

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

ABOUT AN INEQUALITY BY RAHIM SHAHBAZOV-I
By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:
$8 \cos A \cos B \cos C \leq\left(\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}\right)^{2}$

Proposed by Rahim Shahbazov-Azerbaijan

Solution

We prove the following inequality:
2) In $\triangle A B C$ the following relationship holds:

$$
8 \cos A \cos B \cos C \leq\left(\frac{2 r}{R}\right)^{2}
$$

Proof.

Using the identity $\Pi \cos A=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}$ the inequality can be written:
$8 \cdot \frac{s^{2}-(2 R+r)^{2}}{4 R^{2}} \leq\left(\frac{2 r}{R}\right)^{2} \Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen's inequality)
It suffices to prove that $\left(\frac{2 r}{R}\right)^{2} \leq\left(\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}\right)^{2} \Leftrightarrow \frac{2 r}{R} \leq \frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}$
3) In $\triangle A B C$ the following relationship holds:

$$
\frac{2 r}{R} \leq \frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}
$$

Proof.
Using the identities $\sum b c=s^{2}+r^{2}+4 R r$ and $\sum a^{2}=2\left(s^{2}-r^{2}-4 R r\right)$, the inequality
can be written: $\frac{2 r}{R} \leq \frac{s^{2}+r^{2}+4 R r}{2\left(s^{2}-r^{2}-4 R r\right)} \Leftrightarrow s^{2}(R-4 r)+r\left(4 R^{2}+17 R r+4 r^{2}\right) \geq 0$
We distinguish the following cases:
Case 1) If $(R-4 r) \geq 0$, the inequality is obvious.
Case 2) If $(R-4 r)<0$, the inequality can be written:
$r\left(4 R^{2}+17 R r+4 r^{2}\right) \geq s^{2}(4 r-R)$, which follows from Gerretsen's inequality
$s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
r\left(4 R^{2}+17 R r+4 r^{2}\right) \geq\left(4 R^{2}+4 R r+3 r^{2}\right)(4 r-R) \Leftrightarrow R^{3}-2 R^{2} r+R r^{2}-2 r^{3} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)\left(R^{2}+2 r^{2}\right) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r .
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral.

Remark.

We can write the sequence of inequalities:
4) In $\triangle A B C$ the following relationship holds:

$$
8 \cos A \cos B \cos C \leq\left(\frac{2 r}{R}\right)^{2} \leq\left(\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}\right)^{2} \leq 1
$$

Solution

See inequalities 2), 3) and $\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}} \leq 1 \Leftrightarrow a^{2}+b^{2}+c^{2} \geq a b+b c+c a$, obviously with

$$
\text { equality for } a=b=c \text {. }
$$

Equality holds if and only if the triangle is equilateral.

Remark.

In the same way we propose the following problems:
5) In $\triangle A B C$ the following relationship holds:
$8 \cos A \cos B \cos C \leq\left(\frac{R}{2 r}\right)^{2}\left(\frac{3 a b c}{a^{3}+b^{3}+c^{3}}\right)^{2}$

Proposed by Marin Chirciu - Romania

Solution

We prove the inequality:
6) In $\triangle A B C$ the following relationship holds:

$$
8 \cos A \cos B \cos C \leq\left(\frac{2 r}{R}\right)^{2}
$$

Proof.

> Using the identity $\Pi \cos A=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}$ we write the inequality: $8 \cdot \frac{s^{2}-(2 R+r)^{2}}{4 R^{2}} \leq\left(\frac{2 r}{R}\right)^{2} \Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen's inequality)

Equality holds if and only if the triangle is equilateral.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
It suffices to prove that: $\left(\frac{2 r}{R}\right)^{2} \leq\left(\frac{R}{2 r}\right)^{2}\left(\frac{3 a b c}{a^{3}+b^{3}+c^{3}}\right) \Leftrightarrow \frac{2 r}{R} \leq \frac{R}{2 r} \cdot \frac{3 a b c}{a^{3}+b^{3}+c^{3}}$
7) In $\triangle A B C$ the following relationship holds:

$$
\frac{2 r}{R} \leq \frac{R}{2 r} \cdot \frac{3 a b c}{a^{3}+b^{3}+c^{3}}
$$

Proof.

Using the identities $\sum a^{3}=2 s\left(s^{2}-3 r^{2}-6 R r\right)$ and $a b c=4 R r s$, the inequality can be

$$
\text { written: } \frac{2 r}{R} \leq \frac{R}{2 r} \cdot \frac{3 \cdot 4 R r s}{2 s\left(s^{2}-3 r^{2}-6 R r\right)} \Leftrightarrow 2 r\left(s^{2}-3 r^{2}-6 R r\right) \leq 3 R^{3}
$$

which follows from Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$
It remains to prove that: $2 r\left(4 R^{2}+4 R r+3 r^{2}-3 r^{2}-6 R r\right) \leq 3 R^{3} \Leftrightarrow$
$\Leftrightarrow 3 R^{3}-8 R^{2} r+4 R r^{2}-2 r^{3} \geq 0 \Leftrightarrow R(R-2 r)(3 R-2 r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark.

We can write the sequence of inequalities:

8) In $\triangle A B C$ the following relationship holds:

$8 \cos A \cos B \cos C \leq\left(\frac{2 r}{R}\right)^{2} \leq\left(\frac{R}{2 r}\right)^{2}\left(\frac{3 a b c}{a^{3}+b^{3}+c^{3}}\right)^{2} \leq\left(\frac{R}{2 r}\right)^{2}$

Solution

See inequalities 6), 7) and $\frac{3 a b c}{a^{3}+b^{3}+c^{3}} \leq 1 \Leftrightarrow a^{3}+b^{3}+c^{3} \geq 3 a b c$, obviously with equality for $a=b=c$.
Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro

