

ROMANIAN MATHEMATICAL MAGAZINE

By Bogdan Fuştei-Romania

In $\triangle A B C$ we show it that $s^{2}=n_{a}^{2}+2 r_{a} h_{a}$ (and analogs)

$$
\begin{gathered}
s^{2}-n_{a}^{2}=\left(s+n_{a}\right)\left(s-n_{a}\right)=2 r_{a} h_{a} \Rightarrow \frac{s-n_{a}}{h_{a}}=\frac{2 n_{a}}{s+n_{a}} \\
\frac{s}{h_{a}}=\frac{n_{a}}{h_{a}}+\frac{2 r_{a}}{s+n_{a}} \text { (and analogs) } 2 S=a \cdot h_{a}=2 s r \text { (and analogs) }
\end{gathered}
$$

$$
\begin{gathered}
\frac{a}{2 r}=\frac{s}{h_{a}}+\frac{n_{a}}{s+n_{a}} \\
\frac{s}{r}=\sum_{c y c} \frac{n_{a}}{h_{a}}+2 \sum_{c y c} \frac{r_{a}}{n_{a}+s} \\
\frac{s-n_{a}}{r_{a}}=\frac{2 h_{a}}{n_{a}+s} \text { (and analogs) and } \frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}=\frac{1}{r}
\end{gathered}
$$

So, we have: $\frac{s}{r}=\sum_{c y c} \frac{n_{a}}{h_{a}}+2 \sum_{c y c} \frac{r_{a}}{n_{a}+s}$ but $h_{a}=\frac{2 r_{b} r_{c}}{r_{b}+r_{c}} \Rightarrow \frac{1}{h_{a}}=\frac{1}{2}\left(\frac{1}{r_{b}}+\frac{1}{r_{c}}\right)$ hence

$$
\frac{n_{a}}{h_{a}}=\frac{1}{2}\left(\frac{n_{a}}{r_{b}}+\frac{n_{a}}{r_{c}}\right) \text { (and analogs), summing, we get: }
$$

$$
\begin{gather*}
2 \sum_{c y c} \frac{n_{a}}{h_{a}}=\sum_{c y c} \frac{n_{b}+n_{c}}{r_{a}} \tag{1}\\
\frac{2 s}{r}=2 \sum_{c y c} \frac{n_{a}}{h_{a}}+\sum_{c y c} \frac{4 r_{a}}{n_{a}+s} \tag{2}\\
\frac{s}{r}=\sum_{c y c} \frac{n_{a}}{h_{a}}+\sum_{c y c} \frac{2 r_{a}}{n_{a}+s} \tag{3}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

From (1), (2), (3) it follows that

$$
\frac{3 s}{r}=\frac{\sum n_{a}}{r}+2 \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s}
$$

We known that $s \geq r \sqrt{3}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \Rightarrow \frac{3 s}{r}=3 \sqrt{3}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \Rightarrow$

$$
\frac{\sum n_{a}}{r}+2 \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq 3 \sqrt{3}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)
$$

Hence,

$$
2 \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq 3 \sqrt{3}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-\frac{\sum n_{a}}{r}
$$

Summing, it follows

$4 \sum_{\text {cyc }} \frac{\boldsymbol{h}_{a}+2 r_{a}}{n_{a}+s} \geq 3 \sqrt{3} \sum_{\text {cyc }} \frac{b+\boldsymbol{c}}{a}-2 \frac{\sum n_{a}}{r} \Leftrightarrow$

$$
\sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \frac{3 \sqrt{3}}{4} \sum_{c y c} \frac{b+c}{a}-\frac{\sum n_{a}}{2 r}
$$

Now,

$$
\begin{gathered}
\frac{s}{r} \geq \sqrt{4-\frac{2 r}{R}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \text { and } \frac{s}{r} \geq \sqrt{4-\frac{2 r}{R}}\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right) \text { hence }} \\
\frac{3 s}{r} \geq 3 \sqrt{4-\frac{2 r}{R}}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \Leftrightarrow \frac{\sum n_{a}}{r}+2 \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq 3 \sqrt{4-\frac{2 r}{R}}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \\
2 \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq 3 \sqrt{4-\frac{2 r}{R}}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-\frac{\sum n_{a}}{r}
\end{gathered}
$$

Similarly, we have:
$2 \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \sqrt{4-\frac{2 r}{R}}\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)-\frac{\sum n_{a}}{r}$
Adding, we get:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$4 \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq 3 \sqrt{4-\frac{2 r}{R}}\left(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right)-2 \frac{\sum n_{a}}{r}$
Hence,

$$
\begin{gathered}
\sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \frac{3}{4} \sqrt{4-\frac{2 r}{R}}\left(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right)-\frac{\sum n_{a}}{2 r} \\
h_{a}=\frac{2 s r}{a}=\frac{(a+b+c) r}{a} \Rightarrow h_{a}=\left(1+\frac{b+c}{a}\right) r \Rightarrow \frac{h_{a}-r}{r}=\frac{b+c}{a} \Rightarrow \\
\sum_{c y c} \frac{b+c}{a}=\frac{\sum\left(h_{a}-r\right)}{r}
\end{gathered}
$$

Hence,

$$
\begin{aligned}
& \sum_{\text {cyc }} \frac{\boldsymbol{h}_{a}+2 r_{a}}{n_{a}+s} \geq \frac{3 \sqrt{3} \sum h_{a}-2 \sum n_{a}-9 \sqrt{3} r}{4 r} \Leftrightarrow \\
& \frac{9 \sqrt{3}}{4}+\sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \frac{3 \sqrt{3} \sum h_{a}-2 \sum n_{a}}{4 r}
\end{aligned}
$$

Now, we known that

$$
\sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \frac{3}{4} \sqrt{4-\frac{2 r}{R}}\left(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right)-\frac{\sum n_{a}}{2 r}
$$

Hence,

$$
\begin{gathered}
\sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \frac{3}{4} \sqrt{4-\frac{2 r}{R}} \cdot \frac{\sum\left(h_{a}-r\right)}{r}-\frac{\sum n_{a}}{2 r} \\
\frac{9}{4} \sqrt{4-\frac{2 r}{R}}+\sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \frac{3}{4} \sqrt{4-\frac{2 r}{R}} \cdot \frac{\sum h_{a}}{4 r}-\frac{\sum n_{a}}{2 r}
\end{gathered}
$$

We known that:

$$
\frac{s}{r} \geq \sqrt{\left(4-\frac{2 r}{R}\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\frac{3 s}{r}=\frac{\sum^{\text {www.ssmrmh.ro }} n_{a}}{r}+2 \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s}
$$

$\frac{\sum n_{a}}{3 r}+\frac{2}{3} \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \sqrt{\left(4-\frac{2 r}{R}\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)}$
And we known that:
$s \geq \sqrt{r(4 R+r)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)} \Leftrightarrow \frac{s}{r} \geq \sqrt{\left(1+\frac{4 R}{r}\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)}$
Hence,

$$
\frac{\sum n_{a}}{3 r}+\frac{2}{3} \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \sqrt{\left(1+\frac{4 R}{r}\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)}
$$

And similarly,

$$
s \geq \sqrt{r(4 R+r)\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)}
$$

Hence,

$$
\begin{gathered}
\frac{\sum n_{a}}{3 r}+\frac{2}{3} \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq \sqrt{\left(1+\frac{4 R}{r}\right)\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)} \\
\left(\frac{s}{r}\right)^{2} \geq \sqrt{\left(1+\frac{4 R}{r}\right)^{2}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)} \\
\frac{s}{r} \geq \sqrt[4]{\left(1+\frac{4 R}{r}\right)^{2}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)}=Q \\
\text { Therefore, } \\
\frac{\sum n_{a}}{3 r}+\frac{2}{3} \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \geq Q
\end{gathered}
$$

Now, we known that
$\frac{\sum A I}{r} \geq \frac{s}{r}+3(2-\sqrt{3})$ and $\frac{s}{r}=\frac{\sum n_{a}}{3 r}+\frac{2}{3} \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s}$ it follows that

ROMANIAN MATHEMATICAL MAGAZINE

$$
\frac{\sum\left(3 A I-n_{a}\right)}{3 r} \geq 3(2-\sqrt{3})+\frac{2}{3} \sum_{\text {cyc }} \frac{h_{a}+2 r_{a}}{n_{a}+s}
$$

We known that $n_{a}+g_{a} \geq 2 m_{a}$ (and analogs), then $n_{a} \geq 2 m_{a}-g_{a}$
Hence,

$$
\begin{gathered}
\frac{s}{r} \geq \frac{\sum\left(2 m_{a}-g_{a}\right)}{3 r}+\frac{2}{3} \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s} \\
h_{a}=\left(1+\frac{b+c}{a}\right) r ; \frac{b+c}{a}=\frac{r_{a}+h_{a}}{r_{a}}=1+\frac{h_{a}}{r_{a}} \\
h_{a}=\left(2+\frac{h_{a}}{r_{a}}\right) r \Rightarrow r_{a} h_{a}=\left(2 r_{a}+h_{a}\right) r \\
b c=s^{2}+r_{a}^{2}-4 R r_{a} \text {, then we have } \\
\frac{r_{a} h_{a}}{r}=2 r_{a}+h_{a} \text { (and analogs) } \\
\frac{3 s}{r}=\frac{\sum n_{a}}{r}+2 \sum_{c y c} \frac{h_{a}+2 r_{a}}{n_{a}+s}=\frac{\sum n_{a}}{r}+\frac{2}{r} \sum_{c y c} \frac{h_{a} r_{a}}{n_{a}+s}
\end{gathered}
$$

Hence,

$$
3 s=n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{h_{a} r_{a}}{n_{a}+s}
$$

We known that $n_{a}+g_{a} \geq \mathbf{2 m} m_{a} \Rightarrow n_{a} \geq \mathbf{2 m}-g_{a}$

$$
3 s \geq \sum_{c y c}\left(2 m_{a}-g_{a}\right)+2 \sum_{c y c} \frac{h_{a} r_{a}}{n_{a}+s}
$$

From $n_{a}+n_{b}+n_{c} \geq s \sqrt{3} \Rightarrow\left(n_{a}+n_{b}+n_{c}\right) \sqrt{3} \geq 3 s=n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{h_{a} r_{a}}{n_{a}+s}$
Therefore,

$$
\begin{gathered}
\frac{\sqrt{3}-1}{2}\left(n_{a}+n_{b}+n_{c}\right) \geq \sum_{c y c} \frac{h_{a} r_{a}}{n_{a}+s} \\
|b-c| \geq n_{a}-g_{a} \Rightarrow g_{a}+|b-c| \geq n_{a} \Rightarrow \frac{1}{n_{a}} \geq \frac{1}{g_{a}+|b-c|} \Rightarrow \\
3 s \geq \frac{b+c}{2} \cdot \cos \frac{A}{2} \Rightarrow \frac{m_{a}}{\cos \frac{A}{2}} \geq \frac{b+c}{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Adding, it follows that

$$
\sum_{c y c} \frac{m_{a}}{\cos \frac{A}{2}} \geq \sum_{c y c} \frac{b+c}{2}=a+b+c=2 s
$$

Hence,

$$
\begin{gathered}
\frac{1}{2} \sum_{c y c} \frac{m_{a}}{\cos \frac{A}{2}} \geq s \Rightarrow \frac{3}{2} \sum_{c y c} \frac{m_{a}}{\cos \frac{A}{2}} \geq 3 s \\
\frac{3}{2} \sum_{c y c} \frac{m_{a}}{\cos \frac{A}{2}} \geq n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{h_{a} r_{a}}{n_{a}+s} \\
\text { We known that } n_{a} g_{a} \geq m_{a} w_{a} \Rightarrow n_{a} \geq \frac{m_{a} w_{a}}{g_{a}} \text { then }
\end{gathered}
$$

$$
\begin{aligned}
& 3 s \geq \sum_{c y c} \frac{m_{a} w_{a}}{g_{a}}+2 \sum_{c y c} \frac{h_{a} r_{a}}{n_{a}+s} \\
& \cos A \cos B \cos C=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}
\end{aligned}
$$

If $\triangle A B C$ is obtuse triangle, then $\cos A \cos B \cos C \geq 0$ equality if triangle is right.

$$
\begin{gathered}
s^{2}-(2 R+r)^{2} \geq 0 \Rightarrow s \geq 2 R+r \Rightarrow 3 s \geq 3(2 R+r) \\
n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{h_{a} r_{a}}{n_{a}+s} \geq 3(2 R+2) \text { for non-obtuse triangle } \\
n_{a}+n_{b}+n_{c}<3(2 R+2)-2 \sum_{c y c} \frac{h_{a} r_{a}}{n_{a}+s} \text { for obtuse triangle. }
\end{gathered}
$$

We known that

$$
\begin{aligned}
& \frac{s}{r}=\sum_{c y c} \frac{n_{a}}{h_{a}}+2 \sum_{c y c} \frac{r_{a}}{n_{a}+s} \\
& \frac{s}{r}=\sum_{c y c} \frac{n_{a}}{r_{a}}+2 \sum_{c y c} \frac{h_{a}}{n_{a}+s}
\end{aligned}
$$

So, for non-obtuse triangle we have:

$$
\begin{aligned}
& \sum_{c y c} \frac{n_{a}}{h_{a}} \geq 1+\frac{2 R}{r}-2 \sum_{c y c} \frac{r_{a}}{n_{a}+s} \\
& \sum_{c y c} \frac{n_{a}}{r_{a}} \geq 1+\frac{2 R}{r}-2 \sum_{c y c} \frac{h_{a}}{n_{a}+s}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Let be $P \in(A B C), A, B, C$-non-collinear. If $P A=x ; P B=y ; P C=z$ then

$$
a y z+b x z+c x y \geq a b c \text { (Cocea-Hayashi inequality) }
$$

Let be $P=N_{a}$-Nagel's point, then $A N_{a}=\sqrt{(b-c)^{2}+4 r^{2}}$ (and analogs).
But we show it that: $\frac{A N_{a}}{2 r}=\frac{n_{a}}{h_{a}}$ (and analogs), hence

$$
\begin{gathered}
\frac{a B N_{a} \cdot C N_{a}}{4 r^{2}}+\frac{b C N_{a} \cdot A N_{a}}{4 r^{2}}+\frac{c A N_{a} \cdot B N_{a}}{4 r^{2}} \geq \frac{a b c}{4 r^{2}} \Leftrightarrow \\
\frac{a B N_{a} \cdot C N_{a}}{4 r^{2}}+\frac{b C N_{a} \cdot A N_{a}}{4 r^{2}}+\frac{c A N_{a} \cdot B N_{a}}{4 r^{2}} \geq \frac{R}{r} \cdot s \\
b c=s^{2}+r_{a}^{2}-4 R r_{a}(\text { and analogs) } \\
h_{a} h_{b} h_{c}=\frac{2 S}{a} \cdot \frac{2 S}{b} \cdot \frac{2 S}{c}=\frac{2 S^{2}}{R} \\
a h_{a}=b h_{b}=c h_{c}=2 S=2 s r
\end{gathered}
$$

$$
2 S \sum_{c y c} n_{b} n_{c} \geq \frac{R}{r} \cdot s \cdot \frac{2 S^{2}}{R} \Rightarrow 2 s r \sum_{c y c} n_{b} n_{c} \geq 2 s \cdot s^{2} r \Rightarrow \sum_{c y c} n_{b} n_{c} \geq s^{2}
$$

So, it follows a new inequality

$$
\sum_{c y c} n_{b} n_{c} \geq s^{2}=\sum_{c y c} r_{a} r_{b}
$$

But $\sum n_{a}^{2} \geq \sum n_{a} n_{b} \Rightarrow\left(\sum n_{a}\right)^{2} \geq 3 \sum n_{a} n_{b} \geq 3 s^{2}$, hence

$$
\sum n_{a} \geq s \sqrt{3}
$$

Let be $\boldsymbol{G}_{\boldsymbol{e}}$-Gergonne's point, then $A A_{1}=g_{a}=A G_{a}+G_{a} A_{1}$
From Van-Aubel's theorem, we have:

$$
\begin{gathered}
\frac{A G_{e}}{A_{1} G_{e}}=\frac{s-a}{s-b}+\frac{s-a}{s-c} \\
s(s-a)=r_{b} r_{c} \text { (and analogs) } \\
\frac{A G_{e}}{A_{1} G_{e}}=\frac{s-a}{s-b}+\frac{s-a}{s-c}=\frac{r_{b} r_{c}}{r_{a} r_{c}}+\frac{r_{b} r_{c}}{r_{a} r_{b}}=\frac{r_{b}+r_{c}}{r_{a}} \\
\text { Hence, } \\
\frac{A G_{e}}{A_{1} G_{e}}=\frac{r_{b}+r_{c}}{r_{a}} \text { (and analogs) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\frac{A_{1} G_{e}}{A G_{e}}=\frac{r_{a}}{r_{b}+r_{c}} \Rightarrow \frac{A_{1} G_{e}+A G_{e}}{A G_{e}}=\frac{r_{a}+r_{b}+r_{c}}{r_{b}+r_{c}} ; r_{a}+r_{b}+r_{c}=4 R+r \\
A G_{e}=\frac{g_{a}\left(r_{b}+r_{c}\right)}{4 R+r} \text { (and analogs) }
\end{gathered}
$$

Adding, it follows that

$$
\begin{aligned}
& \sum_{c y c} A G_{e}=\frac{1}{4 R+r} \sum_{c y c} g_{a}\left(r_{b}+r_{c}\right) \\
& \frac{A G_{e}}{g_{a}}=\frac{r_{b}+r_{c}}{4 R+r} \text { (and analogs) } \\
& \frac{A G_{e}}{g_{a}}+\frac{B G_{e}}{g_{b}}+\frac{c G_{e}}{g_{c}}=2 \text { and } \frac{g_{a}}{4 R+r}=\frac{A G_{e}}{r_{b}+r_{c}}
\end{aligned}
$$

Adding, it follows that

$$
\sum_{c y c} \frac{A G_{e}}{r_{b}+r_{c}}=\frac{g_{a}+g_{b}+g_{c}}{r_{a}+r_{b}+r_{c}}
$$

But $g_{a} \leq A I+r$ (and analogs), from triangle inequality, hence

$$
\begin{aligned}
& g_{a}+g_{b}+g_{c} \leq 3 r+A I+B I+C I \text { then } \\
& \sum_{c y c} \frac{A G_{e}}{r_{b}+r_{c}} \leq \frac{3 r+A I+B I+C I}{r_{a}+r_{b}+r_{c}}
\end{aligned}
$$

But $m_{a}+m_{b}+m_{c} \leq r_{a}+r_{b}+r_{c}$ hence,

$$
\sum_{c y c} \frac{A G_{e}}{r_{b}+r_{c}} \leq \frac{3 r+A I+B I+C I}{m_{a}+m_{b}+m_{c}}
$$

$$
\frac{g_{a}}{A G_{e}}=\frac{4 R+r}{r_{b}+r_{c}} ; 2 r_{b} r_{c}=h_{a}\left(r_{b}+r_{c}\right) \text { (and analogs) }
$$

$$
\frac{g_{a}}{A G_{e}}=\frac{h_{a}\left(r_{b}+r_{c}\right)}{2 r_{b} r_{c}} \Rightarrow \frac{g_{a}}{h_{a}}=\frac{\left(r_{b}+r_{c}\right) A G_{e}}{2 r_{b} r_{c}}=\frac{(4 R+r) r_{a} \cdot A G_{e}}{2 r_{a} r_{b} r_{c}}
$$

$$
r_{a} r_{b} r_{c}=S s ; a h_{a}=b h_{b}=c h_{c}=2 S
$$

$$
\frac{a g_{a}}{a h_{a}}=\frac{a g_{a}}{2 S}=\frac{(4 R+r) r_{a} \cdot A G_{e}}{2 S s} \Rightarrow a g_{a}=\frac{(4 R+r) r_{a} \cdot A G_{e}}{s}
$$

$$
\tan \frac{A}{2}=\frac{r_{a}}{s} ; r_{a}+r_{b}+r_{b}=4 R+r \Rightarrow a g_{a}=\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right) r_{a} A G_{e}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

which follows from Blundon's inequality $\frac{4 R+r}{s} \geq \sqrt{4-\frac{2 r}{R}}$ then

$$
\frac{a g_{a}}{r_{a} A G_{e}} \geq \sqrt{4-\frac{2 r}{R}}
$$

Adding, it follows a new inequality

$$
\frac{1}{3} \sum_{c y c} \frac{a g_{a}}{r_{a} A G_{e}} \geq \sqrt{4-\frac{2 r}{R}}
$$

From $a g_{a}=\frac{4 R+r}{s} \cdot r_{a} \cdot A G_{e}$ we get

$$
\sum_{c y c} a g_{a}=\frac{4 R+r}{s} \sum_{c y c} r_{a} A G_{e}
$$

$$
\frac{\sum a g_{a}}{\sum r_{a} A G_{e}}=\frac{4 R+r}{s}=\sum \tan \frac{A}{2} \geq \sqrt{4-\frac{2 r}{R}}
$$

$$
\text { Let be } P \in \operatorname{Int}(A B C) \Rightarrow \frac{P A}{a}+\frac{P B}{b}+\frac{P C}{c} \geq \sqrt{3}
$$

$$
A G_{e}=\frac{g_{a}\left(r_{b}+r_{c}\right)}{4 R+r} \Rightarrow \frac{A G_{e}}{a}=\frac{g_{a}}{4 R+r} \cdot \frac{r_{b}+r_{c}}{a} \text { (and analogs) }
$$

$$
a=\sqrt{\left(r_{a}-r\right)\left(r_{b}+r_{c}\right)} ; \sin \frac{A}{2}=\sqrt{\frac{r_{a}-r}{4 R}} ; \cos \frac{A}{2}=\sqrt{\frac{r_{b}+r_{c}}{4 R}}
$$

Hence,

$$
\begin{gathered}
\cot \frac{A}{2}=\sqrt{\frac{r_{b}+r_{c}}{r_{a}-r}}=\frac{r_{b}+r_{c}}{\sqrt{\left(r_{a}-r\right)\left(r_{b}+r_{c}\right)}} \\
\cot \frac{A}{2}=\frac{r_{b}+r_{c}}{a} \\
\frac{A G_{e}}{a}=\frac{g_{a}}{4 R+r} \cdot \cot \frac{A}{2} \Rightarrow \frac{A G_{e}}{a}+\frac{B G_{e}}{b}+\frac{C G_{e}}{c} \geq \sqrt{3} \\
\text { Therefore, } \\
\sum_{c y c} g_{a} \cot \frac{A}{2} \geq\left(r_{a}+r_{b}+r_{c}\right) \sqrt{3}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
\tan \frac{A}{2}= & \frac{r_{a}}{s}=\frac{1}{\cot \frac{A}{2}} \Rightarrow \cot \frac{A}{2}=\frac{s}{r_{a}} \text { (and analogs) } \\
& g_{a} \cot \frac{A}{2}=\frac{g_{a}}{r_{a}} \cdot s \text { (and analogs) }
\end{aligned}
$$

Hence,

$$
\frac{g_{a}}{r_{a}}+\frac{g_{b}}{r_{b}}+\frac{g_{c}}{r_{c}} \geq \frac{r_{a}+r_{b}+r_{c}}{s} \sqrt{3}
$$

$4 R+r=r_{a}+r_{b}+r_{c} \geq s \sqrt{4-\frac{2 r}{R}} \Rightarrow \frac{r_{a}+r_{b}+r_{c}}{s} \geq \sqrt{4-\frac{2 r}{R}}$
Therefore,

$$
\frac{g_{a}}{r_{a}}+\frac{g_{b}}{r_{b}}+\frac{g_{c}}{r_{c}} \geq \sqrt{3\left(4-\frac{2 r}{R}\right)}
$$

$$
\text { But } g_{a} \leq A I+r \Rightarrow \frac{g_{a}}{h_{a}} \leq \frac{A I}{r_{a}}+\frac{r}{r_{a}} ; \frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}=\frac{1}{r} \text { hence, }
$$

$$
\frac{g_{a}}{r_{a}}+\frac{g_{b}}{r_{b}}+\frac{g_{c}}{r_{c}} \leq \mathbf{1}+\frac{A I}{r_{a}}+\frac{B I}{r_{b}}+\frac{C I}{r_{c}} \text { and then }
$$

$$
\frac{A I}{r_{a}}+\frac{B I}{r_{b}}+\frac{C I}{r_{c}} \geq \frac{r_{a}+r_{b}+r_{c}}{s} \sqrt{3}-1
$$

$$
\frac{A I}{r_{a}}+\frac{B I}{r_{b}}+\frac{C I}{r_{c}} \geq \sqrt{3\left(4-\frac{2 r}{R}\right)}
$$

For $P=I, I$-incenter, hence Cocea-Hayashi inequality becomes:

$$
a \cdot B I \cdot C I+b \cdot C I \cdot A I+c \cdot A I \cdot B I \geq a b c=3 R r s
$$

$$
A I=\frac{r}{\sin \frac{A}{2}} \Rightarrow A I \cdot B I \cdot C I=\frac{r^{3}}{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}
$$

$$
\begin{gathered}
\sin \frac{A}{2}=\sqrt{\frac{r r_{a}}{b c}} \Rightarrow \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\sqrt{\frac{r^{3} \cdot r_{a} r_{b} r_{c}}{4 R S \cdot 4 R S}}=\frac{r}{4 R} \\
\Rightarrow A I \cdot B I \cdot C I=r^{3} \cdot \frac{4 R}{r}=4 R r^{2} \\
\frac{a}{A I}+\frac{b}{B I}+\frac{c}{C I} \geq \frac{a b c}{4 R r^{2}}=\frac{S}{r}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 Now,

$$
\begin{gathered}
\frac{s}{r}=\frac{\sum n_{a}}{3 r}+\frac{2}{3} \sum_{c y c} \frac{2 r_{a}+h_{a}}{s+n_{a}} \Rightarrow \frac{a}{A I}+\frac{b}{B I}+\frac{c}{C I} \geq \frac{\sum n_{a}}{3 r}+\frac{2}{3} \sum_{c y c} \frac{2 r_{a}+h_{a}}{s+n_{a}} \\
\text { But } A I=\sqrt{2 R\left(h_{a}-2 r\right),} \text { then } \\
\sum_{c y c} \frac{a}{\sqrt{h_{a}-2 r}} \geq \frac{\sqrt{2 R}}{3}\left(\frac{\sum n_{a}}{r}+2 \sum_{c y c} \frac{2 r_{a}+h_{a}}{s+n_{a}}\right)
\end{gathered}
$$

But $A I=\sqrt{\left(\boldsymbol{r}_{b}-r\right)\left(r_{c}-r\right)}$, then

$$
\sum_{c y c} \frac{a}{\sqrt{\left(r_{b}-r\right)\left(r_{c}-r\right)}} \geq \frac{\sqrt{2 R}}{3}\left(\frac{\sum n_{a}}{r}+2 \sum_{c y c} \frac{2 r_{a}+h_{a}}{s+n_{a}}\right)
$$

We know that:

$$
\begin{gathered}
m_{a}^{2}=r_{b} r_{c}+\frac{1}{4}(b-c)^{2} \Rightarrow \frac{m_{a}^{2}}{r^{2}}=\frac{r_{b} r_{c}}{r^{2}}+\frac{(b-c)^{2}}{4 r^{2}} \\
\text { But } \frac{(b-c)^{2}}{4 r^{2}}=\frac{n_{a}^{2}}{h_{a}^{2}}-1, \text { hence } \frac{m_{a}^{2}}{r^{2}}=\frac{r_{b} r_{c}}{r^{2}}+\frac{n_{a}^{2}}{h_{a}^{2}}-1
\end{gathered}
$$

Adding, it follows a new identity

$$
\frac{\sum m_{a}^{2}}{r^{2}}=\frac{s^{2}}{r^{2}}+\sum_{c y c} \frac{n_{a}^{2}}{h_{a}^{2}}-3
$$

But $\sum \frac{n_{a}^{2}}{h_{a}^{2}} \geq \sum \frac{n_{a} n_{b}}{h_{a} h_{b}}$, then it follows that

$$
\begin{gathered}
\quad \frac{\sum m_{a}^{2}}{r^{2}} \geq\left(\frac{s}{r}\right)^{2}+\sum_{c y c} \frac{n_{a} n_{b}}{h_{a} h_{b}}-3 \\
\text { But } \frac{s}{r}=\frac{\sum n_{a}}{3 r}+\frac{2}{3} \sum_{c y c} \frac{2 r_{a}+h_{a}}{s+n_{a}}, \text { hence }
\end{gathered}
$$

$$
\frac{\sum m_{a}^{2}}{r^{2}}=\left(\frac{\sum n_{a}}{3 r}+\frac{2}{3} \sum_{c y c} \frac{2 r_{a}+h_{a}}{s+n_{a}}\right)^{2}+\sum_{c y c} \frac{n_{a}^{2}}{h_{a}^{2}}-3
$$

$$
\text { Now, } \frac{m_{a}^{2}}{r^{2}}=\frac{n_{a}^{2}}{h_{a}^{2}}+\frac{r_{b} r_{c}-r^{2}}{r^{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roUsing QM-AM inequality $\sqrt{x^{2}+y^{2}} \geq \frac{x+y}{\sqrt{2}}$ for $x^{2}=\frac{n_{a}^{2}}{h_{a}^{2}} ; y^{2}=\frac{r_{b} r_{c}-r^{2}}{r^{2}}$, we get:

$$
\frac{m_{a}}{r} \geq \frac{1}{\sqrt{2}}\left(\frac{n_{a}}{h_{a}}+\sqrt{\frac{r_{b} r_{c}-r^{2}}{r^{2}}}\right)
$$

Adding, it follows a new inequality:

$$
\frac{\sum m_{a}}{r} \geq \frac{1}{\sqrt{2}}\left(\sum_{c y c} \frac{n_{a}}{h_{a}}+\sum_{c y c} \sqrt{\frac{r_{b} r_{c}-r^{2}}{r^{2}}}\right)
$$

But $\left(\sum m_{a}\right)^{2} \leq 4 s^{2}-16 R r+5 r^{2}$ (Chu\&Yang inequality), hence

$$
\begin{gathered}
\left(\frac{\sum m_{a}}{r}\right)^{2} \leq \frac{4 s^{2}}{r^{2}}-\frac{16 R}{r}+5 \\
\frac{s^{2}}{r^{2}}+\sum_{c y c} \frac{n_{a}^{2}}{h_{a}^{2}}-3 \leq \frac{4 s^{2}}{r^{2}}-\frac{16 R}{r}+5-2 \sum_{c y c} \frac{m_{b} m_{c}}{r^{2}} \\
\text { Finally, it follows } \\
\sum_{c y c} \frac{n_{a}^{2}}{h_{a}^{2}}+2 \sum_{c y c} \frac{m_{b} m_{c}}{r^{2}} \leq \frac{3 s^{2}}{r^{2}}-\frac{16 R}{r}+8 \\
\text { But } \sum_{h_{a}^{2}}^{n_{a}^{2}} \geq \sum_{h_{a} h_{b}}^{n_{a} n_{b}}, \text { hence } \\
\sum_{c y c} \frac{n_{a} n_{b}}{h_{a} h_{b}}+2 \sum_{c y c}^{m_{b} m_{c}} \frac{3 s^{2}}{r^{2}} \leq \frac{16 R}{r^{2}}-\frac{16}{r}+8
\end{gathered}
$$

REFERENCES:

[1]. ROMANIAN MATEHMATICAL MAGAZINE-www.ssmrmh.ro

