

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
ABOUT AN INEQUALITY BY MARIAN URSĂRESCU-III
By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
108 \sum \sin ^{2} A \cot B \cot C \leq\left[2\left(\frac{R}{r}\right)^{2}+1\right]^{2}
$$

Proposed by Marian Ursărescu - Romania

Solution

We prove the following lemma:

Lemma.

2) In $\triangle A B C$ the following relationship holds:

$$
\sum \sin ^{2} A \cot B \cot C=\frac{6 R^{2}+4 R r+r^{2}-s^{2}}{2 R^{2}}
$$

Proof.

$$
\begin{gathered}
\text { We have } \sum \sin ^{2} A \cot B \cot C=\sum\left(1-\cos ^{2} A\right) \cot B \cot C= \\
=\sum \cot B \cot C-\cos ^{2} A \cot B \cot C=1-\prod \cos A \sum \frac{\cos A}{\sin B \sin C}= \\
=1-\prod \cos A \cdot \frac{1}{\prod \sin A} \sum \sin A \cos A=1-\prod \cot A \sum \frac{1}{2} \sin 2 A= \\
=1-\frac{s^{2}-(2 R+r)^{2}}{2 s r} \cdot \frac{1}{2} \cdot \frac{2 s r}{R^{2}}=1-\frac{s^{2}-(2 R+r)^{2}}{2 R^{2}}=\frac{2 R^{2}+(2 R+r)^{2}-s^{2}}{2 R^{2}}= \\
=\frac{6 R^{2}+4 R r+r^{2}-s^{2}}{2 R^{2}}, \text { where above we've used the known inequalities in triangle: } \\
\sum \cot B \cot C=1, \Pi \cot A=\frac{s^{2}-(2 R+r)^{2}}{2 s r} \text { and } \sum \sin 2 A=\frac{2 s r}{R^{2} .} \\
\text { Let's get back to the main problem. }
\end{gathered}
$$

Using the Lemma the inequality can be written:
$108 \cdot \frac{6 R^{2}+4 R r+r^{2}-s^{2}}{2 R^{2}} \leq\left[2\left(\frac{R}{r}\right)^{2}+1\right]^{2} \Leftrightarrow \frac{54\left(6 R^{2}+4 R r+r^{2}-s^{2}\right)}{R^{2}} \leq \frac{\left(2 R^{2}+r^{2}\right)^{2}}{r^{4}}$, which follows from Gerretsen's inequality: $s^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\frac{54\left(6 R^{2}+4 R r+r^{2}-16 R r+5 r^{2}\right)}{R^{2}} \leq \frac{\left(2 R^{2}+r^{2}\right)^{2}}{r^{4}} \Leftrightarrow \\
\Leftrightarrow 4 R^{6}+4 R^{4} r^{2}-323 R^{2} r^{4}+648 R^{2} r^{4}-324 r^{6} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)\left(4 R^{5}+8 R^{4} r+20 R^{3} r^{2}+40 R^{2} r^{3}-243 R r^{4}+162 r^{5}\right) \geq 0, \text { obviously from } \\
\text { Euler's inequality } R \geq 2 r . \text { Equality holds if and only if the triangle is equilateral. }
\end{gathered}
$$

Remark.

Inequality 1) can be strengthened:

3) In $\triangle A B C$ the following relationship holds:

$$
\sum \sin ^{2} A \cot B \cot C \leq 3\left(1-\frac{r}{R}\right)^{2}
$$

Proposed by Marin Chirciu - Romania

Solution

Using the Lemma and Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2}$, we obtain:

$$
\begin{gathered}
\frac{6 R^{2}+4 R r+r^{2}-s^{2}}{2 R^{2}} \leq \frac{6 R^{2}+4 R r+r^{2}-\left(16 R r-5 r^{2}\right)}{2 R^{2}}=\frac{6 R^{2}-12 R r+6 r^{2}}{2 R^{2}}= \\
=\frac{6(R-r)^{2}}{2 R^{2}}=3\left(1-\frac{r}{R}\right)^{2} . \text { Equality holds if and only if the triangle is equilateral. }
\end{gathered}
$$

Remark.

> Inequality 3) is stronger than 1).

4) In $\triangle A B C$ the following relationship holds:

$$
\sum \sin ^{2} A \cot B \cot C \leq 3\left(1-\frac{r}{R}\right)^{2} \leq \frac{1}{108}\left[2\left(\frac{R}{r}\right)^{2}+1\right]^{2}
$$

Solution

See inequality 3) and $3\left(1-\frac{r}{R}\right)^{2} \leq \frac{1}{108}\left[2\left(\frac{R}{r}\right)^{2}+1\right]^{2} \Leftrightarrow 324 r^{4}(R-r)^{2} \leq R^{2}\left(2 R^{2}+r^{2}\right)^{2}$
$\Leftrightarrow 18 r^{2}(R-r) \leq R\left(2 R^{2}+r^{2}\right) \Leftrightarrow 2 R^{3}-17 R r^{2}+18 r^{3} \geq 0 \Leftrightarrow$
$\Leftrightarrow(R-2 r)\left(2 R^{2}+4 R r-9 r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark.

Let's find an inequality having an opposite sense:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

5) In $\triangle A B C$ the following inequality holds:

$$
\sum \sin ^{2} A \cot B \cot C \geq 1-\left(\frac{r}{R}\right)^{2}
$$

Proposed by Marin Chirciu - Romania

Solution

Using the Lemma and Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ we obtain:
$\frac{6 R^{2}+4 R r+r^{2}-s^{2}}{2 R^{2}} \geq \frac{6 R^{2}+4 R r+r^{2}-\left(4 R^{2}+4 R r+3 r^{2}\right)}{2 R^{2}}=\frac{2 R^{2}-2 r^{2}}{2 R^{2}}=1-\left(\frac{r}{R}\right)^{2}$ Equality holds if and only if the triangle is equilateral.

Remark.

We can write the double inequality:
6) In $\triangle A B C$ the following relationship holds:

$$
1-\left(\frac{r}{R}\right)^{2} \leq \sum \sin ^{2} A \cot B \cot C \leq 3\left(1-\frac{r}{R}\right)^{2}
$$

Proposed by Marin Chirciu - Romania

Solution

See inequalities 3) and 5).
Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro

