

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro ABOUT AN INEQUALITY BY GEORGE APOSTOLOPOULOS-II

By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
2 \leq \sum \frac{1}{\sin ^{2} A+\sin B \sin C} \leq 2\left(\frac{R}{2 r}\right)^{2}
$$

Proposed by George Apostolopoulos - Greece

Solution

LHS inequality. Using Bergström's inequality, we obtain:

$$
\begin{gathered}
\sum \frac{1}{\sum \sin ^{2} A+\sin B+\sin C} \geq \frac{9}{\sum\left(\sin ^{2} A+\sin B \sin C\right)}=\frac{9}{\sum \sin ^{2} A+\sum \sin B \sin C}= \\
=\frac{9}{\frac{s^{2}-r^{2}-4 R r}{2 R^{2}}+\frac{s^{2}+r^{2}+4 R r}{4 R^{2}}}=\frac{9}{\frac{3 s^{2}-r^{2}-4 R r}{4 R^{2}}}=\frac{36 R^{2}}{3 s^{2}-r^{2}-4 R r} \stackrel{(1)}{\geq} 2 \text {, where }(1) \Leftrightarrow \\
\Leftrightarrow 18 R^{2} \geq 3 s^{2}-r^{2}-4 R r, \text { it follows from Gerretsen's inequality } s^{2} \leq 4 R^{2}+4 R r+3 r^{2} . \\
\text { It remains to prove that: } \\
\Leftrightarrow 18 R^{2} \geq 3\left(4 R^{2}+4 R r+3 r^{2}\right)-r^{2}-4 R r \Leftrightarrow 3 R^{2}-4 R r-4 r^{2} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)(3 R+2 r) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r . \\
\text { Above we've used the known inequalities in triangle: } \\
\sum \sin ^{2} A=\frac{s^{2}-r^{2}-4 R r}{2 R^{2}} \text { and } \sum \sin B \sin C=\frac{s^{2}+r^{2}+4 R r}{4 R^{2}} \\
\text { Equality holds if and only if the triangle is equileral. } \\
R H S \text { inequality. }
\end{gathered}
$$

Using means inequalities: $\sin ^{2} A+\sin B \sin C \geq 2 \sqrt{\sin ^{2} A \sin B \sin C}$, we obtain:

$$
\begin{gathered}
\sum \frac{1}{\sin ^{2} A+\sin B \sin C} \leq \sum \frac{1}{2 \sqrt{\sin ^{2} A \sin B \sin C}}=\frac{1}{2 \sqrt{\Pi \sin A}} \sum \frac{1}{\sqrt{\sin A}} \stackrel{(1)}{\leq} 2\left(\frac{R}{2 r}\right)^{2} \\
\text { where (1) } \Leftrightarrow \frac{1}{\sqrt{\Pi \sin A}} \sum \frac{1}{\sqrt{\sin A}} \leq\left(\frac{R}{r}\right)^{2} \text {, which follows from: }
\end{gathered}
$$

CBS inequality: $\sum \frac{1}{\sqrt{\sin A}} \leq \sqrt{3 \sum \frac{1}{\sin A}}$ and the identites $\sum \frac{1}{\sin A}=\frac{s^{2}+r^{2}+4 R r}{2 r s}, ~ \Pi \sin A=\frac{r s}{2 R^{2}}$
We obtain $\frac{1}{\sqrt{\Pi \sin A}} \sum \frac{1}{\sqrt{\sin A}} \leq \frac{1}{\sqrt{\frac{r s}{2 R^{2}}}} \sqrt{3 \cdot \frac{s^{2}+r^{2}+4 R r}{2 r s}}=\frac{R}{r s} \sqrt{3\left(s^{2}+r^{2}+4 R r\right)} \stackrel{(2)}{\leq}\left(\frac{R}{r}\right)^{2}$, where (2)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\Leftrightarrow r \sqrt{3\left(s^{2}+r^{2}+4 R r\right)} \leq s R \Leftrightarrow 3 r^{2}\left(s^{2}+r^{2}+4 R r\right) \leq s^{2} R^{2} \Leftrightarrow$
$\Leftrightarrow s^{2}\left(R^{2}-3 r^{2}\right) \geq 3 r^{3}(4 R+r)$, which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2}$. It remains to prove:
$\left(16 R r-5 r^{2}\right)\left(R^{2}-3 r^{2}\right) \geq 3 r^{3}(4 R+r) \Leftrightarrow 16 R^{3}-5 R^{2} r-60 R r^{2}+12 r^{3} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)\left(16 R^{2}+27 R r-6 r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.

Equality holds if and only if the triangle is equilateral.

Remark.

We propose in the same way:

2) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{1}{\cos ^{2} A+\cos B \cos C} \geq \frac{12 r}{R}
$$

Proposed by Marin Chirciu - Romania

Solution

Using Bergström's inequality we obtain:

$$
\begin{aligned}
& \sum \frac{1}{\cos ^{2} A+\cos B \cos C} \geq \frac{9}{\sum\left(\cos ^{2} A+\cos B \cos C\right)}=\frac{9}{\sum \cos ^{2} A+\sum \cos B \cos C}= \\
& \quad=\frac{9}{\frac{6 R^{2}+4 R r+r^{2}-s^{2}}{2 R^{2}}+\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}}}=\frac{9}{\frac{8 R^{2}+8 R r+3 r^{2}-s^{2}}{4 R^{2}}}=\frac{36 R^{2}}{8 R^{2}+8 R r+3 r^{2}-s^{2}} \geq \frac{12 r}{R} \text { where (1) } \Leftrightarrow
\end{aligned}
$$

$\Leftrightarrow 36 R^{3} \geq 96 R^{2} r+96 R r^{2}+36 r^{3}-12 s^{2} r$, which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:

$$
36 R^{3} \geq 96 R^{2} r+96 R r^{2}+36 r^{3}-12 r\left(16 R r-5 r^{2}\right) \Leftrightarrow
$$

$\Leftrightarrow 3 R^{3}-8 R^{2} r+8 R r^{2}-8 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(3 R^{2}-2 R r+4 r^{2}\right) \geq 0$, obviously Euler's inequality. Above we have used the known inequalities in triangle:

$$
\sum \cos ^{2} A=\frac{6 R^{2}+4 R r+r^{2}-s^{2}}{2 R^{2}} \text { and } \sum \cos B \cos C=\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}}
$$

Equality holds if and only if the triangle is equilateral.
3) In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{2 R^{2}} \leq \sum \frac{1}{a^{2}+b c} \leq \frac{1}{8 r^{2}}
$$

LHS inequality. Using Bergström's inequality, we obtain:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\sum \frac{1}{a^{2}+b c} \geq \frac{9}{\sum\left(a^{2}+b c\right)}=\frac{9}{\sum a^{2}+\sum b c}=\frac{9}{2\left(s^{2}-r^{2}-4 R r\right)+s^{2}+r^{2}+4 R r}=$
$=\frac{9}{3 s^{2}-r^{2}-4 R r} \stackrel{(1)}{\geq} \frac{1}{2 R^{2}}$, where (1) $\Leftrightarrow 18 R^{2} \geq 3 s^{2}-r^{2}-4 R r$, which follows from Gerrtsen's
inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:
$18 R^{2} \geq 3\left(4 R^{2}+4 R r+3 r^{2}\right)-r^{2}-4 R r \Leftrightarrow 3 R^{2}-4 R r-4 r^{2} \geq 0 \Leftrightarrow$
$\Leftrightarrow(R-2 r)(3 R+2 r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
Above we have used the known inequalities in triangle:
$\sum a^{2}=2\left(s^{2}-r^{2}-4 R r\right)$ and $\sum b c=s^{2}+r^{2}+4 R r$.
The equality holds if and only if the triangle is equilateral.
RHS inequality. Using the means inequality: $a^{2}+b c \geq 2 \sqrt{a^{2} b c}$, we obtain:

$$
\sum \frac{1}{a^{2}+b c} \leq \sum \frac{1}{2 \sqrt{a^{2} b c}}=\frac{1}{2 \sqrt{\prod a}} \sum \frac{1}{\sqrt{a}} \stackrel{(1)}{\leq} \frac{1}{8 r^{2}}
$$

where (1) $\Leftrightarrow \frac{1}{\sqrt{\Pi a}} \sum \frac{1}{\sqrt{a}} \leq\left(\frac{1}{2 r}\right)^{2}$, which follows from CBS inequality $\sum \frac{1}{\sqrt{a}} \leq \sqrt{3 \sum \frac{1}{a}}$ and the

$$
\text { identities } \sum \frac{1}{a}=\frac{s^{2}+r^{2}+4 R r}{4 R r s}, \Pi a=4 R r s . \text { We obtain }
$$

$$
\begin{gathered}
\frac{1}{\sqrt{\Pi a}} \sum \frac{1}{\sqrt{a}} \leq \frac{1}{\sqrt{4 R r s}} \sqrt{3 \cdot \frac{s^{2}+r^{2}+4 R r}{4 R r s}}=\frac{1}{4 R r s} \sqrt{3\left(s^{2}+r^{2}+4 R r\right)} \stackrel{(2)}{\leq}\left(\frac{1}{2 r}\right)^{2}, \text { where } \text { (2) } \\
\Leftrightarrow r \sqrt{3\left(s^{2}+r^{2}+4 R r\right)} \leq s R \Leftrightarrow 3 r^{2}\left(s^{2}+r^{2}+4 R r\right) \leq s^{2} R^{2} \Leftrightarrow \\
\Leftrightarrow s^{2}\left(R^{2}-3 r^{2}\right) \geq 3 r^{3}(4 R+r), \text { which follows from Gerretsen's inequality }
\end{gathered}
$$

$$
s^{2} \geq 16 R r-5 r^{2} . \text { It remains to prove that: }
$$

$\left(16 R r-5 r^{2}\right)\left(R^{2}-3 r^{2}\right) \geq 3 r^{3}(4 R+r) \Leftrightarrow 16 R^{3}-5 R^{2} r-60 R r^{2}+12 r^{3} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)\left(16 R^{2}+27 R r-6 r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.

Equality holds if and only if the triangle is equilateral.
4) In $\triangle A B C$ the following inequality holds:

$$
\frac{9 r}{R} \leq \sum \frac{1}{\tan ^{2} \frac{A}{2}+\tan \frac{B}{2} \tan \frac{C}{2}} \leq \frac{9 R}{4 r}
$$

Proposed by Marin Chirciu - Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution

LHS inequality. Using Bergström's inequality we obtain:

$$
\begin{aligned}
& \sum \frac{1}{\tan ^{2} \frac{A}{2}+\tan \frac{B}{2} \tan \frac{C}{2}} \geq \frac{9}{\sum\left(\tan ^{2} \frac{A}{2}+\tan \frac{B}{2} \tan \frac{C}{2}\right)}=\frac{9}{\sum \tan ^{2} \frac{A}{2}+\sum \tan \frac{B}{2} \tan \frac{C}{2}}= \\
= & \frac{9}{\frac{(4 R+r)^{2}-2 s^{2}}{s^{2}}+1}=\frac{9}{(4 R+r)^{2}-s^{2}} \stackrel{(1)}{\geq} \frac{9 r}{R}, \text { where (1) } \Leftrightarrow s^{2}(R+r) \geq r(4 R+r)^{2}, \text { which follows }
\end{aligned}
$$

from Gerretsen's inequality $s^{2} \leq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$.
Above we've used the known inequaity in triangle:

$$
\sum \tan ^{2} \frac{A}{2}=\frac{(4 R+r)^{2}-2 s^{2}}{s^{2}} \text { and } \sum \tan \frac{B}{2} \tan \frac{C}{2}=1 .
$$

Equality holds if and only if the triangle is equilateral. RHS inequality. Using the means inequality: $\tan ^{2} \frac{A}{2}+\tan \frac{B}{2} \tan \frac{C}{2} \geq 2 \sqrt{\tan ^{2} \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}$, we obtain: $\sum \frac{1}{\tan ^{2} \frac{A}{2}+\tan \frac{B}{2} \tan \frac{C}{2}} \leq \sum \frac{1}{2 \sqrt{\tan ^{2} \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}}=\frac{1}{2 \sqrt{\Pi \tan \frac{A}{2}}} \sum \frac{1}{\sqrt{\tan \frac{A}{2}}} \stackrel{\text { (1) }}{\leq} \frac{9 R}{4 r^{\prime}}$ where (1) $\Leftrightarrow \frac{1}{\sqrt{\Pi \tan \frac{A}{2}}} \sum \frac{1}{\sqrt{\tan \frac{A}{2}}} \leq \frac{9 R}{2 r^{\prime}}$, which follows from CBS inequalit: $\sum \frac{1}{\sqrt{\tan \frac{A}{2}}} \leq \sqrt{3 \sum \frac{1}{\tan \frac{A}{2}}}$ and the identites $\sum \frac{1}{\tan \frac{A}{2}}=\frac{s}{r}, \Pi \tan \frac{A}{2}=\frac{r}{s}$. We obtain $\frac{1}{\sqrt{\Pi \tan \frac{A}{2}}} \sum \frac{1}{\sqrt{\tan \frac{A}{2}}} \leq \frac{1}{\sqrt{\frac{r}{s}}} \sqrt{3 \cdot \frac{s}{r}}=\frac{s}{r} \sqrt{3} \stackrel{(2)}{\leq} \frac{9 R}{2 r^{\prime}}$, where
(2) $\Leftrightarrow s \leq \frac{R \sqrt{3}}{2}$ (Mitrinovic's inequality)

Equality holds if and only if the triangle is equilateral.
5) In $\triangle A B C$ the following inequality holds:

$$
2\left(\frac{r}{R}\right)^{2} \leq \sum \frac{1}{\cot ^{2} \frac{A}{2}+\cot \frac{B}{2} \cot \frac{C}{2}} \leq \frac{R}{4 r}
$$

Proposed by Marin Chirciu - Romania

Solution

LHS inequality. Using Bergström's inequality obtain:

$=\frac{9}{\frac{s^{2}-2 r^{2}-8 R r}{r^{2}}+\frac{4 R+r}{r}}=\frac{9 r^{2}}{s^{2}-r^{2}-4 R r} \stackrel{(1)}{\geq} \frac{2 r^{2}}{R^{2}}$, where (1) $\Leftrightarrow 2 s^{2} \leq 9 R^{2}+8 R r+2 r^{2}$, which follows from Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove:
$2\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 9 R^{2}+8 R r+2 r^{2} \Leftrightarrow R^{2} \geq 4 r^{2}$, obviously from Euler's inequality $R \geq 2 r$. Above we've used the known inequalities in triangle:
$\sum \cot ^{2} \frac{A}{2}=\frac{s^{2}-2 r^{2}-8 R r}{r^{2}}$ and $\sum \cot \frac{B}{2} \cot \frac{C}{2}=\frac{4 R+r}{r}$. Equality holds if and only if the triangle is equilateral.

RHS inequality. Using the means inequality $\cot ^{2} \frac{A}{2}+\cot \frac{B}{2} \cot \frac{C}{2} \geq 2 \sqrt{\cot ^{2} \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}}$ we
 $\Leftrightarrow \frac{1}{\sqrt{\Pi \tan \frac{A}{2}}} \sum \frac{1}{\sqrt{\tan \frac{A}{2}}} \leq \frac{R}{2 r}$, which follows from CBS inequality $\sum \frac{1}{\sqrt{\cot \frac{A}{2}}} \leq \sqrt{3 \sum \frac{1}{\cot \frac{A}{2}}}$ and the identites $\sum \frac{1}{\cot \frac{A}{2}}=\frac{4 R+r}{s} \Pi \cot \frac{A}{2}=\frac{s}{r}$. We obtain

$$
\frac{1}{\sqrt{\Pi \cot \frac{A}{2}}} \sum \frac{1}{\sqrt{\cot \frac{A}{2}}} \leq \frac{1}{\sqrt{\frac{s}{r}}} \sqrt{3 \cdot \frac{4 R+r}{s}}=\sqrt{3 \cdot \frac{r(4 R+r)}{s^{2}}} \stackrel{(2)}{\leq} \frac{R}{2 r} \text {, where (2) }
$$

$\Leftrightarrow s^{2} R^{2} \geq 12 r^{3}(4 R+r)$, which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:

$$
\left(16 R r-5 r^{2}\right) R^{2} \geq 12 r^{3}(4 R+r) \Leftrightarrow 16 R^{3}-5 R^{2} r-48 R r^{2}-12 r^{3} \Leftrightarrow
$$

$\Leftrightarrow(R-2 r)\left(16 R^{2}+27 R r+6 r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$. Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro

