

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY ADIL ABDULLAYEV-IX

By Marin Chirciu-Romania

Edited by Florică Anastase-Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\prod \cos \frac{B-C}{2} \leq\left(\frac{h_{a}}{w_{a}}\right)^{4}+3\left(\frac{h_{a}}{w_{a}}\right)^{2}+4
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan
Solution. Lemma 1. 2) In $\triangle A B C$ the following relationship holds:

$$
\prod \cos \frac{B-C}{2}=\frac{s^{2}+r^{2}+2 R r}{8 R^{2}}
$$

Proof. Using $\cos \frac{B-C}{2}=\frac{h_{a}}{w_{a}}$, we get:

$$
\begin{aligned}
& \prod \cos \frac{B-C}{2}=\prod \frac{h_{a}}{w_{a}}=\prod \frac{\frac{2 F}{a}}{\frac{2 b c}{b+c} \cos \frac{A}{2}}=\left(\frac{F}{a b c}\right)^{2} \prod \frac{b+c}{\cos \frac{A}{2}}= \\
& =\left(\frac{1}{4 R}\right)^{3} \cdot \frac{\prod(b+c)}{\prod \cos \frac{A}{2}}=\frac{1}{64 R^{3}} \cdot \frac{2 s\left(s^{2}+r^{2}+2 R r\right)}{\frac{s}{4 R}}=\frac{s^{2}+r^{2}+2 R r}{8 R^{2}}
\end{aligned}
$$

Lemma 2. In $\triangle A B C$ the following relationship holds:

$$
\cos \frac{B-C}{2} \geq \sqrt{\frac{2 r}{R}}
$$

Proof. $\left(\cos \frac{B-C}{2}-2 \sin \frac{A}{2}\right)^{2} \geq 0 \Leftrightarrow \cos ^{2} \frac{B-C}{2} \geq 4 \cos \frac{B-C}{2} \sin \frac{A}{2}-4 \sin ^{2} \frac{A}{2}=$

$$
=4 \sin \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right)=8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{8 r}{4 R}=\frac{r}{2 R}
$$

Equality holds if and only if $\cos \frac{B-C}{2}=2 \sin \frac{A}{2}$.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Lemma 3. 3) In $\triangle A B C$ the following relationship holds:

$$
\frac{h_{a}}{w_{a}} \geq \sqrt{\frac{2 r}{R}}
$$

Proof. Using $\cos \frac{B-C}{2}=\frac{h_{a}}{w_{a}}$ and Lemma 2, we get: $\frac{h_{a}}{w_{a}}=\cos \frac{B-C}{2} \geq \sqrt{\frac{2 r}{R}}$.
Let's get back to the main problem.Using Lemma 3, we get:

$$
\begin{aligned}
R H S=\left(\frac{h_{a}}{w_{a}}\right)^{4} & +3\left(\frac{h_{a}}{w_{a}}\right)^{2}+4 \geq\left(\sqrt{\frac{2 r}{R}}\right)^{4}+3\left(\sqrt{\frac{2 r}{R}}\right)^{2}+4 \\
& =\left(\frac{2 r}{R}\right)^{2}+2\left(\frac{2 r}{R}\right)+4 ;(1)
\end{aligned}
$$

Using Lemma 1 and inequality (1), it is enough to prove that:
$8 \frac{s^{2}+r^{2}+2 R r}{8 R^{2}} \leq\left(\frac{2 r}{R}\right)^{2}+3\left(\frac{2 r}{R}\right)+4 \Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen) .
Equality holds if and only if triangle is equilateral.
Remark. Inequality can be developed.
4) If $x, y, z>0, x+y+z=1, z \geq \frac{1}{2}, y+2 z \geq \frac{11}{8}$, in $\triangle A B C$ the following relationship holds:

$$
\prod \cos \frac{B-C}{2} \leq x\left(\frac{h_{a}}{w_{a}}\right)^{4}+y\left(\frac{h_{a}}{w_{a}}\right)^{2}+z
$$

Proposed by Marin Chirciu-Romania
Solution. Lemma 1.5) In $\triangle A B C$ the following relationship holds:

$$
\prod \cos \frac{B-C}{2}=\frac{s^{2}+r^{2}+2 R r}{8 R^{2}}
$$

Proof. Using $\cos \frac{B-C}{2}=\frac{h_{a}}{w_{a}}$, we get:

$$
\begin{aligned}
& \prod \cos \frac{B-C}{2}=\prod \frac{h_{a}}{w_{a}}=\prod \frac{\frac{2 F}{a}}{\frac{2 b c}{b+c} \cos \frac{A}{2}}=\left(\frac{F}{a b c}\right)^{2} \prod \frac{b+c}{\cos \frac{A}{2}}= \\
& =\left(\frac{1}{4 R}\right)^{3} \cdot \frac{\prod(b+c)}{\prod \cos \frac{A}{2}}=\frac{1}{64 R^{3}} \cdot \frac{2 s\left(s^{2}+r^{2}+2 R r\right)}{\frac{s}{4 R}}=\frac{s^{2}+r^{2}+2 R r}{8 R^{2}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Lemma 2. In $\triangle A B C$ the following relationship holds:

$$
\cos \frac{B-C}{2} \geq \sqrt{\frac{2 r}{R}}
$$

Proof. $\left(\cos \frac{B-C}{2}-2 \sin \frac{A}{2}\right)^{2} \geq 0 \Leftrightarrow \cos ^{2} \frac{B-C}{2} \geq 4 \cos \frac{B-C}{2} \sin \frac{A}{2}-4 \sin ^{2} \frac{A}{2}=$ $=4 \sin \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right)=8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{8 r}{4 R}=\frac{r}{2 R}$

Equality holds if and only if $\cos \frac{B-C}{2}=2 \sin \frac{A}{2}$.
Lemma 3. 3) In $\triangle A B C$ the following relationship holds:

$$
\frac{h_{a}}{w_{a}} \geq \sqrt{\frac{2 r}{R}}
$$

Proof. Using $\cos \frac{B-C}{2}=\frac{h_{a}}{w_{a}}$ and Lemma 2, we get: $\frac{h_{a}}{w_{a}}=\cos \frac{B-C}{2} \geq \sqrt{\frac{2 r}{R}}$.
Let's get back to the main problem.Using Lemma 3, we get:

$$
\begin{aligned}
& R H S=x\left(\frac{h_{a}}{w_{a}}\right)^{4}+y\left(\frac{h_{a}}{w_{a}}\right)^{2}+z \geq x\left(\sqrt{\frac{2 r}{R}}\right)^{4}+y\left(\sqrt{\frac{2 r}{R}}\right)^{2}+z \\
&= x\left(\frac{2 r}{R}\right)^{2}+y\left(\frac{2 r}{R}\right)+z ;(1)
\end{aligned}
$$

Using Lemma 1 and inequality (1), it is enough to prove that:

$$
\begin{gathered}
8 \frac{s^{2}+r^{2}+2 R r}{8 R^{2}} \leq x\left(\frac{2 r}{R}\right)^{2}+y\left(\frac{2 r}{R}\right)+z \Leftrightarrow \\
s^{2} \leq 8 z R^{2}+(16 y-2) R r+(32 x-4) r^{2}, \text { which follows from } \\
s^{2} \leq 4 R^{2}+4 R r+3 r^{2}(\text { Gerretsen })
\end{gathered}
$$

Remains to prove that: $4 R^{2}+4 R r+3 r^{2} \leq 8 z R^{2}+(16 y-2) R r+(32 x-4) r^{2}$
$\Leftrightarrow(4 z-2) R^{2}+(8 y-3) R r+(16 x-2) r^{2} \geq 0$, which is true from:
$(4 z-2) R^{2}+(8 y-3) R r+(16 x-2) r^{2}=(R-2 r)[(4 z-2) R+(8 y+8 z-7) r] \geq 0$
Which follows from $R \geq 2 r(E u l e r)$ and $[(4 z-2) R+(8 y+8 z-7) r] \geq 0$

$$
\forall x, y, z>0, x+y+z=1, z \geq \frac{1}{2}, y+2 z \geq \frac{11}{8}
$$

Equality holds if and only if triangle is equilateral.
Note.For $x=\frac{1}{8}, y=\frac{3}{8}, z=\frac{1}{2}$ we get proposed problem by Adil Abdullayev-Baku-Azerbaijan-R.M.M. 4-2020.
For $z=\frac{1}{2}$, we have: $x+y=\frac{1}{2}, y \geq \frac{3}{8}$.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
7) If $x, y>0, x+y=\frac{1}{2}, y \geq \frac{1}{8}$, in $\triangle A B C$ the following relationship holds:

$$
\prod \cos \frac{B-C}{2} \leq x\left(\frac{h_{a}}{w_{a}}\right)^{4}+y\left(\frac{h_{a}}{w_{a}}\right)^{2}+\frac{1}{2}
$$

Proposed by Marin Chirciu-Romania

Solution. Putting $z=\frac{1}{2}$ in up these problem.
Equality holds if and only if triangle is equilateral.
Note.
For $x=\frac{1}{8}, y=\frac{3}{8}$ we get proposed problem by Adil Abdullayev-Baku-Azerbaijan.
Reference:
ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro

