A new approach to prove bijections on the real line

Aditya Guha Roy

April 24, 2020

1 Introduction

We know that the infamous Schrőder-Bernstein theorem, can be used to show that some set \mathcal{D} is bijective to some set \mathcal{E}, by proving that there is a one-one function from \mathcal{D} to \mathcal{E}, and proving the existence of a one-one function from \mathcal{E} to \mathcal{D}.

In this math note, we will discuss a new method to prove that certain subsets of \mathbb{R} are bijective by using this simple property of countability of rational numbers, and without needing to use the Schrőder-Bernstein theorem, or the even more sophisticated theories of cardinal arithmetic.

Let us adopt a notation as below for our convenience.
Notation : For sets \mathcal{A}, \mathcal{B} we will write $\mathcal{A} \sim \mathcal{B}$ to denote that there is a one-one function from \mathcal{A} onto \mathcal{B}.

2 The method

We will demonstrate our method through an easy example :
Example 2.1. Prove that $[0,1] \sim(0,1]$.
Solution. Let $\mathcal{A}=\{x \in \mathbb{Q}: 0 \leq x \leq 1\}$, and let $\mathcal{B}=\{x \in \mathbb{Q}: 0<x \leq 1\}$. Then, we know that both \mathcal{A}, and \mathcal{B} are infinite subsets of \mathbb{Q}, and hence by countability of rational numbers, it follows that $\mathcal{A} \sim \mathbb{N} \sim \mathcal{B}$, and hence $\mathcal{A} \sim \mathcal{B}$. Now, let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a bijection.
Then, we consider the function $g:[0,1] \rightarrow(0,1]$ defined by :

$$
g(x)= \begin{cases}f(x) & x \in \mathcal{A} \\ x & \text { otherwise }\end{cases}
$$

Clearly, we have $g:[0,1] \rightarrow(0,1]$ is a bijection.
This completes the solution.
This simple method, can be used with a bigger class of sets. Let us record the method.
Proposition 2.2 (Common subset elimination method). Let $\mathcal{A} \subseteq \mathcal{B}$, and let \exists a set \mathcal{C}, such that $\mathcal{B} \backslash \mathcal{A} \subseteq \mathcal{B} \cap \mathcal{C}$, and $\mathcal{B} \cap \mathcal{C} \sim \mathcal{A} \cap \mathcal{C}$. Then, we must have $\mathcal{A} \sim \mathcal{B}$.
Proof. Let $f: \mathcal{A} \cap \mathcal{C} \rightarrow \mathcal{B} \cap \mathcal{C}$ be a bijection.
We define $g: \mathcal{A} \rightarrow \mathcal{B}$, by :

$$
g(x)= \begin{cases}f(x) & x \in \mathcal{A} \cap \mathcal{C} \\ x & \text { otherwise }\end{cases}
$$

Then, it is easy to see that $g: \mathcal{A} \rightarrow \mathcal{B}$ is a bijection.
This implies that $\mathcal{A} \sim \mathcal{B}$.
This completes the proof of the proposition.

3 Problems to try

Here, we leave a few exercises for the reader to try solving using the method demonstrated by us on the previous page :

1. If $\mathcal{A}=\left\{x \in \mathbb{Q}: 0<x<1, \& x=\frac{a}{2020^{n}}\right.$ for $\left.a \in \mathbb{Z}, n \in \mathbb{Z}, \& \operatorname{gcd}\left(a, 2020^{n}\right)=1\right\}$, then prove that : $[0,1] \sim[0,1] \backslash \mathcal{A}$.
2. Prove that the set \mathcal{I} of all irrational numbers in $[0,1]$ is bijective to $[0,1]$.
3. A number t is called a transcendental number, if and only if there is no integer coefficient polynomial $p(x) \in \mathbb{Z}[x]$, such that t is a root of p. Prove that the set of all and only the transcendental numbers is bijective to \mathbb{R}.
4. Let a, b, c be three real numbers with $a<b<c$. Prove that $[a, b] \sim(a, c) \sim[a, c]$.

4 Hints to selected problems

1. Consider the common subset to be given by

$$
\mathcal{C}=\left\{\frac{a}{3^{n}}: a \in \mathbb{Z}, n \in \mathbb{N}, \& \operatorname{gcd}\left(a, 3^{n}\right)=1\right\} \cup\left\{\frac{a}{2020^{n}}: a \in \mathbb{Z}, n \in \mathbb{N}, \& \operatorname{gcd}\left(a, 2020^{n}\right)=1\right\}
$$

3. Consider the common subset to be given by

$$
\mathcal{C}=\mathbb{Q} \cup\left\{\frac{\pi}{a}: a \in \mathbb{N}\right\} .
$$

Comment

To appreciate the significance of the method demonstrated in proposition 2.2, try to give alternate solutions of the above problems, using the Schrőder-Bernstein theorem.

