

www.ssmrmh.ro

ABOUT AN INEQUALITY BY ERTAN YILDIRIM-I

Proposed by Marin Chirciu - Romania

1) In $\triangle ABC$ the following relationship holds:

$$\frac{b+c}{r_a} + \frac{c+a}{r_b} + \frac{a+b}{r_c} \ge \frac{4}{s}(m_a + m_b + m_c)$$

Proposed by Ertan Yidirim-Turkey

Solution We prove the following lemma:

Lemma. 2) In $\triangle ABC$ the following relationship holds:

$$\frac{b+c}{r_a} + \frac{c+a}{r_b} + \frac{a+b}{r_c} = \frac{2(s^2 - r^2 - 4Rr)}{sr}$$

Proof. Using the formula $r_a = \frac{S}{S-a}$ we obtain:

$$\sum_{r=0}^{b+c} \frac{1}{s} = \sum_{r=0}^{b+c} \frac{1}{s} \sum_{r=0}^{b+c} (b+c)(s-a) = \frac{1}{sr} \cdot 2(s^2 - r^2 - 4Rr) = \frac{2(s^2 - r^2 - 4Rr)}{sr}, \text{ which follows}$$

from the known identity in triangle $\sum (b+c)(s-a) = 2(s^2-r^2-4Rr)$

Let's get back to the main problem. Using the lemma the inequality can be written:

$$\frac{2(s^2 - r^2 - 4Rr)}{sr} \ge \frac{4}{s}(m_a + m_b + m_c)$$

Because $m_a + m_b + m_c \le 4R + r$ it suffices to prove that:

 $\frac{2(s^2-r^2-4Rr)}{sr} \geq \frac{4}{s}(4R+r) \Leftrightarrow s^2 \geq 3r(4R+r), \text{ which follows from Gerretsen's inequality}$ $s^2 \geq 16Rr-5r^2. \text{ It remains to prove that: } 16Rr-5r^2 \geq 3r(4R+r) \Leftrightarrow R \geq 2r \text{ (Euler's inequality)}. \text{ We deduce the inequality from enunciation holds, with equality if and only if the triangle is equilateral.}$

Remark.Let's find an inequality having an opposite sense:

3) In $\triangle ABC$ the following relationship holds:

$$\frac{b+c}{r_a} + \frac{c+a}{r_b} + \frac{a+b}{r_c} \le \frac{2R(4R+r)}{r_s}$$

Proposed by Marin Chirciu - Romania

www.ssmrmh.ro

Solution Using the Lemma we write the inequality:

$$\frac{2(s^2-r^2-4Rr)}{sr} \leq \frac{2R(4R+r)}{rs} \Leftrightarrow s^2 \leq (4R+r)(R+r), \text{ which follows from Gerretsen's}$$

$$inequality \ s^2 \leq 4R^2 + 4Rr + 3r^2. \text{ It remains to prove that:}$$

$$4R^2 + 4Rr + 3r^2 \leq (4R+r)(R+r) \Leftrightarrow R \geq 2r \text{ (Euler's inequality)}$$

We deduce that the inequality from enunciation holds, if and only if the triangle is equilateral.

Remark.We can write the double inequalities:

4) In $\triangle ABC$ the following relationship holds:

$$\frac{4}{s}(m_a + m_b + m_c) \le \frac{4}{s}(4R + r) \le \frac{b + c}{r_a} + \frac{c + a}{r_b} + \frac{a + b}{r_c} \le \frac{2R(4R + r)}{r_s}$$

Solution See inequalities 1) and 3).

Equality holds if and only if the triangle is equilateral.

Remark. We prove the following lemma:

Lemma.

6) In $\triangle ABC$ the following relationship holds:

$$\frac{b+c}{h_a} + \frac{c+a}{h_b} + \frac{a+b}{h_c} = \frac{s^2+r^2+4Rr}{sr}$$

Proof.

Using the formula, $h_a = \frac{2S}{a}$ we obtain:

$$\sum \frac{b+c}{h_a} = \sum \frac{b+c}{\frac{2S}{a}} = \frac{1}{2S} \sum a(b+c) = \frac{1}{2sr} \cdot 2 \sum bc = \frac{1}{sr} \cdot \sum bc = \frac{1}$$

 $=\frac{1}{sr}(s^2+r^2+4Rr)=\frac{s^2+r^2+4Rr}{sr}$, which follows from the known identity in triangle

 $\sum bc = s^2 + r^2 + 4Rr$. Let's get back to the main problem

Using the Lemma, we write the inequality

$$\frac{2(s^2 - r^2 - 4Rr)}{sr} \ge \frac{4}{s}(m_a + m_b + m_c)$$

Because $m_a + m_b + m_c \le 4R + r$ it suffices to prove that:

www.ssmrmh.ro

 $\frac{2(s^2-r^2-4Rr)}{sr} \geq \frac{4}{s}(4R+r) \Leftrightarrow s^2 \geq 3r(4R+r), \text{ which follows from Gerretsen's inequality}$ $s^2 \geq 16Rr-5r^2. \text{ It remains to prove that: } 16Rr-5r^2 \geq 3r(4R+r) \Leftrightarrow R \geq 2r \text{ (Euler's inequality)}. \text{ We deduce that the inequality from enunciation holds, if and only if the triangle is equilateral.}$

Remark. Let's find an inequality having an opposite sense:

7) In $\triangle ABC$ the following relationship holds:

$$\frac{b+c}{h_a} + \frac{c+a}{h_b} + \frac{a+b}{h_c} \le \frac{2R(4R+r)}{rs}$$

Proposed by Marin Chirciu - Romania

Solution Using the Lemma the inequality can be written

$$\frac{s^2+r^2+4Rr}{sr} \leq \frac{2R(4R+r)}{rs} \Leftrightarrow s^2 \leq (4R+r)(2R-r), \text{ which follows from Gerretsen's inequality}$$
$$s^2 \leq 4R^2+4Rr+3r^2. \text{ It remains to prove that:}$$

$$4R^2 + 4Rr + 3r^2 \le (4R + r)(2R - r) \Leftrightarrow 2R^2 - 3R - 2r^2 \ge 0 \Leftrightarrow (R - 2r)(2R + r) \ge 0,$$
 obviously from Euler's inequality $R \ge 2r$.

We deduce that the inequality from enunciation holds, if and only if the triangle is equilateral.

Remark. We can write the following inequalities:

8) In $\triangle ABC$ the following relationship holds:

$$\frac{4}{s}(m_a + m_b + m_c) \le \frac{4}{s}(4R + r) \le \frac{b + c}{h_a} + \frac{c + a}{h_b} + \frac{a + b}{h_c} \le \frac{2R(4R + r)}{rs}$$

Solution See inequalities 1) and 3). Equality holds if and only if the triangle is equilateral.

Remark Between the sums $\sum \frac{b+c}{h_a}$ and $\sum \frac{b+c}{r_a}$ the inequality holds. We can write the inequalities:

9) In $\triangle ABC$ the following relationship holds:

$$\sum \frac{b+c}{h_a} \leq \sum \frac{b+c}{r_a}$$

Proposed by Marin Chirciu - Romania

www.ssmrmh.ro

SolutionUsing the above Lemmas we write the inequality:

$$\frac{s^2+r^2+4Rr}{sr} \leq \frac{2(s^2-r^2-4Rr)}{sr} \Leftrightarrow s^2 \geq 3r(4R+r), \text{ which follows from Gerretsen's inequality}$$

$$s^2 \geq 16Rr-5r^2. \text{ It remains to prove that:}$$

$$16Rr-5r^2 \geq 3r(4R+r) \Leftrightarrow R \geq 2r \text{ (Euler's inequality)}$$

We deduce that the inequality from enunciation holds, if and only if the triangle is equilateral.

Remark. We can write the sequence of inequalities.

10) In $\triangle ABC$ the following relationship holds:

$$\frac{12r}{s} \le \frac{4}{s}(m_a + m_b + m_c) \le \frac{4}{s}(4R + r) \le \sum \frac{b + c}{h_a} \le \sum \frac{b + c}{r_a} \le \frac{2R(4R + r)}{rs} \le \frac{9R^2}{s}$$

Proposed by Marin Chirciu - Romania

Solution See inequalities 8), 9), $m_a + m_b + m_c \ge 3r$ and Euler's inequality $R \ge 2r$.

Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro