

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY DAN RADU SECLAMAN-I

By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{r_{a}+r_{b}+r_{c}} \leq 2 R-r
$$

Proposed by Dan Radu Seclaman - Romania
Solution We prove the following lemma:
Lemma.
2) In $\triangle A B C$ the following inequality holds:

$$
\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{r_{a}+r_{b}+r_{c}}=\frac{3\left(s^{2}-r^{2}-4 R r\right)}{2(4 R+r)}
$$

Proof.

$$
\text { Using } \sum m_{a}^{2}=\frac{3}{4} \sum a^{2}, \sum a^{2}, \sum a^{2}=2\left(s^{2}-r^{2}-4 R r\right) \text { and } \sum r_{a}=4 R+r .
$$

Let's get back to the main problem.
Using the Lemma the inequality can be rewritten:

$$
\frac{3\left(s^{2}-r^{2}-4 R r\right)}{2(4 R+r)} \leq 2 R-r \Leftrightarrow 3 s^{2} \leq 16 R^{2}+8 R r+r^{2}
$$

which follows from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.
Remark. We obtain an inequality having an opposite sense.
3) In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{r_{a}+r_{b}+r_{c}} \geq \frac{2 r}{R}(2 R-r)
$$

Proposed by Marin Chirciu - Romania

Solution

Using Lemma, we write the inequality:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\frac{3\left(s^{2}-r^{2}-4 R r\right)}{2(4 R+r)} \geq \frac{2 r}{R}(2 R-r) \Leftrightarrow 3 R s^{2} \geq r\left(44 R^{2}-5 R r-4 r^{2}\right)$
which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2}$.
It remains to prove that:
$3 R\left(16 R r-5 r^{2}\right) \geq r\left(44 R^{2}-5 R r-4 r^{2}\right) \Leftrightarrow 2 R^{2}-5 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(2 R-$ $r) \geq 0$,
obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.
Remark. The double inequality can be written:
4) In $\triangle A B C$ the following relationship holds:

$$
\frac{2 r}{R}(2 R-r) \leq \frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{r_{a}+r_{b}+r_{c}} \leq 2 R-r
$$

Solution See inequality 1) and inequality 3). Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro

