

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro A COUNTING PROBLEM IN TRIANGLE

By Carmen-Victorița Chirfot -Romania

Let be a triangle ABC. Consider the points M_1, M_2, \dots, M_n on the side (AB) and

 $N_1, N_2, ..., N_3$ on the side $(AC), n \in \mathbb{N}^*$ such that

 $BM_1 = M_1M_2 = M_2M_3 = \dots = M_{n-1}M_n = M_nA$ and

 $CN_1 = N_1N_2 = \cdots = N_{n-1}N_n = N_nA.$

We also consider the points E_1, E_2, \dots, E_n on the side (BC) such that

 $BE_1 = E_1E_2 = E_2E_3 = \cdots = E_{n-1}E_n = M_nC.$

Obviously, from the reciprocal of Thales' theorem, $M_k N_k \parallel BC$, $k = \overline{1, n}$,

 $E_k N_{n+1-k} \parallel AB, k = \overline{1, n}, E_k M_k \parallel AC, k = \overline{1, n}.$

We join each point M_k with E_k , and each point M_k with N_k , and each point E_k with its corespondent N_{n+1-k} .

We intend, for a start, to determine the number of such triangles formed by the intersections of the given segments.

All quadrilaterals resulting at the intersection of parallel lines $M_k N_k$ and $M_{k+1}N_{k+1}$, $k = \overline{1, n-1}$ with parallel lines $E_k N_{n+1-k}$ and $E_{k+1}N_{n-k}$, $k = \overline{1, n-1}$, are parallelograms. Analogous to $M_k N_k$ and $M_{k+1}N_{k+1}$, $k = \overline{1, n}$ with $E_k M_k \parallel E_{k+1}M_{k+1}$,

$$k=\overline{1,n-1}$$

Let be $(x_n)_{n\geq 1}$ the sequence with x_k representing the number of triangles inside the triangle BE_kM_k . Then $x_1 = 1$, $x_2 = x_1 + 2 \cdot 1 + 1 + 1 = 5$. For the triangle BE_3M_3 , the number of interior triangles is how many x_2 (as we have already found) to which we add two triangles similar to the vertex in M_3 and the bases on M_2N_2 , respectively on M_1N_1 , 2 triangles similar to the vertex in E_3 and the bases on E_2N_{n-1} , respectively on E_1N_n and count once the large triangle BE_3M_3 . So there are 3 innumerable triangles between the parallel lines E_2M_2 and E_3M_3 . Thus, $x_3 = x_2 + 2 \cdot 2 + 1 + 3 = 13$.

For the triangle BE_4M_4 , the number of interior triangles is how many x_3 we still count 3 triangles similar to the vertex in M_4 and the bases on M_3N_3 , M_2N_2 , respectively

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

 M_1N_1 , 3 triangles similar to the vertex in E_4 and the bases on E_3N_{n-2} , E_2N_{n-1} , respectively on E_1N_n and count once the large triangle BE_4M_4 .

A triangle is also formed with the base on E_2M_2 and the tip on E_4M_4 . We also have a triangle with the base on E_4M_4 and the tip on E_2M_2 (let's call it the opposite of the previous triangle).

There are 5 countless triangles between the parallel lines E_3M_3 and E_4M_4 . Thus, $x_4 = x_3 + 2 \cdot 3 + 1 + (1) + (1) + 5 = 27$.

For the triangle BE_5M_5 , the number of interior triangles is how much x_4 we count 4 triangles similar to the vertex in M_5 and the bases on M_4N_4 , M_3N_3 , M_2N_2 respectively M_1N_1 , 4 triangles similar to the vertex in E_5 and the bases on E_4N_{n-3} , E_3N_{n-2} , E_2N_{n-1} respectively on E_1N_n and we count the big triangle only once BE_5M_5 .

It also forms 2 triangles with base on E_3M_3 and E_5M_5 tip on. We also have 2 triangles with base on E_5M_5 and the tip on E_3M_3 and a triangle with base on E_5M_5 and the E_2M_2 tip on.

There are 7 countless triangles between the parallel lines E_4M_4 and E_5M_5 . Thus, $x_5 = x_4 + 2 \cdot 4 + 1 + (2 + 0) + (2 + 1) + 7 = 48$.

For the triangle BE_6M_6 , the number of interior triangles is how much x_5 we count 5 triangles similar to the vertex in M_6 and the bases on M_5N_5 , M_4N_4 , M_3N_3 respectively M_1N_1 , 5 triangles similar to the vertex in E_6 and the bases on

 E_5N_{n-4} , E_4N_{n-3} , E_3N_{n-2} , E_2N_{n-1} respectively on E_1N_n and we count the big triangle only once BE_6M_6 . It also forms 3 triangles with base on E_4M_4 and E_6M_6 tip on. We also have 2 triangles with base on E_6M_6 and the tip on E_3M_3 and a triangle with base on E_6M_6 and the E_2M_2 tip on.

There are 9 countless triangles between the parallel lines E_5M_5 and E_6M_6 .

Thus, $x_6 = x_5 + 2 \cdot 5 + 1 + (3 + 1) + (3 + 2 + 1) + 9 = 78$

For the triangle BE_7M_7 , the number of interior triangles is how much x_6 we count 6 triangles similar to the vertex in M_7 and the bases on M_6N_6 , M_5N_5 , M_4N_4 , M_3N_3 , M_2N_2 respectively M_1N_1 , 6 triangles similar to the vertex in E_7 and the bases on

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

 E_6N_{n-5} , E_5N_{n-4} , E_4N_{n-3} , E_3N_{n-2} , E_2N_{n-1} respectively on E_1N_n and we count the big triangle only once BE_7M_7 .

It also forms 2 triangles with base on E_4M_4 and E_7M_7 tip on. We also have 4 triangles with base on E_7M_7 and the tip on E_4M_4 and a triangle with base on E_7M_7 and the E_3M_3 tip on, and a triangle with base on E_7M_7 and the E_2M_2 tip on.

There are 11 countless triangles between the parallel lines E_6M_6 and E_7M_7 .

Thus,
$$x_7 = x_6 + 2 \cdot 6 + 1 + (4 + 2) + (4 + 3 + 2 + 1) + 11 = 118$$
.

Respecting the algorithm, we obtain that:

$$x_8 = x_7 + 2 \cdot 7 + 1 + (5 + 3 + 1) + (5 + 4 + 3 + 2 + 1) + 13 = 170$$

We observe that, if $n = 2k, k \in \mathbb{N}^*, k \ge 2$, we get:

$$x_{2k} = x_{2k-1} + 2(2k-1) + 1 + ((2k-3) + (2k-5) + \dots + 1) + ((2k-2) + (2k-1) + \dots + 1) + (2k-2) + (2k-1) + \dots + 1) + (2k-2) + \dots + 2k^2 + \dots +$$

$$((2k-3)+(2k-4)+\cdots+1)+4k-3=x_{2k-1}+3k^2+k$$

We observe that, if $n=2k+1, k\in \mathbb{N}^*$, $k\geq 2$, we get:

$$x_{2k+1} = x_{2k} + 2(2k+1) + ((2k-2) + (2k-4) + \dots + 2) + ((2k-2) + (2k-3) + (2k-4) + \dots + 1) + 4k - 1 = x_{2k} + 3k^2 + 4k + 1.$$

Let's come back to the term x_n , we have: $x_1 = 1, x_2 = 5$,

$$x_{n} = \begin{cases} x_{n-1} + \frac{3n^{2} + 2n}{4}, & if \ n \in \mathbb{N}^{*} - even, n \ge 4\\ x_{n-1} + \frac{3n^{2} + 2n - 1}{4}, & if \ n \in \mathbb{N}^{*} - odd, n \ge 3 \end{cases}$$

So, $x_{n} = \begin{cases} 5 + \frac{3(3^{2} + 4^{2} + \dots + n^{2}) + 2(3 + 4 + 5 + \dots + n)}{4} - \frac{n-2}{8}, & if \ n - odd\\ 5 + \frac{3(3^{2} + 4^{2} + \dots + n^{2}) + 2(3 + 4 + 5 + \dots + n)}{4} - \frac{n-1}{8}, & if \ n - even \end{cases}$
Hence, $x_{n} = \begin{cases} \frac{2n^{3} + 5n^{2} + 2n}{8}, & n \ge 4, n - odd\\ \frac{2n^{3} + 5n^{2} + 2n - 1}{8}, & n \ge 3, & if \ n - even \end{cases}$

Consider $A = M_{n+1}$ and $C = E_{n+1}$, then x_{n+1} represent the number of interior triangles of triangle *ABC* formed according to the given rule.

This is the minimum number of triangles inside the triangle ABC formed by

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

- *n* lines parallel to each other *a*₁, *a*₂, ..., *a_n* and parallel to *AB* that intersect the sides (*AC*) and (*BC*),
- n lines parallel to each other b₁, b₂, ..., b_n and parallel to AB that intersect the sides (AB) and (AC),
- n lines parallel to each other c₁, c₂, ..., c_n and parallel to AB that intersect the sides (AB) and (BC).

The problem presented above is where any three straight lines a_m, b_n, c_p , and are

concurrent, $m, n, p = \overline{1, n}$, i.e. any denote triangle $a_m b_n c_p$ is degenerate.

Refferences:

1. ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro

2. https://math.stackexchange.com/questions/203873/how-many-triangles