

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT NAGEL'S AND GERGONNE'S CEVIANS (II)

By Bogdan Fuṣtei-Romania

Note by Editor: The article is written as a story of discovery triangle inequalities. The author give us a detailed mind process of these discoveries. I consider it an innovative and outstanding method to show results to readers.

Let $\triangle A B C$ be any triangle. We've proved that: $b^{2}+c^{2}-n_{a}^{2}-g_{a}{ }^{2}=2 r_{a} r$ (and the analogs), so we have:

$$
b^{2}+c^{2}=n_{a}^{2}+g_{a}^{2}+2 r_{a} r \text { (and the analogs); }
$$

But from $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$ (Tereshin's inequality) we will obtain: $m_{a} \geq \frac{n_{a}^{2}+g_{a}^{2}+2 r_{a} r}{4 R}$ (and the analogs);
We will prove the identity:

$$
\begin{gathered}
2\left(a^{2}+b^{2}+c^{2}\right)=n_{a}^{2}+n_{b}^{2}+n_{c}^{2}+g_{a}^{2}+g_{b}^{2}+g_{c}^{2}+2 r\left(r_{a}+r_{b}+r_{c}\right) \\
a^{2}=2 R \frac{h_{b} h_{c}}{h_{a}} \text { (and the analogs); } \\
\sum \frac{h_{b} h_{c}}{h_{a}}=\frac{n_{a}^{2}+n_{b}^{2}+n_{c}^{2}+g_{a}^{2}+g_{b}^{2}+g_{c}^{2}+2 r(4 R+r)}{4 R} ;
\end{gathered}
$$

Using the inequality for x, y, z real numbers, we have: $x^{2}+y^{2}+z^{2} \geq x y+x z+y z$ and we will obtain:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
a^{2}+b^{2}+c^{2} \geq \sum\left(n_{a} n_{b}+g_{a} g_{b}+r r_{a}\right)
$$

We know that: $4 R^{2}+16 R r-3 r^{2}-4(R-2 r) \sqrt{R(R-2 r)} \leq a^{2}+b^{2}+c^{2} \leq$ $\leq 4 R^{2}+16 R r-3 r^{2}+4(R-2 r) \sqrt{R(R-2 r)}$. Taking into account all the above:

$$
\begin{gathered}
8 R^{2}+2 r(12 R-r)-6 r^{2}-8(R-2 r) \sqrt{R(R-2 r)} \leq \sum\left(n_{a}^{2}+g_{a}^{2}\right) \leq \\
\leq 8 R^{2}+2 r(12 R-r)-6 r^{2}+8(R-2 r) \sqrt{R(R-2 r)}
\end{gathered}
$$

$n_{a}^{2}=s(s-a)+\frac{(b-c)^{2}}{a} s$ (and the analogs); $a^{2}-4 r r_{a}=(b-c)^{2}$ (and the analogs);
$n_{a}^{2}=s^{2}-\frac{4 r_{a} r}{a} p ; \frac{s}{a}=\frac{h_{a}}{2 r}$ (and the analogs) because $2 S=h_{a} \times a=2 s r$ $n_{a}^{2}=s^{2}-2 r_{a} h_{a}$ (and the analogs);
$\frac{b+c}{a}=\frac{r_{a}+h_{a}}{r_{a}}$ (and the analogs); $h_{a}=\frac{2 s r}{a}=\frac{(a+b+c)}{a} r=\left(1+\frac{b+c}{a}\right) r$ (and the analogs); $\frac{h_{a}}{r}=2+\frac{h_{a}}{r_{a}}$ (and the analogs) $\Rightarrow r_{a} h_{a}=\left(2 r_{a}+h_{a}\right) r$ (and the analogs);

$$
r_{a} r_{b} r_{c}=S s=s^{2} r
$$

$$
r_{b} r_{c}=\frac{h_{a}\left(r_{b}+r_{c}\right)}{2} \text { (and the analogs); }
$$

$s^{2}=\frac{r_{a}}{r} \frac{h_{a}\left(r_{b}+r_{c}\right)}{2}=\frac{\left(2 r_{a}+h_{a}\right) r}{2 r}\left(r_{b}+r_{c}\right)=\frac{1}{2}\left(2 r_{a}+h_{a}\right)\left(r_{b}+r_{c}\right)$ (and the analogs);
So we will obtain: $\frac{1}{2}\left(2 r_{a}+h_{a}\right)\left(r_{b}+r_{c}\right)=n_{a}^{2}+2 r\left(2 r_{a}+h_{a}\right)$.
Finally we will remember that: $n_{a}^{2}=\left(2 r_{a}+h_{a}\right)\left(\frac{r_{b}+r_{c}}{2}-2 r\right)$ (and the analogs)

$$
\sum \frac{n_{a}^{2}}{2 r_{a}+h_{a}}=4 R-5 r
$$

In any acute-angled triangle we have: $\frac{r_{b}+r_{c}}{2} \geq m_{a}$ (and the analogs) because

$$
2 R \cos ^{2} \frac{A}{2} \geq m_{a}
$$

if the triangle is acute-angled and $\cos ^{2} \frac{A}{2}=\frac{r_{b}+r_{c}}{4 R}$ (and the analogs)
So, we will have: $n_{a}^{2} \geq\left(2 r_{a}+h_{a}\right)\left(m_{a}-2 r\right)$ if triangle $A B C$ is acute-angled.

$$
\frac{n_{a}^{2}}{r_{a} h_{a}} \geq \frac{m_{a}-2 r}{r} \text { if triangle } A B C \text { is acute-angled. }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
\sum \frac{n_{a}^{2}}{2 r_{a}+h_{a}} \geq m_{a}+m_{a}+m_{a}-6 r \text { for any acute-angled } A B C \text { triangle. } \\
\prod \frac{n_{a}^{2}}{r_{a} h_{a}} \geq \prod \frac{m_{a}-2 r}{r} \text { for any acute-angled } A B C \text { triangle. } \\
\prod \frac{r_{a}}{h_{a}}=\frac{R}{2 r} \Rightarrow r_{a} r_{b} r_{c}=\frac{R}{2 r} h_{a} h_{b} h_{c}
\end{gathered}
$$

So, if $\triangle A B C$ is acute - angled triangle we have:

$$
\begin{gathered}
\prod \frac{n_{a}^{2}}{h_{a}^{2}} \geq \frac{R}{2 r} \prod \frac{m_{a}-2 r}{r} ; \\
\frac{R}{2 r} \geq \frac{m_{a}}{h_{a}} \text { (Panaitopol inequality); } \\
\prod \frac{n_{a}^{2}}{h_{a}^{2}} \geq \frac{m_{a}}{h_{a}} \Pi \frac{m_{a}-2 r}{r} \text { (and the analogs). }
\end{gathered}
$$

Summing we have the following:

$$
\Pi \frac{n_{a}^{2}}{h_{a}^{2}} \geq \frac{1}{3} \Pi \frac{m_{a}-2 r}{r} \sum \frac{m_{a}}{h_{a}} \text { for any acute-triangle. }
$$

$\cos \frac{B-C}{2} \geq \sqrt{\frac{2 r}{R}}$ (and the analogs); $\cos \frac{B-C}{2}=\frac{h_{a}}{w_{a}}$ (and the analogs) we will obtain the following inequality:

$$
\Pi \frac{n_{a}^{2}}{h_{a}^{2}} \geq \frac{1}{3} \Pi \frac{m_{a}-2 r}{r} \sum \frac{w_{a}^{2}}{h_{a}^{2}} \text { for any acute - angled triangle; }
$$

We've proved that $n_{a}^{2}=s^{2}-2 r_{a} h_{a}$ (and the analogs). Using the inequality between squared means and arithmetic means we will have: $s \sqrt{2} \geq n_{a}+\sqrt{r_{a} h_{a}}$ (and the analogs)

$$
\begin{gathered}
3 s \sqrt{2} \geq \sum n_{a}+\sum \sqrt{2 r_{a} h_{a}} ; h_{a}=\frac{2 S}{a} \text { (and the analogs); } S=s r \\
\frac{s^{2}}{h_{a}^{2}}=\frac{n_{a}^{2}}{h_{a}^{2}}+2 \frac{r_{a}}{h_{a}} \Rightarrow s^{2} \frac{a^{2}}{4 s^{2}}=\frac{n_{a}^{2}}{h_{a}^{2}}+2 \frac{r_{a}}{h_{a}} \text {, so we will remember that } \frac{a^{2}}{4 r^{2}}=\frac{n_{a}^{2}}{h_{a}^{2}}+2 \frac{r_{a}}{h_{a}} \text { (and the } \\
\text { analogs); } \\
\sin \frac{A}{2}=\sqrt{\frac{r_{a}-r}{4 R}}=\sqrt{\frac{r r_{a}}{b c}} \text { (and the analogs); } b c=2 R h_{a} \text { (and the analogs); } \\
\sum \sin ^{2} \frac{A}{2}=\frac{4 R+r-3 r}{4 R}=\frac{r}{2 R} \sum \frac{r_{a}}{h_{a}} \Rightarrow \sum \frac{r_{a}}{h_{a}}=\frac{2 R}{r}-1 ; \\
\text { So } \frac{a^{2}+b^{2}+c^{2}}{4 r^{2}}=\sum \frac{n_{a}^{2}}{h_{a}^{2}}+\frac{4 R}{r}-2 ; a^{2}+b^{2}+c^{2}=2\left(s^{2}-r^{2}-4 R r\right) ; \text { after calculating we will } \\
\text { have: } \frac{s^{2}}{2 r^{2}}=\sum \frac{n_{a}^{2}}{h_{a}^{2}}+\frac{6 R}{r}-\frac{3}{2} ;
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

The triangle's fundamental inequality:

$$
\begin{aligned}
& 2 R^{2}+10 R r-r^{2}-2(R-2 r) \sqrt{R(R-2 r)} \leq s^{2} \leq \\
& \quad \leq 2 R^{2}+10 R r-r^{2}+2(R-2 r) \sqrt{R(R-2 r)}
\end{aligned}
$$

Hence: $1+\left(\frac{R}{r}\right)^{2}-\frac{R}{r}-\frac{(R-2 r) \sqrt{R(R-2 r)}}{r^{2}} \leq \sum \frac{n_{a}^{2}}{h_{a}^{2}} \leq 1+\left(\frac{R}{r}\right)^{2}-\frac{R}{r}+\frac{(R-2 r) \sqrt{R(R-2 r)}}{r^{2}}$ $h_{a}=\frac{2 r_{b} r_{c}}{r_{b}+r_{c}}$ (and the analogs); $h_{a} r_{a}=\frac{2 r_{a} r_{b} r_{c}}{r_{b}+r_{c}}=\frac{2 S s}{r_{b}+r_{c}}=\frac{2 s^{2} r}{r_{b}+r_{c}}$ (and the analogs);

$$
\sqrt{2 h_{a} r_{a}}=2 s \sqrt{\frac{r}{r_{b}+r_{c}}} \text { (and the analogs); }
$$

$s \sqrt{2} \geq n_{a}+2 s \sqrt{\frac{r}{r_{b}+r_{c}}}$ (and the analogs); so we will obtain: $s\left(1-\sqrt{\frac{2 r}{r_{b}+r_{c}}}\right) \geq \frac{n_{a}}{\sqrt{2}}$ (and the

$$
\begin{gathered}
\text { analogs) } \\
\prod\left(1-\sqrt{\frac{2 r}{r_{b}+r_{c}}}\right) \geq \frac{n_{a} n_{b} n_{c}}{2 \sqrt{2 s^{3}}} ; \\
m_{a}+w_{b}+w_{c} \leq s \sqrt{3} \text { (Lessel - Pelling inequality) (and the analogs); } \\
s \sqrt{2} \geq n_{a}+\sqrt{2 r_{a} h_{a}} \text { (and the analogs). Summing we will obtain: } \\
\sqrt{2}+\sqrt{3} \geq \frac{n_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}}{s} \text { (and the analogs); }
\end{gathered}
$$

So $m_{a} \leq n_{a}$ (and the analogs) $\Rightarrow \sqrt{2}+\sqrt{3} \geq \frac{n_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}}{s}$ (and the analogs);
But $m_{a} \leq n_{a}$ (and the analogs) $\Rightarrow \sqrt{2}+\sqrt{3} \geq \frac{2 m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}}{s}$ (and the analogs); $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$ (Tereshin's inequality) summing we will have the following:

$$
\begin{gathered}
m_{a}+m_{b}+m_{c} \geq \frac{a^{2}+b^{2}+c^{2}}{2 R} \\
\frac{R}{2 r^{2}}\left(m_{a}+m_{b}+m_{c}\right) \geq \frac{4 R}{r}+\sum \frac{n_{a}^{2}}{h_{a}^{2}}-2 ; \\
\frac{R}{r}\left(\frac{m_{a}+m_{b}+m_{c}}{2 r}-4\right) \geq \sum \frac{n_{a}^{2}}{h_{a}^{2}}-2 ; \\
s \sqrt{2 \geq n_{a}}+\sqrt{2 r_{a} h_{a}} \text { (and the analogs); } \sum \frac{1}{h_{a}}=\sum \frac{1}{r_{a}}=\frac{1}{r^{\prime}} \\
\frac{s \sqrt{2}}{h_{a}} \geq \frac{n_{a}}{h_{a}}+\sqrt{\frac{2 r_{a}}{h_{a}}} \text { (and the analogs); Summing we will have the following: }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sum \sqrt{\frac{r_{a}}{h_{a}}}
$$

$\frac{s \sqrt{2}}{r_{a}} \geq \frac{n_{a}}{r_{a}}+\sqrt{\frac{2 h_{a}}{r_{a}}}$ (and the analogs). Summing we will have the following:

$$
\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{r_{a}}+\sum \sqrt{\frac{h_{a}}{r_{a}}}
$$

$\frac{a^{2}}{4 r^{2}}=\frac{n_{a}^{2}}{h_{a}^{2}}+2 \frac{r_{a}}{h_{a}}$ (and the analogs); We apply the inequality between squared means and arithmetic means and we will obtain:

$$
\begin{aligned}
& \frac{a}{r} \geq \sqrt{2}\left(\frac{n_{a}}{h_{a}}+\sqrt{\frac{2 r_{a}}{h_{a}}}\right) \text { (and the analogs); } \\
& \prod \frac{a}{r} \geq 2 \sqrt{2} \prod\left(\frac{n_{a}}{h_{a}}+\sqrt{\frac{2 r_{a}}{h_{a}}}\right)
\end{aligned}
$$

$s \leq 2 R+(3 \sqrt{3}-4) r$ (Blundon-Klamkin's inequality). So we will obtain:

$$
\begin{aligned}
& 3 \sqrt{3}+\frac{2 R}{r} \geq 4+\frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sum \sqrt{\frac{r_{a}}{h_{a}}} \\
& 3 \sqrt{3}+\frac{2 R}{r} \geq 4+\frac{1}{\sqrt{2}} \sum \frac{n_{a}}{r_{a}}+\sum \sqrt{\frac{h_{a}}{r_{a}}}
\end{aligned}
$$

We've proved that:
$s^{2}=n_{a}^{2}+2 r_{a} h_{a}$ (and the analogs);
$2 r_{a} h_{a}=2 r\left(r_{a}+h_{a}\right)$ (and the analogs);
$2\left(r_{a}+r_{b}+r_{c}\right)=8 R+2 r \Rightarrow 3 s^{2}=n_{a}^{2}+n_{b}^{2}+n_{c}^{2}+2 r\left(8 R+2 r+h_{a}+h_{b}+h_{c}\right) ;$

$$
h_{a}+h_{b}+h_{c}=\frac{s^{2}+4 R r+r^{2}}{2 R} ; 8 R+2 r=\frac{4 R(4 R+r)}{2 R} ;
$$

After calculating we will obtain the following:

$$
n_{a}^{2}+n_{b}^{2}+n_{c}^{2}=\frac{s^{2}(3 R-r)-r(4 R+r)^{2}}{R} ;
$$

We will prove that: $\frac{a b+b c+a c}{4 \sqrt{3} s} \geq \sqrt{\frac{R}{2 r}}$; We know that: $a b+b c+a c=s^{2}+4 R r+r^{2} ; S=s r$.
Squaring we will obtain: $\left(\frac{s^{2}+4 R r+r^{2}}{4 s r \sqrt{3}}\right)^{2} \geq \frac{R}{2 r} \Rightarrow\left(s^{2}+4 R r+r^{2}\right)^{2} \geq 24 R r s^{2} \Leftrightarrow$

> ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro $$
s^{2}\left(s^{2}-16 R r+5 r^{2}\right)+r^{2}\left((4 R+r)^{2}-3 s^{2}\right) \geq 0
$$ $s^{2} \geq 16 R r-5 r^{2}$ (Gerretsen's Inequality); $4 R+r \geq s \sqrt{3}$

So the inequality is proved. $b c=2 R h_{a}$ (and the analogs). After some simplifications from

$$
\begin{aligned}
& \text { the proved inequality we will obtain: } \sqrt{\frac{R}{2 r}}\left(h_{a}+h_{b}+h_{c}\right) \geq s \sqrt{3} \text {; } \\
& m_{a}+w_{b}+w_{c} \leq s \sqrt{3} \text { (Lessel Pelling inequality) (and the analogs) } \\
& \text { From the above we will obtain: } \sqrt{\frac{R}{2 r}} \geq \frac{m_{a}+w_{b}+w_{c}}{h_{a}+h_{b}+h_{c}} \text { (and the analogs); }
\end{aligned}
$$

We've proved that: $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sum \sqrt{\frac{r_{a}}{n_{a}}}$. Using the inequality between arithmetic means and geometric means we will have: $\sum \sqrt{\frac{r_{a}}{h_{a}}}$. Using the inequality between arithmetic means and geometric means we will have: $\sum \sqrt{\frac{r_{a}}{h_{a}}} \geq 3 \sqrt[3]{\sqrt{\Pi \frac{r_{a}}{h_{a}}}}=3 \sqrt[6]{\frac{R}{2 r}}$; taking into account the above we have a new inequality, namely: $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+3 \sqrt[6]{\frac{R}{2 r}}$;

$$
\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sum \sqrt[3]{\frac{m_{a}+w_{b}+w_{c}}{h_{a}+h_{b}+h_{c}}}
$$

$$
\frac{1}{\cos _{\frac{A}{2}}^{A}}=\sqrt{\frac{b c}{r_{b} r_{c}}} \text { (and the analogs); } b c=r_{b} r_{c}+r r_{a} \text { (and the analogs); }
$$

$$
\frac{1}{\cos ^{2} \frac{A}{2}}=\frac{r_{b} r_{c}+r r_{a}}{r_{b} r_{c}}=1+\frac{r r_{a}}{r_{b} r_{c}} \Rightarrow \frac{s^{2}}{\cos ^{2} \frac{A}{2}}=s^{2}+s^{2} \frac{r r_{a}}{r_{b} r_{c}}=
$$

$$
=s^{2}+\frac{r_{a} r_{a} r_{b} r_{c}}{r_{b} r_{c}}=s^{2}+r_{a}^{2} \text { (and the analogs); } r_{a} r_{b} r_{c}=S s=s^{2} r
$$

$$
\frac{s^{2}}{\cos ^{2} \frac{A}{2}}=s^{2}+r_{a}^{2} \quad \text { (and the analogs) } \Rightarrow \cos \frac{A}{2}=\frac{s}{\sqrt{s^{2}+r_{a}^{2}}} \text { (and the analogs); }
$$

$\cos ^{2} \frac{A}{2}+\sin ^{2} \frac{A}{2}=1 \Rightarrow \sin \frac{A}{2}=\frac{r_{a}}{\sqrt{s^{2}+r_{a}^{2}}}$ (and the analogs); $r_{a}=s \tan \frac{A}{2}$ (and the analogs);
$\tan \frac{A}{2}=\sin \frac{A}{2} \cdot \frac{1}{\cos \frac{A}{2}}$ (and the analogs); $r_{a}=s \sin \frac{A}{2} \cdot \frac{1}{\cos \frac{A}{2}} \Rightarrow \frac{r_{a}}{\sin \frac{A}{2}}=\frac{s}{\cos \frac{A}{2}}$ (and the analogs);

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\frac{r_{a}}{\sin \frac{A}{2}}=\sqrt{s^{2}+r_{a}^{2}} \text { (and the analogs); }
$$

But $s^{2}=n_{a}^{2}+2 r_{a} h_{a}$ (and the analogs), so we can write the following:

$$
\begin{aligned}
& \cos \frac{A}{2}=\frac{s}{\sqrt{n_{a}^{2}+2 r_{a} h_{a}+r_{a}^{2}}} \text { (and the analogs); } \\
& \sin \frac{A}{2}=\frac{r_{a}}{\sqrt{n_{a}^{2}+2 r_{a} h_{a}+r_{a}^{2}}} \text { (and the analogs); } \\
& n_{a}^{2}+r_{a}^{2} \geq 2 n_{a} r_{a} \quad \text { (and the analogs); }
\end{aligned}
$$

Replacing the above we have the following:

$$
\begin{aligned}
& \sin \frac{A}{2} \leq \sqrt{\frac{r_{a}}{2\left(n_{a}+h_{a}\right)}} \text { (and the analogs); } \\
& \cos \frac{A}{2} \leq \frac{s}{\sqrt{2 r_{a}\left(n_{a}+h_{a}\right)}} \text { (and the analogs); }
\end{aligned}
$$

From the above we will obtain the following: $\sum \sin \frac{A}{2} \leq \sum \sqrt{\frac{r_{a}}{2\left(n_{a}+h_{a}\right)}}$;

$$
\sum \cos \frac{A}{2} \leq \sum \frac{s}{\sqrt{2 r_{a}\left(n_{a}+h_{a}\right)}}
$$

From $\sin \frac{A}{2}=\frac{r_{a}}{\sqrt{n_{a}^{2}+2 r_{a} h_{a}+r_{a}^{2}}}$ (and the analogs). Using the inequality between the squared means and the arithmetic means we will have:

$$
\sqrt{\frac{n_{a}^{2}+2 r_{a} h_{a}+r_{a}^{2}}{3}} \geq \frac{n_{a}+r_{a}+\sqrt{2 r_{a} h_{a}}}{3} \Rightarrow \sin \frac{A}{2}=\frac{r_{a}}{\sqrt{n_{a}^{2}+2 r_{a} h_{a}+r_{a}^{2}}} \leq \frac{r_{a} \sqrt{3}}{n_{a}+r_{a}+\sqrt{2 r_{a} h_{a}}} .
$$

Analogous, we have: $\sin \frac{A}{2}=\frac{r_{a}}{\sqrt{n_{b}^{2}+2 r_{b} h_{b}+r_{a}^{2}}} \leq \frac{r_{a} \sqrt{3}}{n_{b}+r_{a}+\sqrt{2 r_{b} h_{b}}}$;

$$
\sin \frac{A}{2}=\frac{r_{a}}{\sqrt{n_{c}^{2}+2 r_{c} h_{c}+r_{a}^{2}}} \leq \frac{r_{a} \sqrt{3}}{n_{c}+r_{a}+\sqrt{2 r_{c} h_{c}}} \text { and the analogous; }
$$

$a=4 R \sin \frac{A}{2} \cos \frac{A}{2} \leq 4 R r s \sqrt{\frac{r_{a}}{2\left(n_{a}+h_{a}\right) 2 r_{a}\left(n_{a}+h_{a}\right)}}=4 R s \frac{1}{2\left(n_{a}+h_{a}\right)}=\frac{2 R s}{n_{a}+h_{a}}$ (and the analogous);

$$
a=2 R \sin A \text { (and the analogous) sine theorem } \Rightarrow \sin A \leq \frac{s}{n_{a}+h_{a}} \text { (and the analogous); }
$$

Summing we will obtain: $\sum \frac{1}{\sin A} \geq \frac{n_{a}+n_{b}+n_{c}+h_{a}+h_{b}+h_{c}}{s} ; a\left(n_{a}+h_{a}\right) \leq 2 R s$ (and the analogs); $2 S=a h_{a}=b h_{b}=c h_{c}=2 s r \Rightarrow a n_{a}+2 s r \leq 2 s R \Rightarrow a n_{a} \leq 2 s(R-r)$ (and the analogs);

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Summing we will prove a new inequality, namely:

$$
\begin{gathered}
a n_{a}+b n_{b}+c n_{c} \leq 6 s(R-r) ; \\
a n_{a} \leq 2 s(R-r)=>\frac{n_{a}}{a} \leq \frac{2 s(R-r)}{a^{2}} \text { (and the analogs); } \\
a^{2}=2 R \frac{h_{b} h_{c}}{h_{a}} \text { (and the analogs); }
\end{gathered}
$$

From the above we will obtain a new inequality:

$$
\sum \frac{n_{a}}{a} \leq s\left(1-\frac{r}{R}\right) \sum \frac{h_{a}}{h_{b} h_{c}}
$$

But $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \leq \frac{1}{4 r^{2}}$, so, we will have a new inequality:

$$
\sum \frac{n_{a}}{a} \leq \frac{s}{2 r}\left(\frac{R}{r}-1\right) ;
$$

$s \leq 2 R+(3 \sqrt{3}-4) r$ (Blundon-Klamkin's inequality) $\Rightarrow \sum \frac{n_{a}}{a} \leq\left(\frac{R}{r}-1\right)\left(\frac{R}{r}+\frac{3 \sqrt{3}}{2}-2\right)$
We know that $(s-b)(s-c)=r r_{a}$ (and the analogs). Using the inequality between arithmetic means and geometric means we will obtain:
$\sqrt{(s-b)(s-c)} \leq \frac{s-b+s-c}{2}=\frac{a}{2} \Rightarrow \sqrt{r r_{a}} \leq \frac{a}{2} \Rightarrow r r_{a} \leq \frac{a^{2}}{4}$ (and the analogs) $\Rightarrow \frac{r_{a}}{a} \leq \frac{a}{4 r}$
Summing we will obtain: $\sum \frac{r_{a}}{a} \leq \frac{s}{2 r}$
Taking into account the above inequality we have: $\sum \frac{n_{a}+r_{a}}{a} \leq \frac{R}{2 r} \cdot \frac{s}{r}$;

$$
a n_{a} \frac{r_{a}}{a} \leq 2 s(R-2 r) \frac{a}{4 r} \Rightarrow n_{a} r_{a} \leq \frac{a s(R-r)}{2 r} \text { (and the analogs); }
$$

Summing we have a new inequality, namely: $\sum n_{a} r_{a} \leq s^{2}\left(\frac{R}{r}-1\right)$

$$
\begin{gathered}
\sum \frac{n_{a} r_{a}}{a} \leq \frac{3}{2} s\left(\frac{R}{r}-1\right) . \text { We know that } \sum r_{b} r_{c}=s^{2} \Rightarrow \frac{n_{a} r_{a}+n_{b} r_{b}+n_{c} r_{c}}{r_{a} r_{b}+r_{b} r_{c}+r_{a} r_{c}} \leq \frac{R}{r}-1 ; \\
a n_{a} \leq 2 s(R-r) \Rightarrow \frac{n_{a}}{h_{a}} a \leq \frac{2 s(R-r)}{h_{a}} \Rightarrow \frac{n_{a}}{h_{a}} \leq \frac{R}{r}-1 ; \\
a n_{a} \leq 2 s(R-r) \Rightarrow \frac{n_{a}}{h_{a}} a \leq \frac{2 s(R-r)}{h_{a}} \Rightarrow \frac{n_{a}}{h_{a}} \leq \frac{R}{r}-1 \\
\left(\frac{R}{r}-1\right)^{3} \geq \frac{n_{a} n_{b} n_{c}}{h_{a} h_{b} h_{c}} \Rightarrow \frac{R}{r} \geq 1+\sqrt[3]{\frac{n_{a} n_{b} n_{c}}{h_{a} h_{b} h_{c}}} \text { (Euler's inequality refinement) } \\
\frac{R-r}{r} \geq \frac{n_{a}}{h_{a}} \Rightarrow \frac{R-r}{n_{a}} \geq \frac{r}{h_{a}} \text { (and the analogs) } \sum \frac{1}{h_{a}}=\frac{1}{r} ;
\end{gathered}
$$

Summing we will obtain the following $(R-r) \sum \frac{1}{n_{a}} \geq \frac{r}{h_{a}}+\frac{r}{h_{b}}+\frac{r}{h_{c}}=1 \Rightarrow \sum \frac{1}{n_{a}} \geq \frac{1}{R-r}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\frac{R}{r} \geq \frac{n_{a}+h_{a}}{h_{a}} \Rightarrow \frac{R}{n_{a}+h_{a}} \geq \frac{r}{h_{a}} \text { (and the analogs) }
$$

Summing we will obtain a new inequality: $\sum \frac{1}{n_{a}+h_{a}} \geq \frac{1}{R^{\prime}}$;

$$
n_{a} \geq h_{a} \text { (and the analogs) } \Rightarrow \frac{1}{n_{a}+h_{a}} \leq \frac{1}{2 h_{a}} \Rightarrow \sum \frac{1}{n_{a}+h_{a}} \leq \frac{1}{2 r}
$$

So finally we have a new inequality: $2 r \leq\left(\sum \frac{1}{n_{a}+h_{a}}\right)^{-1} \leq R$
We've proved that $\sin \frac{A}{2}=\frac{r_{a}}{\sqrt{n_{a}^{2}+2 r_{a} h_{a}+r_{a}^{2}}}=\sqrt{\frac{r}{2 R}} \sqrt{\frac{r_{a}}{h_{a}}} \Rightarrow \frac{R}{r}=\frac{n_{a}^{2}+2 r_{a} h_{a}+r_{a}^{2}}{2 r_{a} h_{a}}$ and the analogs

$$
\frac{R}{r}-1=\frac{n_{a}^{2}+r_{a}^{2}}{2 r_{a} h_{a}} \text { (and the analogs) }
$$

We will prove a new identity: $8\left(\frac{R}{r}-1\right)^{3}=\frac{\left(n_{a}^{2}+r_{a}^{2}\right)\left(n_{b}^{2}+r_{b}^{2}\right)\left(n_{c}^{2}+r_{c}^{2}\right)}{r_{a} r_{b} r_{c} h_{a} h_{b} h_{c}}$;

$$
r_{a} r_{b} r_{c}=\frac{R}{2 r} h_{a} h_{b} h_{c}
$$

Taking into account the above we have the following:

$$
\begin{aligned}
& \frac{4 R}{r}\left(\frac{R}{r}-1\right)^{3}=\frac{\left(n_{a}^{2}+r_{a}^{2}\right)\left(n_{b}^{2}+r_{b}^{2}\right)\left(n_{c}^{2}+r_{c}^{2}\right)}{h_{a}^{2} h_{b}^{2} h_{c}^{2}} \\
& \frac{r}{R}\left(\frac{R}{r}-1\right)^{3}=\frac{\left(n_{a}^{2}+r_{a}^{2}\right)\left(n_{b}^{2}+r_{b}^{2}\right)\left(n_{c}^{2}+r_{c}^{2}\right)}{16 r_{a}^{2} r_{b}^{2} r_{c}^{2}}
\end{aligned}
$$

$$
\frac{R}{r}-1=\frac{n_{a}^{2}+r_{a}^{2}}{2 r_{a} h_{a}} \text { (and the analogs); } n_{a}^{2}+r_{a}^{2} \geq 2 n_{a} r_{a} \Rightarrow \frac{R}{r} \geq \frac{n_{a}+h_{a}}{h_{a}} \Rightarrow
$$

$$
\frac{R}{r} \geq \sqrt[3]{\frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{h_{a} h_{b} h_{c}}} ;
$$

$a^{2}=2 R \frac{h_{b} h_{c}}{h_{a}}$ (and the analogs); $2 S=h_{a} a=h_{b} b=h_{b} c$ $\frac{a^{2} h_{a}}{2 R}=h_{b} h_{c} \Rightarrow h_{b} h_{c}=\frac{S a}{R}$ (and the analogs); $r_{a} r_{b} r_{c}=S s$
$\sum h_{b} h_{c}=\frac{2 S s}{R}=\frac{2}{R} r_{a} r_{b} r_{c} ; \frac{R}{2 r} h_{a} h_{b} h_{c}=r_{a} r_{b} r_{c}$ so we will obtain the following:

$$
\begin{aligned}
& h_{a} h_{b} h_{c}=r\left(h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}\right) \\
& r_{a} r_{b} r_{c}=\frac{R}{2}\left(h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}\right)
\end{aligned}
$$

Taking into account the above we have the following:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\frac{R^{3}}{r^{2}} \geq \frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}}
$$

But $h_{a}^{2}+h_{b}^{2}+h_{c}^{2} \geq h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}$ we will have the following inequality:

$$
\frac{R^{3}}{r^{2}} \geq \frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{h_{a}^{2}+h_{b}^{2}+h_{c}^{2}}
$$

But $s_{a} \geq h_{a}$ and the analogs we will obtain a weaker inequality:

$$
\begin{aligned}
& \frac{R^{3}}{r^{2}} \geq \frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{s_{a} s_{b}+s_{b} s_{c}+s_{a} s_{c}} \\
& \frac{R^{3}}{r^{2}} \geq \frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{s_{a}^{2}+s_{b}^{2}+s_{c}^{2}}
\end{aligned}
$$

$n_{a} \geq m_{a}$ (and the analogs) we will have the following:

$$
\begin{aligned}
& \frac{R^{3}}{r^{2}} \geq \frac{\left(m_{a}+h_{a}\right)\left(m_{b}+h_{b}\right)\left(m_{c}+h_{c}\right)}{h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}} \\
& \frac{R^{3}}{r^{2}} \geq \frac{\left(m_{a}+h_{a}\right)\left(m_{b}+h_{b}\right)\left(m_{c}+h_{c}\right)}{h_{a}^{2}+h_{b}^{2}+h_{c}^{2}} \\
& \frac{R^{3}}{r^{2}} \geq \frac{\left(m_{a}+h_{a}\right)\left(m_{b}+h_{b}\right)\left(m_{c}+h_{c}\right)}{s_{a} s_{b}+s_{b} s_{c}+s_{a} s_{c}} \\
& \frac{R^{3}}{r^{2}} \geq \frac{\left(m_{a}+h_{a}\right)\left(m_{b}+h_{b}\right)\left(m_{c}+h_{c}\right)}{s_{a}^{2}+s_{b}^{2}+s_{c}^{2}} ; \\
& \frac{\text { We've prove that }}{2 r} \geq \sqrt[3]{\frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{8 h_{a} h_{b} h_{c}}} \\
& \frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+3 \sqrt[3]{\frac{R}{2 r}}
\end{aligned}
$$

We know that $\cos \frac{B-C}{2} \geq \sqrt{\frac{2 r}{R}}$ (and the analogs). But $\cos \frac{B-C}{2}=\frac{h_{a}}{w_{a}}$ (and the analogs) so we will have: $\sqrt[6]{\frac{R}{2 r}} \geq \sqrt[3]{\frac{w_{a}}{h_{a}}}$ (and the analogs);

$$
\frac{R}{2 r} \geq \frac{m_{a}}{h_{a}} \text { (Panaitopol inequality) }
$$

So we will have the following:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$1) \frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[3]{\frac{w_{a}}{n_{a}}}+3 \sqrt[3]{\frac{w_{b}}{n_{b}}}+\sqrt[3]{\frac{w_{c}}{n_{c}}}$
2) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[6]{\frac{m_{a}}{h_{a}}}+\sqrt[6]{\frac{m_{b}}{h_{b}}}+\sqrt[6]{\frac{m_{c}}{h_{c}}}$
3) $\frac{s}{R} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[18]{\frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{8 h_{a} h_{b} h_{c}}}+\sqrt[6]{\frac{m_{a}}{h_{a}}}+\sqrt[3]{\frac{w_{a}}{h_{a}}}$ (and the analogs)
4) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[3]{\frac{m_{a}+w_{b}+w_{c}}{h_{a}+h_{b}+h_{c}}}+\sqrt[6]{\frac{m_{a}}{h_{a}}}+\sqrt[3]{\frac{w_{a}}{h_{a}}}$ (and the analogs)
5) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[18]{\frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{8 s_{a} s_{b} s_{c}}}+\sqrt[6]{\frac{m_{a}}{h_{a}}}+\sqrt[3]{\frac{w_{a}}{h_{a}}}$ (and the analogs)

We've proved that $\sqrt{\frac{R}{2 r}}\left(h_{a}+h_{b}+h_{c}\right) \geq s \sqrt{3}$ so we have $\sqrt[6]{\frac{R}{2 r}} \geq \sqrt[3]{\frac{s \sqrt{3}}{h_{a}+h_{b}+h_{c}}}$
We will have the following:
6) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[18]{\frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{8 h_{a} h_{b} h_{c}}}+\sqrt[3]{\frac{s \sqrt{3}}{h_{a}+h_{b}+h_{c}}}+\sqrt[3]{\frac{w_{a}}{h_{a}}}$ (and the analogs)
7) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[18]{\frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{8 h_{a} h_{b} h_{c}}}+\sqrt[3]{\frac{s \sqrt{3}}{h_{a}+h_{b}+h_{c}}}+\sqrt[6]{\frac{m_{a}}{h_{a}}}$ (and the analogs)
$\sqrt{\frac{R}{2 r}} \geq \frac{w_{a}}{h_{a}}$ (and the analogs); $w_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}$ (and the analogs); $m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}$ (and the analogous); $s(s-a)=r_{b} r_{c}$ (and the analogs); $h_{a}=\frac{2 r_{b} r_{c}}{r_{b}+r_{c}}$ (and the analogs). Taking into account the above we can write that:

$$
m_{a} w_{a} \geq s(s-a)=r_{b} r_{c} \text { (and the analogs) (Panaitopol) }
$$

So we will have $\frac{m_{a} w_{a}}{h_{a}} \geq \frac{r_{b}+r_{c}}{2}$ (and the analogs); $\sqrt{\frac{R}{2 r}} \geq \frac{w_{a}}{h_{a}}$ (and the analogs) $\Rightarrow m_{a} \sqrt{\frac{R}{2 r}} \geq \frac{m_{a} w_{a}}{h_{a}}$ (and the analogs)

$$
m_{a} \sqrt{\frac{R}{2 r}} \geq \frac{m_{a} w_{a}}{h_{a}} \geq \frac{r_{b}+r_{c}}{2} \text { (and the analogs) }
$$

So $\left(m_{a}+m_{b}+m_{c}\right) \sqrt{\frac{R}{2 r}} \geq \sum \frac{m_{a} w_{a}}{h_{a}} \geq r_{a}+r_{b}+r_{c}=4 R+r$
Finally: $\sqrt{\frac{R}{2 r}} \geq \frac{r_{a}+r_{b}+r_{c}}{m_{a}+m_{b}+m_{c}}$;

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

So we can write:
8) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+3 \sqrt[3]{\frac{r_{a}+r_{b}+r_{c}}{m_{a}+m_{b}+m_{c}}}$
9) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[3]{\frac{r_{a}+r_{b}+r_{c}}{m_{a}+m_{b}+m_{c}}}+\sqrt[3]{\frac{w_{a}}{h_{a}}}+\sqrt[6]{\frac{m_{a}}{h_{a}}}$
10) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[3]{\frac{s \sqrt{3}}{h_{a}+h_{b}+h_{c}}}+\sqrt[18]{\frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{8 h_{a} h_{b} h_{c}}}+\sqrt[3]{\frac{r_{a}+r_{b}+r_{c}}{m_{a}+m_{b}+m_{c}}}$

We've showed that $\sqrt{\frac{R}{2 r}} \geq \frac{r_{a}+r_{b}+r_{c}}{m_{a}+m_{b}+m_{c}}$ and $\sqrt{\frac{R}{2 r}}\left(h_{a}+h_{b}+h_{c}\right) \geq s \sqrt{3} \Rightarrow$

$$
\Rightarrow \sqrt{\frac{R}{2 r}}\left(m_{a}+m_{b}+m_{c}+h_{a}+h_{b}+h_{c}\right) \geq r_{a}+r_{b}+r_{c}+s \sqrt{3}
$$

so finally we will have the following inequality:

$$
\sqrt{\frac{R}{2 r}} \geq \frac{r_{a}+r_{b}+r_{c}+s \sqrt{3}}{m_{a}+m_{b}+m_{c}+h_{a}+h_{b}++h_{c}}
$$

11) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[3]{\frac{r_{a}+r_{b}+r_{c}+s \sqrt{3}}{m_{a}+m_{b}+m_{c}+h_{a}+h_{b}++h_{c}}}+\sqrt[18]{\frac{\left(n_{a}+h_{a}\right)\left(n_{b}+h_{b}\right)\left(n_{c}+h_{c}\right)}{8 h_{a} h_{b} h_{c}}}+\sqrt[3]{\frac{m_{a}+w_{b}+w_{c}}{h_{a}+h_{b}+h_{c}}}$ (and the analogs)
$\sqrt{\frac{R}{2 r}} \geq \frac{m_{a}+w_{b}+w_{c}}{h_{a}+h_{b}+h_{c}}$ (and the analogs). Summing we will have the following:

$$
\begin{gathered}
3 \sqrt{\frac{R}{2 r}}\left(h_{a}+h_{b}+h_{c}\right) \geq m_{a}+m_{b}+m_{c}+2\left(w_{a}+w_{b}+w_{c}\right) \\
\sqrt{\frac{R}{2 r}} \geq \frac{1}{3} \cdot \frac{m_{a}+m_{b}+m_{c}+2\left(w_{a}+w_{b}+w_{c}\right)}{h_{a}+h_{b}++h_{c}}
\end{gathered}
$$

We've proved that $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sum \sqrt{\frac{r_{a}}{h_{a}}}$ and $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{r_{a}}+\sum \sqrt{\frac{h_{a}}{r_{a}}}$ and summing we will prove a new inequality:

$$
\frac{2 s}{r} \geq \frac{1}{2 \sqrt{2}} \sum\left(\frac{n_{a}}{h_{a}}+\frac{n_{a}}{r_{a}}\right)+\sum\left(\sqrt{\frac{r_{a}}{h_{a}}}+\sqrt{\frac{h_{a}}{r_{a}}}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
\sqrt{\frac{R}{2 r}}\left(h_{a}+h_{b}+h_{c}\right) \geq s \sqrt{3} \Rightarrow \sqrt{\frac{R}{6 r}}\left(h_{a}+h_{b}+h_{c}\right) \geq s \\
\sqrt{2}+\sqrt{3} \geq \frac{n_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}}{s} \text { (and the analogs) } \Rightarrow \\
s(\sqrt{2}+\sqrt{3}) \geq n_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}} \text { (and the analogs) }
\end{gathered}
$$

$$
\text { We will obtain that }\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \sqrt{\frac{R}{r}} \geq \frac{s(\sqrt{2}+\sqrt{3})}{\left(h_{a}+h_{b}+h_{c}\right)} \Rightarrow\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \sqrt{\frac{R}{r}} \geq
$$

$$
\frac{n_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}}{h_{a}+h_{b}+h_{c}} \text { (and the analogs) }
$$

$$
\sqrt{\frac{R}{2 r}} \geq \frac{r_{a}+r_{b}+r_{c}}{m_{a}+m_{b}+m_{c}}
$$

Summing the two inequalities we will obtain a new result.

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \frac{R}{r} \geq \frac{\left(r_{a}+r_{b}+r_{c}\right)\left(n_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}\right)}{\left(m_{a}+m_{b}+m_{c}\right)\left(h_{a}+h_{b}+h_{c}\right)} \text { (and the analogs) } \\
& m_{a} \sqrt{\frac{R}{2 r}} \geq \frac{r_{b}+r_{c}}{2} \text { (and the analogs) } \Rightarrow \sqrt{\frac{R}{2 r}} \geq \frac{r_{b}+r_{c}}{2 m_{a}} \text { (and the analogs) }
\end{aligned}
$$

12) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[3]{\frac{r_{b}+r_{c}}{2 m_{a}}}+\sqrt[3]{\frac{r_{a}+r_{c}}{2 m_{b}}}+\sqrt[3]{\frac{r_{a}+r_{b}}{2 m_{c}}}$

$$
3 \sqrt{\frac{R}{2 r}} \geq \frac{1}{2} \sum \frac{r_{b}+r_{c}}{m_{a}}=>\sqrt{\frac{R}{2 r}} \geq \frac{1}{6} \sum \frac{r_{b}+r_{c}}{m_{a}}
$$

13) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[3]{\frac{9}{2} \sum \frac{r_{b}+r_{c}}{m_{a}}}$
14) $\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[3]{\frac{r_{b}+r_{c}}{2 m_{a}}}+\sqrt[3]{\frac{m_{a}+w_{b}+w_{c}}{h_{a}+h_{b}+h_{c}}}+\sqrt[3]{\frac{w_{a}}{h_{a}}}$ (and the analogs)

Practically any expression smaller than $\frac{R}{2 r}$ can be used in the following inequality:
$\frac{s}{r} \geq \frac{1}{\sqrt{2}} \sum \frac{n_{a}}{h_{a}}+\sqrt[6]{\frac{R}{2 r}}$ in order to obtain a new inequality.
There are limitless possibilities, but $\frac{s}{r}=\sum \cot \frac{A}{2}$, replacing in the above obtained inequalities it will follow a new series of inequalities.

$$
\cos \frac{A}{2}=\cos \frac{A}{2} \cdot \frac{1}{\sin \frac{A}{2}} \text { (and the analogs) }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
a=\sqrt{\left(r_{b}+r_{c}\right)\left(r_{a}-r\right)} \text { (and the analogs) } \\
\\
\sin \frac{A}{2}=\sqrt{\frac{r_{a}-r}{4 R}} \text { (and the analogs) } \\
\cos \frac{A}{2}=\sqrt{\frac{r_{b}+r_{c}}{4 R}} \text { (and the analogs) }
\end{gathered}
$$

From the above we have the following: $\cot \frac{A}{2}=\sqrt{\frac{r_{b}+r_{c}}{r_{a}-r}}$ (and the analogs);
$\Rightarrow \Sigma \sqrt{\frac{r_{b}+r_{c}}{r_{a}-r}}=\frac{s}{r_{r}}$, replacing in this expression in the above inequities we will obtain a series of equivalent inequalities.

$$
\cot \frac{A}{2}=\sqrt{\frac{r_{b}+r_{c}}{r_{a}-r}}=\sqrt{\frac{\left(r_{b}+r_{c}\right)\left(r_{b}+r_{c}\right)}{\left(r_{a}-r\right)\left(r_{b}+r_{c}\right)}}=\frac{r_{b}+r_{c}}{a} \text { (and the analogs) }
$$

So we will obtain a new identity and namely: $\sum \frac{r_{b}+r_{c}}{a}=\frac{s}{r}$ (This identity can be found as a proposed problem by Prof. M ehmet Sahin) We will remember that $\sum \frac{r_{b}+r_{c}}{a}=\sum \sqrt{\frac{r_{b}+r_{c}}{r_{a}-r}}=\sum \cot \frac{A}{2}=\frac{s}{r}$ We've proved that $\frac{R}{r} \geq 1+\frac{n_{a}}{h_{a}}$ (and the analogs); $1+\frac{n_{a}}{h_{a}} \geq 2 \sqrt{1 \frac{n_{a}}{h_{a}}}=2 \sqrt{\frac{n_{a}}{n_{a}}}$ (the inequalities between arithmetic means and geometric means) $\Rightarrow \frac{R}{2 r} \geq \sqrt{\frac{n_{a}}{h_{a}}}$ (and the analogs)

$$
\begin{gathered}
\text { We've proved that } \frac{a b+b c+a c}{4 \sqrt{3} S} \geq \sqrt{\frac{R}{2 r}} \Rightarrow \frac{a b+b c+a c}{4 \sqrt{3} S} \geq \sqrt[4]{\frac{n_{a}}{h_{a}}} \text { (and the analogs) } \\
\begin{array}{c}
\Rightarrow 3(a b+b c+a c) \geq 4 \sqrt{3} S \sum^{4} \sqrt{\frac{n_{a}}{h_{a}}} ; b c=2 R h_{a} \text { (and the analogs), so we will have } \\
h_{a}+h_{b}+h_{c} \geq \frac{2 \sqrt{3}}{3} \frac{S}{R} \sum^{4} \sqrt[4]{\frac{n_{a}}{h_{a}}} \\
h_{a}=\left(1+\frac{b+c}{a}\right) r \text { (and the analogs) } \\
h_{a}+h_{b}+h_{c}=\left(3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{b+a}{c}\right) r \Rightarrow
\end{array}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\Rightarrow 3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{b+a}{c} \geq \frac{2 \sqrt{3}}{3} \cdot \frac{s}{R} \sum \sqrt[4]{\frac{n_{a}}{h_{a}}}
$$

But $\frac{b+c}{a}=\frac{r_{a}+r}{r_{a}-r}$ (and the analogs) so we will obtain a new inequality:

$$
\begin{gathered}
3+\sum \frac{r_{a}+r}{r_{a}-r} \geq \frac{2 \sqrt{3}}{3} \cdot \frac{s}{R} \sum^{4} \sqrt{\frac{n_{a}}{h_{a}}} \\
\frac{b+c}{a}=\frac{r_{a}+h_{a}}{r_{c}}=1+\frac{h_{a}}{r_{a}} \text { (and the analogs) }
\end{gathered}
$$

So we will obtain a new inequality, namely:

$$
6+\sum \frac{h_{a}}{r_{a}} \geq \frac{2 \sqrt{3}}{3} \cdot \frac{s}{R} \sum \sqrt[4]{\frac{n_{a}}{h_{a}}}
$$

$$
\begin{gathered}
\text { But } \sum \frac{b+c}{a}=\sum \frac{h_{b}+h_{c}}{h_{a}} \Rightarrow 3+\sum \frac{h_{b}+h_{c}}{h_{a}} \geq \frac{2 \sqrt{3}}{3} \cdot \frac{s}{R} \sum \sqrt[4]{\frac{n_{a}}{h_{a}}} ; \\
m_{a} \geq \frac{b^{2}+c^{2}}{4 R} \text { (Tereshin's inequality) } \\
\frac{m_{a}}{h_{a}} \geq \frac{b^{2}+c^{2}}{4 R h_{a}}=\frac{b^{2}+c^{2}}{2 b c}=\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right) \text { (and the analogs) } \\
h_{a} \geq \frac{1}{2} \sum \frac{b+c}{a} \Rightarrow 2 \sum \frac{m_{a}}{h_{a}} \geq \sum \frac{b+c}{a} /+3 \text { so we can write that: } \\
3+2 \sum \frac{m_{a}}{h_{a}} \geq \frac{2 \sqrt{3}}{3} \frac{s}{R} \sum \sqrt[4]{\frac{n_{a}}{h_{a}}} ;
\end{gathered}
$$

We know that $w_{a}=\frac{2 \sqrt{b c}}{b+c} \sqrt{s(s-a)}$ (and the analogs); $\sqrt{s(s-a)}=\sqrt{r_{b} r_{c}}$ (and the analogs);

$$
\frac{b+c}{2 \sqrt{b c}}=\frac{\sqrt{r_{b} r_{c}}}{w_{a}} \text { (and the analogs); squaring we will obtain the following: }
$$

$\frac{r_{b} r_{c}}{w_{a}^{2}}=\frac{1}{2}+\frac{1}{4}\left(\frac{b}{c}+\frac{c}{b}\right)$ (and the analogs) $\Rightarrow \sum \frac{r_{b} r_{c}}{w_{a}^{2}}=\frac{3}{2}+\frac{1}{4} \sum \frac{b+c}{a} ;$ we can write the following:

$$
\begin{gathered}
\sum \frac{r_{b} r_{c}}{w_{a}^{2}} \geq \frac{3}{4}+\frac{\sqrt{3}}{6} \cdot \frac{s}{R} \sum \sqrt[4]{\frac{n_{a}}{h_{a}}} \\
\cos \frac{B-C}{2}=\left(\frac{b+c}{a}\right) \sin \frac{A}{2} \text { (and and analogs); } \\
\cos \frac{B-C}{2}=\frac{h_{a}}{w_{a}} \text { (and the analogs); } \\
\sin \frac{A}{2}=\sqrt{\frac{r}{2 R}} \sqrt{\frac{r_{a}}{h_{a}}} \text { (and the analogs); }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\frac{h_{a}}{w_{a}}=\sqrt{\frac{r}{2 R}} \sqrt{\frac{r_{a}}{h_{a}}}\left(\frac{b+c}{a}\right) \text { (and the analogs); }
$$

We will obtain: $\frac{b+c}{a}=\sqrt{\frac{2 R}{r}} \cdot \frac{h_{a}}{w_{c}} \sqrt{\frac{h_{a}}{r_{a}}}$ (and the analogs); taking into account the above we obtain the following:

$$
\sum \frac{h_{a}}{w_{a}} \sqrt{\frac{h_{a}}{r_{a}}} \geq \sqrt{\frac{3 r}{2 R}}\left(\frac{2}{3} \cdot \frac{s}{R} \sum \sqrt[4]{\frac{n_{a}}{h_{a}}}-\sqrt{3}\right) ;
$$

We proved that: $4 m_{a}^{2}=n_{a}^{2}+g_{a}^{2}+2 r_{b} r_{c}$ (and the analogs);

$$
\begin{aligned}
b^{2}+c^{2} & =n_{a}^{2}+g_{a}^{2}+2 r_{a} r \text { (and the analogs) } ; \\
b c & =r_{b} r_{c}+r r_{a} \text { (and the analogs); }
\end{aligned}
$$

We will obtain the following identities, namely:

$$
\begin{gathered}
\quad(b+c)^{2}=4\left(m_{a}^{2}+r_{a} r\right) \text { (and the analogs); } \\
(b+c)^{2}=n_{a}^{2}+g_{a}^{2}+2 r_{b} r_{c}+4 r_{a} r \text { (and the analogs); }
\end{gathered}
$$

Using the inequality between the squared means and arithmetic means:

$$
b+c \geq \frac{1}{2}\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right) \text { (and the analogs); }
$$

We also know that: $2 \sqrt{3} m_{a} \geq n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}$ (and the analogs);
Summing we obtain: $b+c+m_{a} \sqrt{3} \geq n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+\sqrt{r_{a} r}$ (and the analogs);
Taking into account the above we will have the inequality:

$$
\begin{gathered}
s \geq \frac{1}{8} \sum\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right) \\
a(b+c)=2 R\left(h_{b}+h_{c}\right) \text { (and the analogs); } a=2 R \sin A \text { (sine theorem) } \\
2 R\left(h_{b}+h_{c}\right) \geq \frac{2 R \sin A}{2}\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right) \Rightarrow 2\left(h_{b}+h_{c}\right) \geq
\end{gathered}
$$

$\geq \sin \left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right)$ (and the analogs); summing we will obtain the following:

$$
\begin{gathered}
h_{a}+h_{b}+h_{c} \geq \frac{1}{4} \sum \sin A\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right) \\
\quad \frac{2}{\sin A} \geq \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{h_{b}+h_{c}} \quad \text { (and the analogs); }
\end{gathered}
$$

Summing we have the following: $\sum \frac{2}{\sin A} \geq \sum \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{h_{b}+h_{c}}$ (and the analogs)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Summing we have the following: $\sum \frac{2}{\sin A} \geq \sum \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{h_{b}+h_{c}}$;
We know that $a(b+c)=\left(r_{a}+r\right)\left(r_{b}+r_{c}\right)$ (and the analogs)

$$
\begin{aligned}
\left(r_{a}+r\right)\left(r_{b}+r_{c}\right) & \geq \frac{1}{2} a\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right) \\
\frac{r_{b}+r_{c}}{a} & \geq \frac{1}{2} \cdot \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{r_{a}+r} \\
\sum \frac{r_{b}+r_{c}}{a} & \geq \frac{1}{2} \sum \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{r_{a}+r}
\end{aligned}
$$

$\sum \frac{r_{b}+r_{c}}{a}=\frac{s}{r} ; \frac{r_{b}+r_{c}}{a}=\cot \frac{A}{2}$ (and the analogs) $\Rightarrow \cot \frac{A}{2} \geq \frac{1}{2} \cdot \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{r_{a}+r}$ (and the analogs)

$$
\begin{aligned}
& \sum \cot \frac{A}{2} \geq \frac{1}{2} \sum \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{r_{a}+r} ; r_{a}=s \tan \frac{A}{2} \text { (and the analogs); } \\
& \tan \frac{A}{2}=\frac{1}{\cot \frac{A}{2}} ; \text { so we will have: } \\
& r_{a}=\frac{s}{\cot _{\frac{A}{2}}} \text { (and the analogs) } \Rightarrow \frac{r_{a}+r}{r_{a}} \geq \frac{1}{2} \cdot \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{s} \text { (and the analogs); } \\
& 3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{b+a}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}= \\
& =(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) ; \\
& (a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq \frac{2 \sqrt{3}}{3} \frac{s}{R} \sum^{4} \sqrt{\frac{n_{a}}{h_{a}}} ; \\
& \frac{b+c}{a} \geq \frac{1}{2} \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{a} \\
& \frac{1}{2} \sum \frac{b+c}{a} \geq \frac{1}{4} \sum \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{a} \\
& \sum \frac{m_{a}}{h_{a}} \geq \frac{1}{2} \sum \frac{b+c}{a} \Rightarrow \sum \frac{m_{a}}{h_{a}} \geq \sum \frac{b+c}{a} \geq \frac{1}{4} \sum \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{a} ; \\
& \frac{m_{a}}{h_{a}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right) \text { (and the analogs); } \frac{m_{a}}{h_{a}}=\frac{m_{a}}{w_{a}} \cdot \frac{w_{a}}{h_{a}} ; \frac{h_{a}}{w_{a}} \geq \sqrt{\frac{2 r}{R}} \text { (and the analogs); } \\
& \Rightarrow \frac{m_{a}}{h_{a}}=\frac{m_{a}}{w_{a}} \frac{w_{a}}{h_{a}} \leq \frac{m_{a}}{w_{a}} \sqrt{\frac{R}{2 r}} \text { (and the analogs). From the above we will write: }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\frac{m_{a}}{w_{a}} \sqrt{\frac{R}{2 r}} \geq \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right) ;$

$$
\frac{m_{a}}{w_{a}} \geq \sqrt{\frac{r}{2 R}}\left(\frac{b}{c}+\frac{c}{b}\right) \text { (and the analogs); }
$$

Summing we have: $\sum \frac{m_{a}}{w_{a}} \geq \sqrt{\frac{r}{2 R}}\left(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\right) \Rightarrow \sum \frac{m_{a}}{w_{a}} \geq \frac{1}{2} \sqrt{\frac{r}{2 R}} \sum \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{a}$
We've proved that: $\frac{b+c}{a} \geq \frac{1}{2} \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{a} ; \frac{b+c}{a}=\sqrt{\frac{2 R}{r}} \cdot \frac{h_{a}}{w_{a}} \sqrt{\frac{h_{a}}{r_{a}}}$
We will obtain the following:

$$
\begin{gathered}
\sqrt{\frac{2 R}{r}} \geq \frac{\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right) w_{a}}{4 S} \cdot \sqrt{\frac{r_{a}}{h_{a}}} \text { (and the analogs) } \\
\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}=\sqrt{\frac{r r_{a}}{b c}} ; b c=2 R h_{a} \quad \text { (and the analogs); }
\end{gathered}
$$

$\frac{1}{\sin \frac{A}{2}} \geq \frac{\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right) w_{a}}{4 S}$ (and the analogs); $A I=\frac{r}{\sin \frac{A}{2}}$ (and the analogs);
$A I \geq \frac{\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right) w_{a}}{4 s} \Rightarrow \frac{A I}{w_{a}} \geq \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{4 s}$ (and the analogs);

$$
\sum \frac{A I}{w_{a}} \geq \frac{1}{4 s} \sum\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{\left.r_{a} r\right)}\right.
$$

We know that $s_{a} \leq w_{a}$ (and the analogs) $\Rightarrow \sum \frac{A I}{s_{a}} \geq \frac{1}{4} \sum\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right)$;

$$
\begin{gathered}
\text { But } A I=\sqrt{2 R\left(h_{a}-2 r\right)} \quad \text { (and the analogs) } \Rightarrow \\
\Rightarrow \sum \frac{\sqrt{h_{a}-2 r}}{w_{a}} \geq \frac{1}{4 s \sqrt{2 R}} \sum\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right)
\end{gathered}
$$

We easily prove that: $b+c=4 R \cos \frac{A}{2} \cos \frac{B-C}{2}$ (and the analogs);

$$
\begin{gathered}
\Rightarrow 8 R \cos \frac{A}{2} \geq \frac{w_{a}}{h_{a}}\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{2 r_{a} r}\right) \text { (and the analogs); } \\
\cos \frac{A}{2}=\sqrt{\frac{r_{b}+r_{c}}{4 R}} \text { (and the analogs) } \Rightarrow 8 R \cos \frac{A}{2}=4 \sqrt{R\left(r_{b}+r_{c}\right) ;} \\
\frac{4 \sqrt{R\left(r_{b}+r_{c}\right)}}{w_{a}} \geq \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{h_{a}} \text { (and the analogs); } \\
\sum \frac{\sqrt{r_{b}+r_{c}}}{w_{a}} \geq \frac{1}{4 \sqrt{R}} \sum \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{h_{a}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 \section*{www.ssmrmh.ro}

It is known that $A I^{2}=\left(r_{b}-r\right)\left(r_{c}-r\right)$ (and the analogs); applying the inequality between the arithmetic means and geometric means we obtain:

$$
\begin{gathered}
\frac{r_{b}+r_{c}-2 r}{2} \geq A I \text { (and the analogs); } \\
\frac{A I}{w_{a}} \geq \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{4 s} \text { (and the analogs) }
\end{gathered}
$$

We will remind that: $\frac{r_{b}+r_{c}-2 r}{w_{a}} \geq \frac{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}}{2 s}$ (and the analogs);
Summing we will obtain two new inequalities:

$$
\begin{aligned}
& \sum \frac{r_{b}+r_{c}-2 r}{w_{a}} \geq \frac{1}{2 s} \sum\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}\right) \\
& \sum \frac{r_{b}+r_{c}-2 r}{n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r_{a} r}} \geq \frac{w_{a}+w_{b}+w_{c}}{2 s} \\
& \text { We've prove that: } \\
& s^{2}=n_{a}^{2}+2 r_{a} h_{a} \text { (and the analogs); } \\
& 2 r_{a} h_{a}=2 r\left(h_{a}+h_{a}\right) \text { (and the analogs); } \\
& \frac{R-r}{r}=\frac{n_{a}^{2}+r_{a}^{2}}{2 r_{a} h_{a}} \text { (and the analogs) } \Rightarrow \frac{R-r}{r}=\frac{n_{a}^{2}+r_{a}^{2}}{2 r\left(2 r_{a}+h_{a}\right)} \Rightarrow R-r=\frac{n_{a}^{2}+r_{a}^{2}}{2\left(2 r_{a}+h_{a}\right)} \text { (and the analogs); }
\end{aligned}
$$

Summing we have:
$6(R-r)=\sum \frac{n_{a}^{2}+r_{a}^{2}}{\left(2 r_{a}+h_{a}\right)} ; 2(R-r)\left(2 r_{a}+h_{a}\right)=n_{a}^{2}+r_{a}^{2} \geq 2 n_{a} r_{a} \Rightarrow R-r \geq \frac{n_{a} r_{a}}{2 r_{a}+h_{a}} ;$
Summing we have:
$3(R-r) \geq \sum \frac{n_{a}^{2}+r_{a}^{2}}{2 r_{a}+h_{a}}$. But $n_{a} \geq m_{a}$ (and the analogs) we will obtain:

$$
\begin{gathered}
6(R-r) \geq \sum \frac{m_{a}^{2}+r_{a}^{2}}{2 r_{a}+h_{a}} ; 3(R-r) \geq \sum \frac{m_{a} r_{a}}{2 r_{a}+h_{a}} ; \\
\frac{R-r}{r_{a}} \geq \frac{n_{a}}{2 r_{a}+h_{a}}, \sum \frac{1}{r_{a}}=\frac{1}{r} \text { we will obtain: } \frac{R-r}{r} \geq \sum \frac{n_{a}}{2 r_{a}+h_{a}}
\end{gathered}
$$

Using the inequality between squared means and arithmetic means:

$$
\begin{gathered}
\sqrt{\frac{n_{a}^{2}+r_{a}^{2}}{2}} \geq \frac{n_{a}+r_{a}}{2} \Rightarrow \sqrt{2(R-r)\left(2 r_{a}+h_{a}\right)} \geq \frac{\sqrt{2}}{2}\left(n_{a}+r_{a}\right) \\
\sqrt{(R-r)\left(2 r_{a}+h_{a}\right)} \geq \frac{1}{2}\left(n_{a}+r_{a}\right) \quad \text { (and the analogs), summing we will obtain a new } \\
\text { inequality: }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\sqrt{R-r} \sum \sqrt{2 r_{a}+h_{a}} \geq \frac{1}{2}\left(r_{a}+r_{b}+r_{c}+n_{a}+n_{b}+n_{c}\right)
$$

We will finish with the following:

$$
\begin{aligned}
2 R^{2}+10 R r- & r^{2}-2(R-2 r) \sqrt{R(R-2 r)} \leq s^{2} \\
& \leq 2 R^{2}+10 R r-r^{2}+2(R-2 r) \sqrt{R(R-2 r)} \\
s^{2}= & n_{a}^{2}+2 r\left(r_{a}+h_{a}\right) \quad \text { (and the analogs) }
\end{aligned}
$$

We will obtain:

$$
\begin{gathered}
2 R^{2}+2 r\left(5 R-2 r_{a}-h_{a}\right)-r^{2}-2(R-2 r) \sqrt{R(R-2 r)} \leq n_{a}^{2} \leq \\
\leq 2 R^{2}+2 r\left(5 R-2 r_{a}-h_{a}\right)-r^{2}+2(R-2 r) \sqrt{R(R-2 r)} \quad \text { (and as always, the analogs). }
\end{gathered}
$$

References:

1. Themistocles M. RASSIAS, Hari M. SRIVASTAVA - Analytic and Geometric Inequalities and Applications.
2. Bogdan FUȘTEI, Romania - About Nagel and Gergonne’s cevians, Romanian M athematical M agazine, www.ssmrmh.ro
