

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY WALTER JANOUS-I

By Marin Chirciu - Romania

1) Show that:

$$
\sum a \tan A \geq 10 R-2 r
$$

for any acute triangle $A B C$, where a, b, c are its sides, R its circumradius, and r its inradius, and the sum is cyclic.

Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.
Solution We prove the following lemma:

Lemma.

2) In $\triangle A B C$ the following relationship holds:

$$
\sum a \tan A=2 r \cdot \frac{(4 R+r)(2 R+r)-s^{2}}{s^{2}-(2 R+r)^{2}}
$$

Proof. We have $\sum a \tan A=\sum 2 R \sin A \cdot \frac{\sin A}{\cos A}=2 R \sum \frac{\sin ^{2} A}{\cos A}=2 R \sum \frac{1-\cos ^{2} A}{\cos A}=$ $2 R \sum\left(\frac{1}{\cos A}-1\right)==2 R \sum\left(\frac{s^{2}+r^{2}-4 R^{2}}{s^{2}-(2 R+r)^{2}}-1\right)=2 r \cdot \frac{(4 R+r)(2 R+r)-s^{2}}{s^{2}-(2 R+r)^{2}}$, which follows from the known inequality in triangle $\sum \frac{1}{\cos A}=\frac{s^{2}+r^{2}-4 R^{2}}{s^{2}-(2 R+r)^{2}}$. Let's get back to the main problem.

Using the lemma the inequality can be written:

$$
2 r \cdot \frac{(4 R+r)(2 R+r)-s^{2}}{s^{2}-(2 R+r)^{2}} \geq 10 R-2 r \Leftrightarrow r(4 R+r)(2 R+r)+(5 R-r)(2 R+r)^{2} \geq 5 R s^{2}
$$

which follows from Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ and the observation that
in the acute angled triangle $s^{2}-(2 R+r)^{2}>0$, which assures the elimination of the denominator from the above inequality. It remains to prove that:

$$
\begin{gathered}
r(4 R+r)(2 R+r)+(5 R-r)(2 R+r)^{2} \geq 5 R\left(4 R^{2}+4 R r+3 r^{2}\right) \Leftrightarrow R \geq 2 r \text {, (Euler's } \\
\text { inequality). Equality holds if and only if the triangle is equilateral. }
\end{gathered}
$$

Remark Let's strength the above inequality:
3) In $\triangle A B C$ the following inequality holds:
$\sum a \tan A \geq x R+(18-2 x) r$, where $x \leq 18$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 Proposed by Marin Chirciu - Romania

Solution Using the Lemma the inequality can be rewritten:

$$
\begin{gathered}
\sum a \tan A=2 r \cdot \frac{(4 R+r)(2 R+r)-s^{2}}{s^{2}-(2 R+r)^{2}} \geq x R+(18-2 x) r \Leftrightarrow \\
\Leftrightarrow 2 r(4 R+r)(2 R+r)+(2 R+r)^{2}[x R+(18-2 x) r] \geq s^{2}[x R+(20-2 x) r]
\end{gathered}
$$

which follows from Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ and the observation that in the acute-angled triangle $s^{2}-(2 R+r)^{2}>0$, which assures the elimination of the denominator in the above inequality. It remains to prove that:

$$
\begin{aligned}
& 2 r(4 R+r)(2 R+r)+(2 R+r)^{2}[x R+(18-2 x) r] \\
& \quad \geq\left(4 R^{2}+4 R r+3 r^{2}\right)[x R+(20-2 x) r] \Leftrightarrow
\end{aligned}
$$

$\Leftrightarrow 4 R^{2}+(2-x) R r+(2 x-20) r^{2} \geq 0 \Leftrightarrow(R-2 r)[4 R+(10-x) r] \geq 0$, obviously from Euler's inequality $R \geq 2 r$ and the condition $x \leq 18$, which assures $[4 R+(10-x) r] \geq 0$

Equality holds if and only if the triangle is equilateral.
Remark 1. For $x=10$ we obtain Problem 1424 from Crux Mathematicorum Vol. 15, No. 3 March 1989, Walther Janous, Innsbruck, Austria.
Remark 2. The best inequality having the form 2) it is obtained for $x=18$. In this case we obtain:
4) In $\triangle A B C$ the following inequality holds:

$$
\sum a \tan A \geq 18(R-r)
$$

Proposed by Marin Chirciu - Romania

Remark 3. Inequality 4) is stronger then inequality 1)
5) In $\triangle A B C$ the following inequality holds:

$$
\sum a \tan A \geq 18(R-r) \geq 10 R-2 r
$$

Solution See inequality 4) and $18(R-r) \geq 10 R-2 r \Leftrightarrow R \geq 2 r$ (Euler's inequality)
Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro

