

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT INEQUALITY IN TRIANGLE-1196

By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\sum \sqrt{r_{a}\left(r_{b}-r\right)\left(r_{c}-r\right)} \geq 2 r\left(\sqrt{m_{a}}+\sqrt{m_{b}}+\sqrt{m_{c}}\right)
$$

Proposed by Bogdan Fuștei - Romania

Solution

$$
\text { Using } r_{a}=\frac{s}{s-a} \text { and } r=\frac{s}{s} \text { we obtain }
$$

$\sum \sqrt{r_{a}\left(r_{b}-r\right)\left(r_{c}-r\right)}=\sum \sqrt{\frac{s}{s-a}\left(\frac{s}{s-b}-\frac{s}{s}\right)\left(\frac{s}{s-c}-\frac{s}{s}\right)}=\sum \sqrt{\frac{r s}{s-a} \cdot \frac{r b}{s-b} \cdot \frac{r c}{s-c}}=\sum \sqrt{\frac{r^{3} s b c}{r^{2} s}}=\sum \sqrt{r b c}$ (1) Using $\frac{R}{2 r} \geq \frac{m_{a}}{h_{a}}$ (L. Panaitopol, GM 11/1982), we obtain:
$m_{a} \leq \frac{R}{2 r} \Leftrightarrow m_{a} \leq \frac{R}{2 r} \cdot \frac{2 S}{a}=\frac{R s}{a}=\frac{b c}{4 r^{\prime}}$, wherefrom $\sum \sqrt{m_{a}} \leq \sum \sqrt{\frac{b c}{4 r}}$
From (1) and (2) we deduce the inequality from enunciation.
Equality holds if and only if the triangle is equilateral.

Remark.

We propose in the same way:
2) In $\triangle A B C$ the following relationship holds:

$$
\sum \sqrt{h_{a}\left(h_{b}-r\right)\left(h_{c}-r\right)} \leq 2 s \sqrt{r}
$$

Proposed by Marin Chirciu - Romania

Solution

Using $h_{a}=\frac{2 S}{s}$ and $r=\frac{S}{s}$ we obtain:

$$
\begin{aligned}
& \sum \sqrt{h_{a}\left(h_{b}-r\right)\left(h_{c}-r\right)}=\sum \sqrt{\frac{2 S}{a}\left(\frac{2 S}{b}-\frac{S}{s}\right)\left(\frac{2 S}{s}-\frac{S}{s}\right)}=\sum \sqrt{\frac{2 r s}{a} \cdot \frac{r s(a+c)}{b s} \cdot \frac{r s(a+b)}{c s}} \\
& \quad=\sum \sqrt{\frac{2 r^{3} s(a+b)(a+c)}{a b c}}=\sum \sqrt{\frac{2 r^{3} s(a+b)(a+c)}{4 R r s}}=\sum \sqrt{\frac{r^{2}(a+b)(a+c)}{2 R}}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \begin{array}{c}
=\frac{r}{\sqrt{2 R}} \sum \sqrt{(a+b)(a+c)} \stackrel{\text { www-ssmrmh.ro }}{\leq} \frac{r}{\sqrt{2 R}} \sum \frac{(a+b)+(a+c)}{2}= \\
=\frac{r}{\sqrt{2 R}} \cdot 4 s=\frac{4 S}{\sqrt{2 R}} \stackrel{\text { Euler }}{\leq} 2 s \sqrt{r}
\end{array}
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.
3) In $\triangle A B C$ the following relationship holds:

$$
\sum \sqrt{b c\left(h_{b}-r\right)\left(h_{c}-r\right)} \leq 4 S
$$

Proposed by Marin Chirciu - Romania

Solution

$$
\text { Using } h_{a}=\frac{2 S}{s} \text { and } r=\frac{s}{s} \text { we obtain: }
$$

$$
\begin{aligned}
& \sum \sqrt{b c\left(h_{b}-r\right)\left(h_{c}-r\right)}=\sum \sqrt{b c\left(\frac{2 S}{b}-\frac{S}{s}\right)\left(\frac{2 S}{s}-\frac{S}{S}\right)}=\sum \sqrt{b c \cdot \frac{r s(a+c)}{b s} \cdot \frac{r s(a+b)}{c s}} \\
& \quad=r \sum \sqrt{(a+b)(a+c)}=r \sum \sqrt{(a+b)(a+c)} \stackrel{A M-A G}{\leq} r \sum \frac{(a+b)+(a+c)}{2}=r \cdot 4 s=4 S
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro

