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 ABOUT AN INEQUALITY BY MARIAN URSĂRESCU-II   

By Marin Chirciu – Romania  

1) Prove that in any acute-angled triangle the following inequality holds: 

��

����
+

��

����
+

��

����
≥ [��(� + �)]� 

Proposed by Marian Ursărescu – Romania  

Solution.Using Bergström’s inequality we obtain: 
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It suffices to prove that: 
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≥ 4�(4� + �) ⇔ �� ≥ 2�� + 8�� + 3�� (Walker’s inequality, acute) 

Equality holds if and only if the triangle is equilateral. 

Remark. 

In the same way we propose: 

2) Prove that in any acute-angled triangle the following inequality 

holds: 
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Proposed by Marin Chirciu – Romania  

Solution.Using Bergström’s inequality we obtain: 
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Equality holds if and only if the triangle is equilateral. 
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3) Prove that in any acute-angled triangle the following inequality 

holds: 
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Solution. Using Bergström’s inequality we obtain: 
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≥ 4�(4� + �) ⇔ �� ≥ 2�� + 8�� + 3�� (Walker’s inequality, acute) 

Equality holds if and only if the triangle is equilateral. 

4) In ���� the following inequality holds: 
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Proposed by Marin Chirciu – Romania  

Solution. Using Bergström’s inequality we obtain: 
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It suffices to prove that: 
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≥ 8� ⇔ ∑�� ≥ 12�� ⇔ 

⇔ 2�(�� − 3�� − 6��) ≥ 12��� ⇔ �� ≥ 12�� + 3��, which follows from Gerretsen’s 

inequality �� ≥ 16�� − 5��. It remains to prove that: 

16�� − 5�� ≥ 12�� + 3�� ⇔ � ≥ 2� (Euler’s inequality) 

Equality holds if and only if the triangle is equilateral. 
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