

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro ABOUT AN INEQUALITY BY DAN RADU SECLAMAN-I

By Marin Chirciu – Romania

1) In $\triangle ABC$ the following relationship holds:

 $\frac{m_a^2+m_b^2+m_c^2}{r_a+r_b+r_c} \leq 2R-r$

Proposed by Dan Radu Seclaman – Romania

Solution We prove the following lemma:

Lemma.

2) In $\triangle ABC$ the following inequality holds:

$$\frac{m_a^2 + m_b^2 + m_c^2}{r_a + r_b + r_c} = \frac{3(s^2 - r^2 - 4Rr)}{2(4R + r)}$$

Proof.

Using
$$\sum m_a^2 = \frac{3}{4} \sum a^2$$
, $\sum a^2$, $\sum a^2 = 2(s^2 - r^2 - 4Rr)$ and $\sum r_a = 4R + r$.

Let's get back to the main problem.

Using the Lemma the inequality can be rewritten:

$$\frac{3(s^2 - r^2 - 4Rr)}{2(4R + r)} \le 2R - r \Leftrightarrow 3s^2 \le 16R^2 + 8Rr + r^2$$

which follows from Euler's inequality $R \ge 2r$.

Remark. We obtain an inequality having an opposite sense.

3) In $\triangle ABC$ the following relationship holds:

$$\frac{m_a^2 + m_b^2 + m_c^2}{r_a + r_b + r_c} \ge \frac{2r}{R} (2R - r)$$

Proposed by Marin Chirciu – Romania

Solution

Using Lemma, we write the inequality:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

 $\frac{3(s^2 - r^2 - 4Rr)}{2(4R + r)} \ge \frac{2r}{R}(2R - r) \Leftrightarrow 3Rs^2 \ge r(44R^2 - 5Rr - 4r^2)$

which follows from Gerretsen's inequality $s^2 \ge 16Rr - 5r^2$.

It remains to prove that:

 $3R(16Rr - 5r^2) \ge r(44R^2 - 5Rr - 4r^2) \Leftrightarrow 2R^2 - 5Rr + 2r^2 \ge 0 \Leftrightarrow (R - 2r)(2R - r) \ge 0,$

obviously from Euler's inequality $R \ge 2r$.

Equality holds if and only if the triangle is equilateral.

Remark. The double inequality can be written:

4) In $\triangle ABC$ the following relationship holds:

$$\frac{2r}{R}(2R-r) \le \frac{m_a^2 + m_b^2 + m_c^2}{r_a + r_b + r_c} \le 2R - r$$

Solution See inequality 1) and inequality 3). Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro