

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro ABOUT AN INEQUALITY BY ADIL ABDULLAYEV-IX

By Marin Chirciu-Romania

Edited by Florică Anastase-Romania

1) In $\triangle ABC$ the following relationship holds:

$$\prod \cos \frac{B-C}{2} \leq \left(\frac{h_a}{w_a}\right)^4 + 3\left(\frac{h_a}{w_a}\right)^2 + 4$$

Proposed by Adil Abdullayev-Baku-Azerbaijan

Solution. Lemma 1. 2) In $\triangle ABC$ the following relationship holds:

$$\prod \cos \frac{B-C}{2} = \frac{s^2+r^2+2Rr}{8R^2}$$

Proof. Using $cos \frac{B-C}{2} = \frac{h_a}{w_a}$, we get:

$$\prod \cos \frac{B-C}{2} = \prod \frac{h_a}{w_a} = \prod \frac{\frac{2F}{a}}{\frac{2bc}{b+c}\cos\frac{A}{2}} = \left(\frac{F}{abc}\right)^2 \prod \frac{b+c}{\cos\frac{A}{2}} =$$
$$= \left(\frac{1}{4R}\right)^3 \cdot \frac{\prod(b+c)}{\prod\cos\frac{A}{2}} = \frac{1}{64R^3} \cdot \frac{2s(s^2+r^2+2Rr)}{\frac{S}{4R}} = \frac{s^2+r^2+2Rr}{8R^2}$$

Lemma 2. In $\triangle ABC$ the following relationship holds:

$$cos \frac{B-C}{2} \ge \sqrt{\frac{2r}{R}}$$

Proof. $\left(\cos\frac{B-C}{2} - 2\sin\frac{A}{2}\right)^2 \ge 0 \Leftrightarrow \cos^2\frac{B-C}{2} \ge 4\cos\frac{B-C}{2}\sin\frac{A}{2} - 4\sin^2\frac{A}{2} =$ = $4\sin\frac{A}{2}\left(\cos\frac{B-C}{2} - \cos\frac{B+C}{2}\right) = 8\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{8r}{4R} = \frac{r}{2R}$ Equality holds if and only if $\cos\frac{B-C}{2} = 2\sin\frac{A}{2}$.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Lemma 3. 3) In $\triangle ABC$ the following relationship holds:

Proof. Using $cos \frac{B-C}{2} = \frac{h_a}{w_a}$ and Lemma 2, we get: $\frac{h_a}{w_a} = cos \frac{B-C}{2} \ge \sqrt{\frac{2r}{R}}$. Let's get back to the main problem.Using Lemma 3, we get:

$$RHS = \left(\frac{h_a}{w_a}\right)^4 + 3\left(\frac{h_a}{w_a}\right)^2 + 4 \ge \left(\sqrt{\frac{2r}{R}}\right)^4 + 3\left(\sqrt{\frac{2r}{R}}\right)^2 + 4$$
$$= \left(\frac{2r}{R}\right)^2 + 2\left(\frac{2r}{R}\right) + 4; (1)$$

Using Lemma 1 and inequality (1), it is enough to prove that: $r^{2} + 2Rr$ (2r)² (2r)

$$8\frac{s^{2}+r^{2}+2Rr}{8R^{2}} \leq \left(\frac{2r}{R}\right)^{2} + 3\left(\frac{2r}{R}\right) + 4 \Leftrightarrow s^{2} \leq 4R^{2} + 4Rr + 3r^{2}(Gerretsen).$$

Equality holds if and only if triangle is equilateral.

Remark. Inequality can be developed.

4) If
$$x, y, z > 0, x + y + z = 1, z \ge \frac{1}{2}, y + 2z \ge \frac{11}{8}$$
, in $\triangle ABC$ the

following relationship holds:

$$\prod \cos \frac{B-C}{2} \le x \left(\frac{h_a}{w_a}\right)^4 + y \left(\frac{h_a}{w_a}\right)^2 + z$$

Proposed by Marin Chirciu-Romania

Solution. Lemma 1. 5) In $\triangle ABC$ the following relationship holds:

$$\prod \cos \frac{B-C}{2} = \frac{s^2+r^2+2Rr}{8R^2}$$

Proof. Using $cos \frac{B-C}{2} = \frac{h_a}{w_a}$, we get:

$$\prod \cos \frac{B-C}{2} = \prod \frac{h_a}{w_a} = \prod \frac{\frac{2F}{a}}{\frac{2bc}{b+c}\cos\frac{A}{2}} = \left(\frac{F}{abc}\right)^2 \prod \frac{b+c}{\cos\frac{A}{2}} =$$
$$= \left(\frac{1}{4R}\right)^3 \cdot \frac{\prod(b+c)}{\prod\cos\frac{A}{2}} = \frac{1}{64R^3} \cdot \frac{2s(s^2+r^2+2Rr)}{\frac{S}{4R}} = \frac{s^2+r^2+2Rr}{8R^2}$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Lemma 2. In $\triangle ABC$ the following relationship holds:

$$\cos\frac{B-C}{2} \ge \sqrt{\frac{2r}{R}}$$

Proof. $\left(\cos\frac{B-C}{2} - 2\sin\frac{A}{2}\right)^2 \ge 0 \Leftrightarrow \cos^2\frac{B-C}{2} \ge 4\cos\frac{B-C}{2}\sin\frac{A}{2} - 4\sin^2\frac{A}{2} =$ = $4\sin\frac{A}{2}\left(\cos\frac{B-C}{2} - \cos\frac{B+C}{2}\right) = 8\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{8r}{4R} = \frac{r}{2R}$ Equality holds if and only if $\cos\frac{B-C}{2} = 2\sin\frac{A}{2}$.

Lemma 3. 3) In $\triangle ABC$ the following relationship holds:

$$\frac{h_a}{w_a} \ge \sqrt{\frac{2r}{R}}$$

Proof. Using $cos \frac{B-C}{2} = \frac{h_a}{w_a}$ and Lemma 2, we get: $\frac{h_a}{w_a} = cos \frac{B-C}{2} \ge \sqrt{\frac{2r}{R}}$. Let's get back to the main problem.Using Lemma 3, we get:

$$RHS = x \left(\frac{h_a}{w_a}\right)^4 + y \left(\frac{h_a}{w_a}\right)^2 + z \ge x \left(\sqrt{\frac{2r}{R}}\right)^4 + y \left(\sqrt{\frac{2r}{R}}\right)^2 + z$$
$$= x \left(\frac{2r}{R}\right)^2 + y \left(\frac{2r}{R}\right) + z; (1)$$

Using Lemma 1 and inequality (1), it is enough to prove that:

$$8\frac{s^2+r^2+2Rr}{8R^2} \le x\left(\frac{2r}{R}\right)^2 + y\left(\frac{2r}{R}\right) + z \Leftrightarrow$$

$$s^2 \le 8zR^2 + (16y-2)Rr + (32x-4)r^2, \text{ which follows from}$$

$$s^2 \le 4R^2 + 4Rr + 3r^2(Gerretsen).$$

Remains to prove that: $4R^2 + 4Rr + 3r^2 \le 8zR^2 + (16y - 2)Rr + (32x - 4)r^2$ $\Leftrightarrow (4z - 2)R^2 + (8y - 3)Rr + (16x - 2)r^2 \ge 0$, which is true from:

 $(4z-2)R^{2} + (8y-3)Rr + (16x-2)r^{2} = (R-2r)[(4z-2)R + (8y+8z-7)r] \ge 0$ Which follows from $R \ge 2r(Euler)$ and $[(4z-2)R + (8y+8z-7)r] \ge 0$

$$\forall x, y, z > 0, x + y + z = 1, z \ge \frac{1}{2}, y + 2z \ge \frac{11}{8}$$

Equality holds if and only if triangle is equilateral.

Note.For $x = \frac{1}{8}$, $y = \frac{3}{8}$, $z = \frac{1}{2}$ we get proposed problem by Adil Abdullayev-Baku-Azerbaijan-R.M.M. 4-2020. For $z = \frac{1}{2}$ we have: $x + y = \frac{1}{2}$, $y > \frac{3}{2}$

For
$$z = \frac{1}{2}$$
, we have: $x + y = \frac{1}{2}$, $y \ge \frac{3}{8}$.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro 7) If $x, y > o, x + y = \frac{1}{2}, y \ge \frac{1}{8}$, in $\triangle ABC$ the following relationship

holds:

$$\prod \cos \frac{B-C}{2} \le x \left(\frac{h_a}{w_a}\right)^4 + y \left(\frac{h_a}{w_a}\right)^2 + \frac{1}{2}$$

Proposed by Marin Chirciu-Romania

Solution. Putting $z = \frac{1}{2}$ in up these problem.

Equality holds if and only if triangle is equilateral.

Note.

For $x = \frac{1}{8}$, $y = \frac{3}{8}$ we get proposed problem by Adil Abdullayev-Baku-Azerbaijan.

Reference:

ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro