

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY MARIAN URSĂRESCU-V
 By Marin Chirciu - Romania

1) Prove that in any $\triangle A B C$ the following relationship holds:

$$
\sum \sin A \cot \frac{B}{2} \leq 3\left(\frac{R}{r}-\frac{1}{2}\right)
$$

Proposed by Marian Ursărescu -Romania

Solution

Using CBS inequality, we obtain:
$\left(\sum \sin A \cos \frac{B}{2}\right)^{2} \leq \sum \sin ^{2} A \sum \cot ^{2} \frac{A}{2} \leq \frac{9}{4}\left(\frac{2 R}{r}-1\right)^{2}$, which follows from:

$$
\sum \sin ^{2} A \leq \frac{9}{4} \text { and } \sum \cot ^{2} \frac{A}{2} \leq\left(\frac{2 R}{r}-1\right)^{2}
$$

Indeed $\sum \sin ^{2} A=\frac{s^{2}-r^{2}-4 R r}{2 R^{2}} \stackrel{(1)}{\leq} \frac{9}{4}$, where (1) $\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen) It remains to prove that:
$2\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 9 R^{2}+8 R r+2 r^{2} \Leftrightarrow R \geq 2 r$ (Euler's inequality)
Then $\sum \cot ^{2} \frac{A}{2}=\frac{s^{2}-2 r^{2}-8 R r}{r^{2}} \stackrel{(2)}{\leq}\left(\frac{2 R}{r}-1\right)^{2}$, where (2) $\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen)
From $\left(\sum \sin A \cot \frac{B}{2}\right)^{2} \leq \frac{9}{4}\left(\frac{2 R}{r}-1\right)^{2}$ we obtain the conclusion.
Equality holds if and only if the triangle is equilateral.

Remark.

In the same way we can propose:
2) Prove that in any $\triangle A B C$ the following relationship holds:

$$
\sum \sin A \tan \frac{B}{2} \leq \frac{3 R}{4 r}
$$

Proposed by Marin Chirciu - Romania

Solution

Using CBS inequality we obtain:
$\left(\sum \sin A \tan \frac{B}{2}\right)^{2} \leq \sum \sin ^{2} A \sum \tan ^{2} \frac{A}{2} \leq \frac{9}{4}\left(\frac{R}{2 r}\right)^{2}=\left(\frac{3 R}{4 r}\right)^{2}$, which follows from:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\sum \sin ^{2} A \leq \frac{9}{4} \text { and } \sum \tan ^{2} \frac{A}{2} \leq\left(\frac{R}{2 r}\right)^{2}
$$

Indeed, $\sum \sin ^{2} A=\frac{s^{2}-r^{2}-4 R r}{2 R^{2}} \stackrel{(1)}{\leq} \frac{9}{4}$, where (1) $\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen)
It remains to prove that:

$$
2\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 9 R^{2}+8 R r+2 r^{2} \Leftrightarrow R \geq 2 r \text { (Euler's inequality) }
$$

Then $\sum \tan ^{2} \frac{A}{2}=\left(\frac{4 R+r}{s}\right)^{2}-2 \stackrel{(2)}{\leq}\left(\frac{R}{2 r}\right)^{2}$, where (2) $\Leftrightarrow \frac{(4 R+r)^{2}}{s^{2}} \leq \frac{R^{2}+8 r^{2}}{r^{2}}$, which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$. It remains to prove that:

$$
\frac{(4 R+r)^{2}}{\frac{r(4 R+r)^{2}}{R+r}} \leq \frac{R^{2}+8 r^{2}}{r^{2}} \Leftrightarrow(R-2 r)^{2} \geq 0 \text {, obviously with equality if } R=2 r \text {. }
$$

From $\left(\sum \sin A \tan \frac{B}{2}\right)^{2} \leq\left(\frac{3 R}{4 r}\right)^{2}$ we obtain the conclusion.
Equality holds if and only if the triangle is equilateral.
3) Prove that in any $\triangle A B C$ the following relationship holds:

$$
\sum \sin A \sin \frac{B}{2} \leq \frac{3 \sqrt{3} R}{8 r}
$$

Proposed by Marin Chirciu - Romania

Solution

Using CBS inequality, we obtain:

$$
\begin{gathered}
\left(\sum \sin A \sin \frac{B}{2}\right)^{2} \leq \sum \sin ^{2} A \sum \sin ^{2} \frac{A}{2} \leq \frac{9}{4} \cdot \frac{3 R^{2}}{16 r^{2}}=\frac{27 R^{2}}{64 r^{2}}, \text { which follows from: } \\
\sum \sum \sin ^{2} A \leq \frac{9}{4} \text { and } \sum \sin ^{2} \frac{A}{2} \leq \frac{3 R^{2}}{16 r^{2}} \\
\text { Indeed } \sum \sin ^{2} A=\frac{s^{2}-r^{2}-4 R r}{2 R^{2}} \stackrel{(1)}{\leq} \frac{9}{4^{\prime}} \text { where (1) } \Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text { (Gerretsen) } \\
\text { It remains to prove that: } \\
2\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 9 R^{2}+8 R r+2 r^{2} \Leftrightarrow R \geq 2 r \text { (Euler's inequality) } \\
\text { Then } \sum \sin ^{2} \frac{A}{2}=1-\frac{r}{2 R} \stackrel{(2)}{\leq} \frac{3 R}{8 r^{\prime}}, \text { where (2) } \Leftrightarrow 3 R^{2}-8 R r+4 r^{2} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)(3 R-2 r) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r . \\
\text { From }\left(\sum \sin A \sin \frac{B}{2}\right)^{2} \leq \frac{27 R^{2}}{64 r^{2}} \text { obviously the conclusion. }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

4) Prove that in any $\triangle A B C$ the following relationship holds:

$$
\sum \sin A \cos \frac{B}{2} \leq \frac{9}{4}
$$

Proposed by Marin Chirciu - Romania

Solution

Using CBS inequality we obtain:
$\left(\sum \sin A \cos \frac{B}{2}\right)^{2} \leq \sum \sin ^{2} A \sum \cos ^{2} \frac{A}{2} \leq \frac{9}{4} \cdot \frac{9}{4}=\frac{81}{16}$, which follows from:
$\sum \sin ^{2} A \leq \frac{9}{4}$ and $\sum \cos ^{2} \frac{A}{2} \leq \frac{9}{4}$. Indeed $\sum \sin ^{2} A=\frac{s^{2}-r^{2}-4 R r}{2 R^{2}} \stackrel{(1)}{\leq} \frac{9}{4}$ where (1) \Leftrightarrow $\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen).

It remains to prove that:
$2\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 9 R^{2}+8 R r+2 r^{2} \Leftrightarrow R \geq 2 r$ (Euler's inequality)
Then $\sum \cos ^{2} \frac{A}{2}=2+\frac{r}{2 R} \stackrel{(2)}{\leq} \frac{9}{4} \Leftrightarrow R \geq 2 r$ (Euler's inequality)
From $\left(\sum \sin A \cos \frac{B}{2}\right)^{2} \leq \frac{81}{16}$ we obtain the conclusion.
Equality holds if and only if the triangle is equilateral.
5) Prove that in any $\triangle A B C$ the following relationship holds:

$$
\sum \sin A \csc \frac{B}{2} \leq 3 \sqrt{3}\left(\frac{R}{2 r}\right)^{2}
$$

Proposed by Marin Chirciu - Romania

Solution

Using CBS inequality, we obtain:

$$
\begin{gathered}
\left(\sum \sin A \csc \frac{B}{2}\right)^{2} \leq \sum \sin ^{2} A \sum \csc ^{2} \frac{A}{2} \leq \frac{9}{4} \cdot \frac{3 R^{4}}{4 r^{4}}=\frac{27 R^{4}}{16 r^{4}} \text { which follows from: } \\
\sum \sin ^{2} \frac{A}{2} \leq \frac{9}{4} \text { and } \sum \csc ^{2} \frac{A}{2} \leq \frac{3 R^{4}}{4 r^{4}}
\end{gathered}
$$

Indeed $\sum \sin ^{2} A=\frac{s^{2}-r^{2}-4 R r}{2 R^{2}} \stackrel{(1)}{\leq} \frac{9}{4}$, where (1) $\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen)
It remains to prove that:
$2\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 9 R^{2}+8 R r+2 r^{2} \Leftrightarrow R \geq 2 r$ (Euler's inequality)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

> Then $\sum \csc ^{2} \frac{A}{2}=\sum \frac{1}{\sin ^{2} \frac{A}{2}}=\frac{s^{2}+r^{2}-8 R r}{r^{2}} \stackrel{(2)}{\leq} \frac{3 R^{4}}{4 r^{4}}$ where (2)
> $\Leftrightarrow 3 R^{4}-16 R^{2} r^{2}+16 R r^{3}-16 r^{4} \geq 0 \Leftrightarrow(R-2 r)\left(3 R^{3}+6 R^{2} r-4 R r^{2}+8 r^{3}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$. From $\left(\sum \sin A \csc \frac{B}{2}\right)^{2} \leq \frac{27 R^{4}}{16 r^{4}}$ we obtain the conclusion.

Equality holds if and only if the triangle is equilateral.
6) Prove that in any $\triangle A B C$ the following relationship holds:

$$
\sum \sin A \sec \frac{B}{2} \leq \frac{3 R}{2 r}
$$

Proposed by Marin Chirciu - Romania

Solution

Using CBS inequality we obtain:

$$
\begin{gathered}
\left(\sum \sin A \sec \frac{B}{2}\right)^{2} \leq \sum \sin ^{2} A \sum \sec ^{2} \frac{A}{2} \leq \frac{9}{4} \cdot\left(\frac{R}{r}\right)^{2}=\left(\frac{3 R}{2 r}\right)^{2}, \text { which follows from: } \\
\sum \sin ^{2} A \leq \frac{9}{4} \text { and } \sum \sec ^{2} \frac{A}{2} \leq\left(\frac{R}{r}\right)^{2} .
\end{gathered}
$$

Indeed $\sum \sin ^{2} A=\frac{s^{2}-r^{2}-4 R r}{2 R^{2}} \stackrel{(1)}{\leq} \frac{9}{4}$, where (1) $\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen)
It remains to prove that:

$$
2\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 9 R^{2}+8 R r+2 r^{2} \Leftrightarrow R \geq 2 r \text { (Euler's inequality) }
$$

Then $\sum \sec ^{2} \frac{A}{2}=\sum \frac{1}{\cos ^{2} \frac{A}{2}}=1+\left(\frac{4 R+r}{s}\right)^{2} \stackrel{(2)}{\leq}\left(\frac{R}{r}\right)^{2}$, where (2) $\Leftrightarrow \frac{(4 R+r)^{2}}{s^{2}} \leq \frac{R^{2}-r^{2}}{r^{2}}$, which follows from Gerretsen's inequality $s^{2} \geq 16 R r-5 r^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$. It remains to prove that:

$$
\frac{(4 R+r)^{2}}{\frac{r(4 R+r)^{2}}{R+r}} \leq \frac{R^{2}-r^{2}}{r^{2}} \Leftrightarrow R^{2}-R r-2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(R+r) \geq 0
$$

Obviously from Euler's inequality $R \geq 2 r$. From $\left(\sum \sin A \sec \frac{B}{2}\right)^{2}$ we obtain the conclusion.
Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro

