow\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=\left|\lambda_{3}\right|=1$
$\operatorname{Tr} \boldsymbol{A}=0 \Leftrightarrow \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \Rightarrow \lambda_{1}^{3}+\lambda_{2}^{3}+\lambda_{3}^{3}=3 \lambda_{1} \lambda_{2} \lambda_{3}$ (known identity) \Rightarrow

$$
\left|\lambda_{1}^{3}+\lambda_{2}^{3}+\lambda_{3}^{3}\right|=3\left|\lambda_{1}\right|\left|\lambda_{2}\right|\left|\lambda_{3}\right| \Rightarrow\left(\operatorname{Tr} A^{3}\right)=3
$$

3) Let be $A \in M_{3}(\mathbb{R})$. If $A \cdot A^{T}=I_{3}$ and $\operatorname{Tr} A^{2}=0 \Rightarrow \operatorname{Tr} A \in\{-2,0,2\}$
(Mathematical Gazette)

Proof:

Let be $\lambda_{1}, \lambda_{2}, \lambda_{3}$ the eigenvalues of matrix A. From theorem $3 \Rightarrow\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=\left|\lambda_{3}\right|=1$
$\operatorname{Tr} A=\lambda_{1}+\lambda_{2}+\lambda_{3}, \operatorname{Tr} A^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=0$
$\operatorname{det}\left(A \cdot A^{T}\right)=\operatorname{det} I_{3} \Rightarrow(\operatorname{det} A)^{2}=1 \Rightarrow \operatorname{det} A= \pm 1$ $\left.\begin{array}{c}\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=0 \Rightarrow\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)^{2}=2\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right) \\ \text { but }\left|\lambda_{i}\right|^{2}=1 \Rightarrow \lambda_{1} \cdot \bar{\lambda}_{t}=1, i=\overline{1,3}\end{array}\right\} \Rightarrow$

$$
\begin{aligned}
& \left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)^{2}=2 \lambda_{1} \lambda_{2} \lambda_{3}\left(\frac{1}{\lambda_{3}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{1}}\right) \Rightarrow \\
& \left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)^{2}=2 \lambda_{1} \lambda_{2} \lambda_{3}\left(\overline{\lambda_{1}+\lambda_{2}+\lambda_{3}}\right) \Rightarrow
\end{aligned}
$$

$(\boldsymbol{\operatorname { T r }} \boldsymbol{A})^{2}=2 \operatorname{det} \boldsymbol{A} \overline{\boldsymbol{\operatorname { T r }} \boldsymbol{A}} ; \boldsymbol{\operatorname { T r }} \boldsymbol{A} \in \mathbb{R} \Rightarrow \overline{\boldsymbol{\operatorname { T r } A}}=\boldsymbol{\operatorname { T r }} A$

$$
\Rightarrow \operatorname{Tr} A(\operatorname{Tr} A-2 \operatorname{det} A)=0 \Rightarrow \operatorname{Tr} A \operatorname{or} \operatorname{Tr} A= \pm 2
$$

