

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

ABOUT AN INEQUALTY IN TRIANGLE FROM RM M-2019

By Marin Chirciu - Romania

1) In $\triangle A B C, G$ - centroid and R_{a}, R_{b}, R_{c} - circumradii $\triangle B C G, \triangle C A G, \triangle A B G$ respectively. Prove that:

$$
\begin{aligned}
& \frac{\boldsymbol{R}_{a}}{a}+\frac{\boldsymbol{R}_{b}}{b}+\frac{\boldsymbol{R}_{c}}{c} \leq \cot A+\cot B+\cot C \\
& \quad \text { Proposed by M arian Ursărescu - Romania }
\end{aligned}
$$

Solution

We prove the following lemma:

Lemma.

2) In $\triangle A B C, G$ - centroid and R_{a}, R_{b}, R_{c} - circumradii $\triangle B C G, \triangle C A G, \triangle A B G$ respectively. Prove that:

$$
\frac{R_{a}}{a}+\frac{R_{b}}{b}+\frac{R_{c}}{c}=\frac{m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}}{3 S}
$$

Expressing the area of $\triangle B C G$ in two ways, we obtain:

$$
[B C G]=\frac{S}{3} \text { and }[B C G]=\frac{B C \cdot B G \cdot C G}{4 R_{a}}=\frac{a \cdot \frac{2}{3} m_{b} \frac{2}{3} m_{c}}{4 R_{a}}=\frac{a m_{b} m_{c}}{9 R_{a}}, \text { wherefrom } \frac{a m_{b} m_{c}}{9 R_{a}}=\frac{S}{3}
$$

It follows $R_{a}=\frac{a m_{b} m_{c}}{3 r s}$ and from here $\frac{R_{a}}{a}=\frac{m_{b} m_{c}}{3 r s}$
We have: $\frac{R_{a}}{a}+\frac{R_{b}}{b}+\frac{R_{c}}{c}=\frac{m_{b} m_{c}}{3 r s}+\frac{m_{c} m_{a}}{3 r s}+\frac{m_{a} m_{b}}{3 r s}$
Let's get back to the main problem:
Using the Lemma and inequality $4 m_{b} m_{c} \leq 2 a^{2}+b c$ we obtain:

$$
\begin{gathered}
\quad \sum \frac{R_{a}}{a}=\sum \frac{m_{b} m_{c}}{3 r s} \leq \sum \frac{2 a^{2}+b c}{3 r s}=\frac{2 \sum a^{2}+\sum b c}{12 r s}= \\
=\frac{2 \cdot 2\left(s^{2}-r^{2}-4 R r\right)+s^{2}+r^{2}+4 R r}{12 r s}=\frac{5 s^{2}-3 r^{2}-12 R r}{12 r s}, \text { so, } \sum \frac{R_{a}}{a} \leq \frac{5 s^{2}-3 r^{2}-12 R r}{12 r s}
\end{gathered}
$$

Using the known identity in triangle $\cot A+\cot B+\cot C=\frac{s^{2}-r^{2}-4 R r}{2 r s}$.
In order to prove the inequality from the enunciation, it suffices to prove that:

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\text { www.ssmrmh.ro } \\
\begin{array}{c}
\frac{5 s^{2}-3 r^{2}-12 R r}{12 R r s} \leq \frac{s^{2}-r^{2}-4 R r}{2 r s} \Leftrightarrow s^{2} \geq \mathbf{1 2 R r}+3 r^{2}, \text { which follows from Gerretsen's } \\
\text { inequality: } \\
s^{2} \geq \mathbf{1 6 R r}-5 r^{2} \text {. It suffices to prove that: } \\
\mathbf{1 6 R r}-5 r^{2} \geq \mathbf{1 2 R r}+3 r^{2} \Leftrightarrow \boldsymbol{R} \geq \mathbf{2 r} \text { (Euler's inequality) } \\
\text { Equality holds if and only if the triangle is equilateral. }
\end{array} .
\end{gathered}
$$

Remark.
Let's find an inequality having an opposite sense:
3) In $\triangle A B C, G$ - centroid and R_{a}, R_{b}, R_{c} - circumradii $\triangle B C G, \triangle C A G, \triangle A B G$ respectively. Prove that:

$$
\frac{R_{a}}{a}+\frac{R_{b}}{b}+\frac{R_{c}}{c} \geq \frac{2 r}{R}\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right)
$$

Proposed by Marin Chirciu - Romania
Solution:
Using the Lemma and Tereshin's inequality $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$, we obtain:

$$
\begin{aligned}
& \sum \frac{R_{a}}{a}= \sum \frac{m_{b} m_{c}}{3 r s} \geq \sum \frac{\frac{c^{2}+a^{2}}{4 R} \cdot \frac{a^{2}+b^{2}}{4 R}}{3 r s}=\frac{\sum\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)}{48 R^{2} r s}= \\
&= \frac{5 s^{4}-s^{2}\left(40 R r+6 r^{2}\right)+5 r^{2}(4 R+r)^{2}}{48 R^{2} r s}, \text { which follows from } \\
& \sum\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}\right)=5 s^{4}-s^{2}\left(40 R r+6 r^{2}\right)+5 r^{2}(4 R+r)^{2}, \text { so } \\
& \sum \frac{R_{a}}{a} \geq \frac{5 s^{4}-s^{2}\left(40 R r+6 r^{2}\right)+5 r^{2}(4 R+r)^{2}}{48 R^{2} r s}
\end{aligned}
$$

Using the known identity in triangle: $\boldsymbol{\operatorname { t a n }} \frac{A}{2}+\boldsymbol{\operatorname { t a n }} \frac{B}{2}+\boldsymbol{\operatorname { t a n }} \frac{C}{2}=\frac{4 R+r}{s}$.
In order to prove the inequality from enunciation it suffices to prove that:

$$
\frac{5 s^{4}-s^{2}\left(40 R r+6 r^{2}\right)+5 r^{2}(4 R+r)^{2}}{48 R^{2} r s} \geq \frac{2 r}{R} \cdot \frac{4 R+r}{s} \Leftrightarrow
$$

$\Leftrightarrow s^{2}\left(5 s^{2}-6 r^{2}-40 R r\right) \geq r^{2}(4 R+r)^{2}(76 R-5 r)$, which follows from Gerretsen's
inequality $s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$. It suffices to prove that:

$$
\frac{r(4 R+r)^{2}}{R+r}\left(5\left(16 R r-5 r^{2}\right)-6 r^{2}-40 R r\right) \geq r^{2}(4 R+r)^{2}(76 R-5 r) \Leftrightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$\Leftrightarrow 84 R^{2}-155 R r-26 r^{2} \geq 0 \Leftrightarrow(R-2 r)(84 R+13 r) \geq 0$, true from Euler's
inequality $R \geq \mathbf{2 r}$. Equality holds if and only if the triangle is equilateral.
Remark.
The double inequality can be written:
4) In $\triangle A B C, G$ - centroid and R_{a}, R_{b}, R_{c} - circumradii $\triangle B C G, \triangle C A G, \triangle A B G$ respectively. Prove that:

$$
\frac{2 r}{R}\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right) \leq \frac{R_{a}}{a}+\frac{R_{b}}{b}+\frac{R_{c}}{c} \leq \cot A+\cot B+\cot C
$$

Solution
See inequalities 1) and 3).
Equality holds if and only if the triangle is equilateral.

Refferences:

Romanian Mathematical Magazine-Interactive Journal-www.ssmrmh.ro

