A new approach to prove bijections on the real line

Aditya Guha Roy

April 24, 2020

1 Introduction

We know that the infamous Schröder-Bernstein theorem, can be used to show that some set \mathcal{D} is bijective to some set \mathcal{E} , by proving that there is a one-one function from \mathcal{D} to \mathcal{E} , and proving the existence of a one-one function from \mathcal{E} to \mathcal{D} .

In this math note, we will discuss a new method to prove that certain subsets of \mathbb{R} are bijective by using this simple property of countability of rational numbers, and without needing to use the Schrőder-Bernstein theorem, or the even more sophisticated theories of cardinal arithmetic.

Let us adopt a notation as below for our convenience.

Notation : For sets \mathcal{A}, \mathcal{B} we will write $\mathcal{A} \sim \mathcal{B}$ to denote that there is a one-one function from \mathcal{A} onto \mathcal{B} .

2 The method

We will demonstrate our method through an easy example :

Example 2.1. Prove that $[0, 1] \sim (0, 1]$.

Solution. Let $\mathcal{A} = \{x \in \mathbb{Q} : 0 \le x \le 1\}$, and let $\mathcal{B} = \{x \in \mathbb{Q} : 0 < x \le 1\}$. Then, we know that both \mathcal{A} , and \mathcal{B} are infinite subsets of \mathbb{Q} , and hence by countability of rational numbers, it follows that $\mathcal{A} \sim \mathbb{N} \sim \mathcal{B}$, and hence $\mathcal{A} \sim \mathcal{B}$. Now, let $f : \mathcal{A} \rightarrow \mathcal{B}$ be a bijection. Then, we consider the function $g : [0, 1] \rightarrow (0, 1]$ defined by :

$$g(x) = \begin{cases} f(x) & x \in \mathcal{A} \\ x & \text{otherwise} \end{cases}$$

Clearly, we have $g: [0,1] \rightarrow (0,1]$ is a bijection. This completes the solution.

This simple method, can be used with a bigger class of sets. Let us record the method.

Proposition 2.2 (Common subset elimination method). Let $\mathcal{A} \subseteq \mathcal{B}$, and let \exists a set \mathcal{C} , such that $\mathcal{B} \setminus \mathcal{A} \subseteq \mathcal{B} \cap \mathcal{C}$, and $\mathcal{B} \cap \mathcal{C} \sim \mathcal{A} \cap \mathcal{C}$. Then, we must have $\mathcal{A} \sim \mathcal{B}$.

Proof. Let $f : \mathcal{A} \cap \mathcal{C} \to \mathcal{B} \cap \mathcal{C}$ be a bijection. We define $g : \mathcal{A} \to \mathcal{B}$, by :

$$g(x) = \begin{cases} f(x) & x \in \mathcal{A} \cap \mathcal{C} \\ x & \text{otherwise} \end{cases}$$

Then, it is easy to see that $g: \mathcal{A} \to \mathcal{B}$ is a bijection.

This implies that $\mathcal{A} \sim \mathcal{B}$.

This completes the proof of the proposition.

3 Problems to try

Here, we leave a few exercises for the reader to try solving using the method demonstrated by us on the previous page :

- 1. If $\mathcal{A} = \left\{ x \in \mathbb{Q} : 0 < x < 1, \& x = \frac{a}{2020^n} \text{ for } a \in \mathbb{Z}, n \in \mathbb{Z}, \& \gcd(a, 2020^n) = 1 \right\}$, then prove that : $[0, 1] \sim [0, 1] \setminus \mathcal{A}$.
- **2.** Prove that the set \mathcal{I} of all irrational numbers in [0,1] is bijective to [0,1].
- **3.** A number t is called a *transcendental number*, if and only if there is no integer coefficient polynomial $p(x) \in \mathbb{Z}[x]$, such that t is a root of p. Prove that the set of all and only the transcendental numbers is bijective to \mathbb{R} .
- **4.** Let a, b, c be three real numbers with a < b < c. Prove that $[a, b] \sim (a, c) \sim [a, c]$.

4 Hints to selected problems

1. Consider the common subset to be given by

$$\mathcal{C} = \left\{\frac{a}{3^n} : a \in \mathbb{Z}, n \in \mathbb{N}, \ \& \ \gcd(a, 3^n) = 1\right\} \cup \left\{\frac{a}{2020^n} : a \in \mathbb{Z}, n \in \mathbb{N}, \ \& \ \gcd(a, 2020^n) = 1\right\}.$$

3. Consider the common subset to be given by

$$\mathcal{C} = \mathbb{Q} \cup \left\{ \frac{\pi}{a} : a \in \mathbb{N} \right\}.$$

Comment

To appreciate the significance of the method demonstrated in proposition 2.2, try to give alternate solutions of the above problems, using the Schrőder-Bernstein theorem.