

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 About Inequality in triangle-907
 Romanian Mathematical Magazine 2018

By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}} \geq \frac{13 r^{2}-3 R^{2}}{r}
$$

Proposed by Mehmet Șahin - Turkey

Solution

We prove the following lemma:

Lemma.

2) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}}=\frac{5 R^{2}+4 R r-s^{2}}{r}
$$

Proof.

$$
\begin{gathered}
\text { Using } r_{a}=\frac{s}{s-a} \text { and } h_{a}=\frac{2 s}{a} \text { we obtain: } \\
\sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}}=\frac{\sum h_{b} h_{c}\left(R-r_{a}\right)^{2}}{\prod h_{a}}=\frac{5 R^{2}+4 R r-s^{2}}{r} \\
\text { Which follows from: }
\end{gathered}
$$

$$
\begin{gathered}
\sum h_{b} h_{c}\left(R-r_{a}\right)^{2}=\frac{2 r}{R}\left(5 R^{2}+4 R r-s^{2}\right) s^{2}, \sum h_{b} h_{c}=\frac{2 r s^{2}}{R}, \sum r_{a} h_{b} h_{c}=\frac{2 r}{R}(2 R-r) s^{2}, \\
\sum r_{a}^{2} h_{b} h_{c}=\frac{2 r}{R}\left(8 R^{2}+2 R r-s^{2}\right) s^{2} \text { and } \prod h_{a}=\frac{2 r^{2} s^{2}}{R}
\end{gathered}
$$

Let's get back to the main problem:
Using the Lemma we write the inequality:

$$
\frac{5 R^{2}+4 R r-s^{2}}{r} \geq \frac{13 r^{2}-3 R^{2}}{r} \Leftrightarrow s^{2} \leq 8 R^{2}+4 R r-13 r^{2}
$$

which follows from Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.
It remains to prove that:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$4 R^{2}+4 R r+3 r \leq 8 R^{2}+4 R r-13 r^{2} \Leftrightarrow R^{2} \geq 4 r^{2}$, obviously from Euler's inequality

$$
R \geq 2 r .
$$

Equality holds if and only if the triangle is equilateral.

Remark.

The inequality can be strengthened:
3) In $\triangle \mathrm{ABC}$ the following inequality holds:

$$
\sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}} \geq \frac{\mathbf{R}^{2}-3 r^{2}}{r}
$$

Solution

Using the Lemma we write the inequality:

$$
\frac{5 R^{2}+4 R r-s^{2}}{r} \geq \frac{R^{2}-3 r^{2}}{r} \Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { (Gerretsen's inequality) }
$$

Equality holds if and only if the triangle is equilateral.

Remark.

Inequality 3) is stronger than inequality 1):
4) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}} \geq \frac{\mathbf{R}^{2}-3 r^{2}}{r} \geq \frac{13 r^{2}-3 R^{2}}{r}
$$

Solution

See inequality 3) and Euler's inequality $R \geq 2 r$
Equality holds if and only if the triangle is equilateral.

Remark.

Let's emphasize and inequality having an opposite sense:
5) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}} \leq \frac{5 R^{2}-19 r^{2}}{r}
$$

Solution.

> Using the Lemma we write the inequality:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $\frac{5 R^{2}+4 R r-s^{2}}{r} \leq \frac{5 R^{2}-19 r^{2}}{r} \Leftrightarrow s^{2} \geq 4 R r+19 r^{2}$

which follows from Gerretsen's inequality: $s^{2} \geq 16 R r-5 r^{2}$
It remains to prove that:
$16 R r-5 r^{2} \geq 4 R r+19 r^{2} \Leftrightarrow 12 R r \geq 24 r^{2}$, obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark.

We can write the double inequality:
6) In $\triangle \mathrm{ABC}$ the following inequality holds:

$$
\frac{R^{2}-3 r^{2}}{r} \leq \sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}} \leq \frac{5 R^{2}-19 r^{2}}{r}
$$

Proposed by Marin Chirciu - Romania

Solution

See inequalities 3) and 5).
Equality holds if and only if the triangle is equilateral.

Remark.

In the same way we propose:
7) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\mathbf{r} \leq \sum \frac{\left(\mathbf{R}-\mathbf{r}_{\mathrm{a}}\right)^{2}}{\mathbf{r}_{\mathrm{a}}} \leq \frac{\mathbf{R}^{2}-3 \mathbf{r}^{2}}{\mathbf{r}}
$$

Proposed by Marin Chirciu - Romania

Solution

We prove the following lemma:

Lemma

8) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sum \frac{\left(\mathbf{R}-\mathbf{r}_{\mathrm{a}}\right)^{2}}{\mathbf{r}_{\mathrm{a}}}=\frac{(\mathbf{R}-\mathbf{r})^{2}}{\mathbf{r}}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Proof.

$$
\begin{gathered}
\text { Using } r_{a}=\frac{s}{s-a^{\prime}} \text { we obtain: } \\
\sum \frac{\left(R-r_{a}\right)^{2}}{r_{a}}=\frac{\sum r_{b} r_{c}\left(R-r_{a}\right)^{2}}{\Pi r_{a}}=\frac{(R-r)^{2}}{r} \text {, which follows from: } \\
\sum r_{b} r_{c}\left(R-r_{a}\right)^{2}=s^{2}(R-r)^{2}, \sum r_{b} r_{c}=s^{2}, \sum r_{a}=4 R+r \text { and } \prod r_{a}=r s^{2}
\end{gathered}
$$

Let's get back to the main problem:
Using Lemma and Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark.

Between the sums: $\sum \frac{\left(R-r_{a}\right)^{2}}{r_{a}}$ and $\sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}}$ we can write the relationship:

9) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sum \frac{\left(R-r_{a}\right)^{2}}{r_{a}} \leq \sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}}
$$

Solution

Using the identities 2) and 8) we write the inequality:
$\frac{(R-r)^{2}}{r} \leq \frac{5 R^{2}+4 R r-s^{2}}{r} \Leftrightarrow s^{2} \leq 4 R^{2}+6 R r-r^{2}$, which follows from Gerretsen's inequality:
$s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ and Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark.

We can write the following sequences of inequalities:
10) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
r \leq \sum \frac{\left(R-r_{a}\right)^{2}}{r_{a}} \leq \frac{\mathbf{R}^{2}-3 r^{2}}{r} \leq \sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}} \leq \frac{5 R^{2}-19 r^{2}}{r}
$$

Proposed by Marin Chirciu - Romania

Solution

> See inequalities 6) and 7)

Equality holds if and only if the triangle is equilateral.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

11) In $\triangle \mathrm{ABC}$ the following inequality holds:

$$
\sum \frac{\left(R-h_{a}\right)^{2}}{r_{a}} \leq \frac{25 R^{4}-384 r^{4}}{4 R^{2} r}
$$

Proposed by Marin Chirciu - Romania

Solution

We prove the following lemma:

Lemma

12) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sum \frac{\left(R-h_{a}\right)^{2}}{r_{a}}=\frac{s^{4}+s^{2}\left(2 r^{2}-12 R r-4 R^{2}\right)+\left(4 R^{4}+32 R^{3} r-4 R^{2} r^{2}+4 R r^{3}+r^{4}\right)}{4 R^{2} r}
$$

Proof.

$$
\begin{gathered}
\text { Using } h_{a}=\frac{2 S}{a} \text { and } r_{a}=\frac{s}{s-a^{\prime}} \text {, we obtain: } \\
\sum \frac{\left(R-h_{a}\right)^{2}}{r_{a}}=\frac{\sum r_{b} r_{c}\left(R-h_{a}\right)^{2}}{\Pi r_{a}}=\frac{s^{4}+s^{2}\left(2 r^{2}-12 R r-4 R^{2}\right)+\left(4 R^{4}+32 R^{3} r-4 R^{2} r^{2}+4 R r^{3}+r^{4}\right)}{4 R^{2} r}, \\
\text { which follows from: } \\
\sum r_{b} r_{c}\left(R-h_{a}\right)^{2}=\frac{s^{2}\left[s^{4}+s^{2}\left(2 r^{2}-12 R r-4 R^{2}\right)+\left(4 R^{4}+32 R^{3} r-4 R^{2} r^{2}+4 R r^{3}+r^{4}\right)\right]}{4 R^{2}}, \\
\sum r_{b} r_{c} h_{a}=\frac{s^{2}\left(s^{2}+r^{2}-8 R r\right)}{2 R}, \sum h_{a}^{2} r_{b} r_{c}=\frac{s^{2}\left[s^{4}+s^{2}\left(2 r^{2}-12 R r\right)+r^{3}(4 R+r)\right]}{4 R^{2}} \\
\text { and } \prod r_{a}=r s^{2} .
\end{gathered}
$$

Let's get back to the main problem:
Using the Lemma, we write the inequality:
$\frac{s^{4}+s^{2}\left(2 r^{2}-12 R r-4 R^{2}\right)+\left(4 R^{4}+32 R^{3} r-4 R^{2} r^{2}+4 R r^{3}+r^{4}\right)}{4 R^{2} r} \leq \frac{25 R^{4}-384 r^{4}}{4 R^{2} r} \Leftrightarrow$
$\Leftrightarrow s^{2}\left(s^{2}+2 r^{2}-12 R r-4 R^{2}\right)+\left(4 R^{4}+32 R^{3} r-4 R^{2} r^{2}+4 R r^{3}+r^{4}\right) \leq 25 R^{4}-384 r^{4}$, which follows from Gerretsen's inequality $16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ and the observation that $\left(s^{2}+2 r^{2}-12 R r-4 R^{2}\right)<0$.

It remains to prove that:

$$
\begin{gathered}
\left(16 R r-5 r^{2}\right)\left(4 R^{2}+4 R r+3 r^{2}+2 r^{2}-12 R r-4 R^{2}\right)+ \\
+\left(4 R^{4}+32 R^{3} r-4 R^{2} r^{2}+4 R r^{3}+r^{4}\right) \leq 25 R^{4}-384 r^{4} \Leftrightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $\Leftrightarrow 21 R^{4}-32 R^{3} r+132 R^{2} r^{2}-124 R r^{3}-360 r^{4} \geq 0 \Leftrightarrow$

$\Leftrightarrow(R-2 r)\left(21 R^{3}+10 R^{2} r+152 R r^{2}+180 r^{3}\right) \geq 0$, obviously from Euler's inequality

$$
R \geq 2 r
$$

Equality holds if and only if the triangle is equilateral.
13) In $\triangle \mathrm{ABC}$ the following inequality holds:

$$
\begin{aligned}
\frac{18 r^{2}-4 R^{2}}{R} \leq \sum \frac{\left(\mathbf{R}-\mathbf{h}_{\mathrm{a}}\right)^{2}}{\mathbf{h}_{\mathrm{a}}} \leq \frac{\mathbf{R}^{2}-3 r^{2}}{\mathrm{r}} \\
\text { Proposed by Marin Chirciu - Romania }
\end{aligned}
$$

Solution

We prove the following lemma:

Lemma:

14) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sum \frac{\left(R-h_{a}\right)^{2}}{h_{a}}=\frac{r^{2}+2 R^{3}-12 R^{2} r+4 R^{2}+r^{3}}{2 R r}
$$

Proof.

$$
\begin{gathered}
\text { Using } h_{a}=\frac{2 s}{a} \text {, we obtain: } \\
\sum \frac{\left(R-h_{a}\right)^{2}}{h_{a}}=\frac{\sum h_{b} h_{c}\left(R-h_{a}\right)^{2}}{\Pi h_{a}}=\frac{r s^{2}+2 R^{3}-12 R^{2} r+4 R r^{2}+r^{3}}{2 R r}, \text { which follows from: } \\
\sum h_{b} h_{c}\left(r-h_{a}\right)^{2}=\frac{r s^{2}}{R^{2}}\left(r s^{2}+2 R^{3}-12 R^{2} r+4 R r^{2}+r^{3}\right), \\
\sum h_{b} h_{c}=\frac{2 r s^{2}}{R}, \sum h_{a}=\frac{s^{2}+r^{2}+4 R r}{2 R} \text { and } \prod h_{a}=\frac{2 r^{2} s^{2}}{R} .
\end{gathered}
$$

Let's get back to the main problem.
Using the Lemma, Gerretsen's inequality $16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ and Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark.

Between the sums $\sum \frac{\left(R-h_{a}\right)^{2}}{h_{a}}$ and $\sum \frac{\left(R-r_{a}\right)^{2}}{h_{a}}$ we can write the relationship:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 15) In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sum \frac{\left(\mathbf{R}-\mathbf{h}_{\mathrm{a}}\right)^{2}}{\mathbf{h}_{\mathrm{a}}} \leq \sum \frac{\left(\mathbf{R}-\mathbf{r}_{\mathrm{a}}\right)^{2}}{\mathbf{h}_{\mathrm{a}}}
$$

Solution

Using the identities 8) and 14) we write the inequality:

$$
\frac{r s^{2}+2 R^{3}-12 R^{2} r+4 R r^{2}+r^{3}}{2 R r} \leq \frac{5 R^{2}+4 R r-s^{2}}{r} \Leftrightarrow
$$

$$
\Leftrightarrow s^{2}(2 R+r) \leq 8 R^{3}+20 R^{2} r-4 R r^{2}-r^{3}, \text { which follows from Gerretsen's inequality: }
$$

$s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:
$\left(4 R^{2}+4 R r+3 r^{2}\right)(2 R+r) \leq 8 R^{3}+20 R^{2} r-4 R r^{2}-r^{3} \Leftrightarrow 4 R^{2}-7 R r-2 r^{2} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)(4 R+r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.

Equality holds if and only if the triangle is equilateral.

Remark.

We can write the sequence of inequalities:
16) In $\triangle \mathrm{ABC}$ the following inequality holds:

$$
\begin{array}{r}
\frac{18 R^{2}-4 \mathbf{R}^{2}}{R} \leq \sum \frac{\left(\mathbf{R}-\mathbf{h}_{\mathrm{a}}\right)^{2}}{\mathbf{h}_{\mathrm{a}}} \leq \frac{\mathbf{R}^{2}-3 \mathbf{r}^{2}}{\mathrm{r}} \leq \sum \frac{\left(\mathbf{R}-\mathrm{r}_{\mathrm{a}}\right)^{2}}{\mathbf{h}_{\mathrm{a}}} \leq \frac{5 \mathrm{R}^{2}-19 \mathrm{r}^{2}}{\mathrm{r}} \\
\text { Proposed by Marin Chirciu - Romania }
\end{array}
$$

Solution

See inequalities 6) and 13).
Equality holds if and only if the triangle is equilateral.

Refference:

Romanian Mathematical Magazine-www.ssmrmh.ro

