

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY GEORGE APOSTOLOPOULOS-I

By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{R} \leq \frac{1}{r_{a}+r_{b}}+\frac{1}{r_{b}+r_{c}}+\frac{1}{r_{c}+r_{a}} \leq \frac{R}{4 r^{2}}
$$

Proposed by George Apostolopoulos - Greece

Solution

We prove the following identity:

Lemma.

2) In $\triangle A B C$ the following relatinship holds:

$$
\frac{1}{r_{a}+r_{b}}+\frac{1}{r_{b}+r_{c}}+\frac{1}{r_{c}+r_{a}}=\frac{s^{2}+(4 R+r)^{2}}{4 R s^{2}}
$$

Proof.
Using the formula $r_{a}=\frac{s}{s-a}$ we obtain:
$\sum \frac{1}{r_{b}+r_{c}}=\sum \frac{1}{\frac{s}{s-b}+\frac{s}{s-c}}=\frac{1}{s} \sum \frac{(s-b)(s-c)}{a}=\frac{1}{r s} \cdot \frac{r\left[s^{2}+(4 R+r)^{2}\right]}{4 R s}=\frac{s^{2}+(4 R+r)^{2}}{4 R r s^{2}}$, which follows from the known inequality in triangle: $\sum \frac{(s-b)(s-c)}{a}=\frac{r\left[s^{2}+(4 R+r)^{2}\right]}{4 R s}$

Let's get back to the main problem.
LHS inequality.
Using the Lemma can be written:
$\frac{s^{2}+(4 R+r)^{2}}{4 R r s^{2}} \geq \frac{1}{R} \Leftrightarrow(4 R+r)^{2} \geq 3 s^{2}$, (Doucet's inequality), which follows from Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that: $(4 R+r)^{2} \geq 3\left(4 R^{2}+4 R r+3 r^{2}\right) \Leftrightarrow R^{2}-R r-2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(R+r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$. Equality holds if and only if the $\triangle A B C$ is equilateral.

RHS inequality.
Using the Lemma the inequality holds:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$\frac{s^{2}+(4 R+r)^{2}}{4 R s^{2}} \leq \frac{R}{4 r^{2}} \Leftrightarrow s^{2}\left(R^{2}-r^{2}\right) \geq r^{2}(4 R+r)^{2}$, which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$. It remains to prove that: $\frac{r(4 R+r)^{2}}{R+r}\left(R^{2}-r^{2}\right) \geq r^{2}(4 R+r)^{2}$ $\Leftrightarrow R \geq 2 r$. (Euler's inequality). Equality holds if and only if the triangle is equilateral.

Remark.

Inequality 1) can be strenghtened:

3) In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{4 R}\left(5-\frac{2 r}{R}\right) \leq \frac{1}{r_{a}+r_{b}}+\frac{1}{r_{b}+r_{c}}+\frac{1}{r_{c}+r_{a}} \leq \frac{1}{2 r}
$$

Proposed by Marin Chirciu - Romania

Solution

Using the Lemma the inequality can be written:

$$
\frac{s^{2}+(4 R+r)^{2}}{4 R s^{2}} \geq \frac{1}{4 R}\left(5-\frac{2 r}{R}\right) \Leftrightarrow s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)} \text { (Blundon-Gerretsen's inequality) }
$$

Equality holds if and only if the triangle is equilateral.
RHS inequality.
Using Lemma the inequality can be written:
$\frac{s^{2}+(4 R+r)^{2}}{4 R s^{2}} \leq \frac{1}{2 r} \Leftrightarrow s^{2} \geq \frac{r(4 R+r)^{2}}{2 R-r}$, which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$. It remains to prove that: $\frac{r(4 R+r)^{2}}{R+r} \geq \frac{r(4 R+r)^{2}}{2 R-r} \Leftrightarrow R \geq 2 r$
(Euler's inequality). Equality holds if and only if the triangle is equilateral.
Remark.
Inequality 3) is stronger than inequality 1).
4) In $\triangle A B C$ the following inequality holds:

$$
\frac{1}{R} \leq \frac{1}{4 R}\left(5-\frac{2 r}{R}\right) \leq \frac{1}{r_{a}+r_{b}}+\frac{1}{r_{b}+r_{c}}+\frac{1}{r_{c}+r_{a}} \leq \frac{1}{2 r} \leq \frac{R}{4 r^{2}}
$$

Solution

See 3) and Euler's inequality $R \geq 2 r$. Equality holds if and only the $\triangle A B C$ is equilateral.

Remark.

If we replace r_{a} with h_{a} we propose:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

5) In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{R} \leq \frac{1}{h_{a}+h_{b}}+\frac{1}{h_{b}+h_{c}}+\frac{1}{h_{c}+h_{a}} \leq \frac{1}{2 r}
$$

Proposed by Marin Chirciu - Romania

Solution

We prove the followign lemma:

Lemma.

6) In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{h_{a}+h_{b}}+\frac{1}{h_{b}+h_{c}}+\frac{1}{h_{c}+h_{a}}=\frac{s^{4}+s^{2}\left(16 R r+2 r^{2}\right)+r^{2}(4 R+r)^{2}}{4 r s^{2}\left(s^{2}+2 r^{2}+2 R r\right)}
$$

Proof.

Using the formula $h_{a}=\frac{2 S}{a}$ we obtain:

$$
\begin{gathered}
\sum \frac{1}{h_{b}+h_{c}}=\sum \frac{1}{\frac{2 S}{b}+\frac{2 S}{c}}=\frac{1}{2 S} \sum \frac{b c}{b+c}=\frac{1}{2 r s} \cdot \frac{s^{4}+s^{2}\left(16 R r+2 r^{2}\right)+r^{2}(4 R+r)^{2}}{2 s\left(s^{2}+2 r^{2}+2 R r\right)}= \\
=\frac{s^{4}+s^{2}\left(16 R r+2 r^{2}\right)+r^{2}(4 R+r)^{2}}{4 r s^{2}\left(s^{2}+2 r^{2}+2 R r\right)}, \text { which follows from the known identity in triangle: } \\
\sum \frac{b c}{b+c}=\frac{s^{4}+s^{2}\left(16 R r+2 r^{2}\right)+r^{2}(4 R+r)^{2}}{2 s\left(s^{2}+2 r^{2}+2 R r\right)}
\end{gathered}
$$

Let's get back to the main problem.

LHS

Using the Lemma we write the inequality:

$$
\begin{gathered}
\frac{s^{4}+s^{2}\left(16 R r+2 r^{2}\right)+r^{2}(4 R+r)^{2}}{4 r s^{2}\left(s^{2}+2 r^{2}+2 R r\right)} \geq \frac{1}{R} \Leftrightarrow \\
\Leftrightarrow s^{2}\left[s^{2}(R-4 r)+r\left(16 R^{2}-6 R r-4 r^{2}\right)\right]+R r^{2}(4 R+r)^{2} \geq 0
\end{gathered}
$$

We distinguish the following cases:
Case 1). If $\left[s^{2}(R-4 r)+r\left(16 R^{2}-6 R r-4 r^{2}\right)\right] \geq 0$, the inequality is obviously.
Case 2). If $\left[s^{2}(R-4 r)+r\left(16 R^{2}-6 R r-4 r^{2}\right)\right]<0$, we write the inequality:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$R r^{2}(4 R+r)^{2} \geq s^{2}\left[s^{2}(4 r-R)-r\left(16 R^{2}-6 R r-4 r^{2}\right)\right]$, which follows from Blundon Gerretsen's inequality $s^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that: $R r^{2}(4 R+r)^{2} \geq \frac{R(4 R+r)^{2}}{2(2 R-r)}\left[\left(4 R^{2}+4 R r+3 r^{2}\right)(4 r-R)-r\left(16 R^{2}-6 R r-4 r^{2}\right)\right] \Leftrightarrow$ $\Leftrightarrow 4 R^{3}+4 R^{2} r-15 R r^{2}-18 r^{3} \geq 0 \Leftrightarrow(R-2 r)(2 R+r)^{2} \geq 0$, obviously from Euler's inequality $R \geq 2 r$. Equality holds if and only if $\triangle A B C$ is equilateral.

RHS inequality

Using the Lemma the inequality holds:
$\frac{s^{4}+s^{2}\left(16 R r+2 r^{2}\right)+r^{2}(4 R+r)^{2}}{4 r s^{2}\left(s^{2}+2 r^{2}+2 R r\right)} \leq \frac{1}{2 r} \Leftrightarrow s^{2}\left(s^{2}-12 R r\right) \geq r^{2}(4 R+r)^{2}$, which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$. It remains to prove that: $\frac{r(4 R+r)^{2}}{R+r}\left(16 R r-5 r^{2}-12 R r\right) \geq r^{2}(4 R+r)^{2} \Leftrightarrow R \geq 2 r$ (Euler's inequality)

Equality holds if and only if $\triangle A B C$ is equilateral.

Remark.

Between the sums $\sum \frac{1}{r_{b}+r_{c}}$ and $\sum \frac{1}{h_{b}+h_{c}}$ the following inequality holds:

7) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{1}{r_{b}+r_{c}} \leq \sum \frac{1}{h_{b}+h_{c}}
$$

Proposed by Marin Chirciu - Romania

Solution

Using the following Lemma the above inequality holds:

$$
\frac{s^{2}+(4 R+r)^{2}}{4 R s^{2}} \leq \frac{s^{4}+s^{2}\left(16 R r+2 r^{2}\right)+r^{2}(4 R+r)^{2}}{4 r s^{2}\left(s^{2}+2 r^{2}+2 R r\right)} \Leftrightarrow
$$

$$
\Leftrightarrow s^{2}\left[s^{2}(R-r)-2 r^{2}(4 R+r)\right] \geq r^{2}(4 R+r)^{2}(R+r) \text {, which follows from Gerretsen's }
$$

$$
\text { inequality } s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r} \text {. It remains to prove that: }
$$

$$
\frac{r(4 R+r)^{2}}{R+r}\left[\left(16 R r-5 r^{2}\right)(R-r)-2 r^{2}(4 R+r)\right] \geq r^{2}(4 R+r)^{2}(R+r) \Leftrightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$\Leftrightarrow 15 R^{2}-31 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(15 R-r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$. Equality holds if and only if the triangle is equilateral.

Remark.

We can write the inequalities:
8) In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{R} \leq \sum \frac{1}{r_{b}+r_{c}} \leq \sum \frac{1}{h_{b}+h_{c}} \leq \frac{1}{2 r}
$$

Solution

See inequalities 1), 7) and 5).
Equality holds if and only if ABC triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro

