

## ROMANIAN MATHEMATICAL MAGAZINE <br> www.ssmrmh.ro <br> ABOUT AN INEQUALITY BY M ARIAN URSĂRESCU-VII <br> By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
& \frac{R}{r}+\frac{r}{R}+6 \sum \frac{r_{a}^{2}}{b c} \geq 16 \\
& \text { Proposed by M arian Ursărescu - Romania }
\end{aligned}
$$

## Solution

We prove the following lemma:
Lemma.
2) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{r_{a}^{2}}{b c}=\frac{2 R(4 R+r)-s^{2}}{2 R r}
$$

Proof.
Using $r_{a}=\frac{s}{s-a}$ we obtain $\sum \frac{r_{a}^{2}}{b c}=\sum \frac{s^{2}}{\left(\frac{(s-a)^{2}}{b c}\right.}=\frac{s^{2}}{a b c} \sum \frac{a}{(s-a)^{2}} \frac{4 R(4 R+r)-s^{2}}{r^{2} s}$, which follows from

$$
\sum \frac{a}{(s-a)^{2}}=\frac{4 R(4 R+r)-2 s^{2}}{r^{2} s} .
$$

Let's get back to the main problem.
Using Lemma the inequality from enunciation can be written:
$\frac{R}{r}+\frac{r}{R}+6 \cdot \frac{2 R(4 R+r)-s^{2}}{2 R r} \geq 16 \Leftrightarrow 3 s^{2} \leq 25 R^{2}-10 R r+r^{2}$ which follows from Gerreten's
inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:

$$
3\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 25 R^{2}-10 R r+r^{2} \Leftrightarrow 13 R^{2}-22 R r-8 r^{2} \geq 0 \Leftrightarrow
$$

$\Leftrightarrow(R-2 r)(13 R+4 r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.
Remark.We can develop the inequality:
3) In $\triangle A B C$ the following inequality holds:

$$
\frac{R}{r}+\frac{r}{R}+n \sum \frac{r_{a}^{2}}{b c} \geq \frac{5}{2}+\frac{9 n}{4}, \text { where } n \geq 0
$$

## Proposed by Marin Chirciu - Romania



## ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

## Solution

$$
\text { We prove that: } \frac{R}{r}+\frac{r}{R} \geq \frac{5}{2^{\prime}}(1) \text { and } \sum \frac{r_{a}^{2}}{b c} \geq \frac{9}{4}(2)
$$

Indeed $\frac{R}{r}+\frac{r}{R} \geq \frac{5}{2} \Leftrightarrow 2 R^{2}-5 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(2 R+r) \geq 0$, obviously from

$$
\text { Euler's inequality } R \geq 2 r \text {. }
$$

For the inequality $\sum \frac{r_{a}^{2}}{b c} \geq \frac{9}{4}$ we use the following Lemma and we write the inequality:

$$
\frac{2 R(4 R+r)-s^{2}}{2 R r} \geq \frac{9}{4} \Leftrightarrow 2 s^{2} \leq 16 R^{2}+4 R r-9 r^{2}, \text { which follows from Gerretsen's inequality }
$$

$s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:
$2\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 16 R^{2}+4 R r-9 r^{2} \Leftrightarrow 8 R^{2}-13 R r-6 r^{2} \geq 0 \Leftrightarrow$
$\Leftrightarrow(R-2 r)(8 R+3 r) \geq 0$, which follows from Euler's inequality $R \geq 2 r$.
From (1), (2) and the condition from hypothesis $n \geq 0$ it follows the conclusion:

$$
\frac{R}{r}+\frac{r}{R}+n \sum \frac{r_{a}^{2}}{b c} \geq \frac{5}{2}+\frac{9 n}{4}
$$

Equality holds if and only if the triangle is equilateral.

## Reference:

## Romanian Mathematical Magazine-www.ssmrmh.ro

