

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY ELDENIZ HESENOV-II
 By Marin Chirciu-Romania
 Edited by Florică Anastase-Romania

1) In $\triangle A B C, I$-incenter, R_{a}, R_{b}, R_{c}-circumradii of $\triangle B I C, \Delta C I A, \triangle A I B$ the following relationship holds:

$$
\sqrt[3]{\left(\frac{a}{R_{a}}\right)^{2}}+\sqrt[3]{\left(\frac{b}{R_{b}}\right)^{2}}+\sqrt[3]{\left(\frac{c}{R_{c}}\right)^{2}} \leq 5
$$

Proposed by Eldeniz Hesenov-Georgia

Solution by Marin Chirciu-Romania

Lemma 1. 2) In $\triangle A B C, I$-incenter, \boldsymbol{R}_{a}-circumradii of $\triangle B I C$, then:

$$
R_{a}=2 R \sin \frac{A}{2}
$$

Proof. Using identity $F=\frac{a b c}{4 R}$ in $\triangle B I C$, we get:

$$
\begin{aligned}
R_{a}=\frac{I B \cdot I C \cdot B C}{4 F_{\triangle I B C}} & =\frac{I B \cdot I C \cdot a}{4 \frac{I B \cdot I C \cdot \sin (B I C)}{2}}=\frac{a}{2 \cos \frac{A}{2}}=\frac{2 R \cdot \sin A}{2 \cos \frac{A}{2}}= \\
= & \frac{2 R \cdot 2 \sin \frac{A}{2} \cos \frac{A}{2}}{2 \cos \frac{A}{2}}=2 R \cdot \sin \frac{A}{2}
\end{aligned}
$$

Lemma 2. 3) In $\triangle A B C, I$-incenter, R_{a}-circumradii of $\Delta B I C$, then:

$$
\sum \sqrt[3]{\left(\frac{a}{R_{a}}\right)^{2}}=\sum \sqrt[3]{4 \cos ^{2} \frac{A}{2}}
$$

Proof. Using identity: $R_{a}=2 r \cdot \sin \frac{A}{2}$, we get:

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\sqrt[3]{\left(\frac{a}{R_{a}}\right)^{2}}=\sqrt[3]{\left(\frac{2 R \sin A}{2 R \sin \frac{A}{2}}\right)^{2}}=\sqrt[3]{\left(\frac{\sin A}{\sin \frac{A}{2}}\right)^{2}}=\sqrt[3]{\left(\frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{\sin \frac{A}{2}}\right)^{2}}=\sqrt[3]{4 \cos ^{2} \frac{A}{2}} \\
=\sqrt[3]{4 \frac{s(s-a)}{b c}}
\end{gathered}
$$

Let's get back to the main problem.
Using Lemma and AM-GM, we get:

$$
\begin{gathered}
\sum \sqrt[3]{\left(\frac{a}{R_{a}}\right)^{2}}=\sum \sqrt[3]{4 \cos ^{2} \frac{A}{2}}=\frac{1}{\sqrt[3]{9}} \sum \sqrt[3]{4 \cos ^{2} \frac{A}{2} \cdot 3 \cdot 3} \leq \\
\leq \frac{1}{\sqrt[3]{9}} \sum \frac{4 \cos ^{2} \frac{A}{2}+3+3}{3}=\frac{2}{3 \sqrt[3]{9}} \sum\left(2 \cos ^{2} \frac{A}{2}+3\right)= \\
=\frac{2}{3 \sqrt[3]{9}}\left(2 \sum \cos ^{2} \frac{A}{2}+9\right)=\frac{2}{3 \sqrt[3]{9}}\left(2 \frac{4 R+r}{2 R}+9\right)=\frac{2}{3 \sqrt[3]{9}}\left(13+\frac{r}{R}\right) \\
\text { From } R \geq 2 r(\text { Euler }), \text { we have: }
\end{gathered}
$$

$$
\frac{2}{3 \sqrt[3]{9}}\left(13+\frac{r}{R}\right) \geq \frac{2}{3 \sqrt[3]{9}}\left(13+\frac{1}{2}\right)=\frac{2}{3 \sqrt[3]{9}} \frac{27}{2}=3 \sqrt[3]{3}<5
$$

Remark. Let's find reverse inequality:
4) In $\triangle A B C, I$-incenter, $\boldsymbol{R}_{a}, R_{b}, R_{c}$-circumradii of $\triangle B I C, \triangle C I A, \triangle A I B$ the following relationship holds:

$$
\sqrt[3]{\left(\frac{a}{R_{a}}\right)^{2}}+\sqrt[3]{\left(\frac{b}{R_{b}}\right)^{2}}+\sqrt[3]{\left(\frac{c}{R_{c}}\right)^{2}} \geq 9 \sqrt[3]{\left(\frac{2 r}{R}\right)^{2}}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Using Lemma and AM-GM inequality, we get:

$$
\sum \sqrt[3]{\left(\frac{a}{R_{a}}\right)^{2}}=\sum \sqrt[3]{4 \cos ^{2} \frac{A}{2}} \geq 3 \sqrt[3]{64 \prod \cos ^{2} \frac{A}{2}}=12 \sqrt[3]{\prod \cos ^{2} \frac{A}{2}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$=12 \sqrt[3]{\left(\frac{s}{4 R}\right)^{2} \stackrel{\text { Mitrinovic }}{s^{2} \geq 27 r^{2}} \geq} 12 \sqrt[3]{\frac{27 r^{2}}{16 R^{2}}}=9 \sqrt[3]{\left(\frac{2 r}{R}\right)^{2}}$.
Equality holds if and only if triangle is equilateral.
5) In $\triangle A B C, I$-incenter, R_{a}, R_{b}, R_{c}-circumradii of $\triangle B I C, \triangle C I A, \triangle A I B$ the following relationship holds:

$$
9 \sqrt[3]{\left(\frac{2 r}{R}\right)^{2}} \leq \sqrt[3]{\left(\frac{a}{R_{a}}\right)^{2}}+\sqrt[3]{\left(\frac{b}{R_{b}}\right)^{2}}+\sqrt[3]{\left(\frac{c}{R_{c}}\right)^{2}} \leq \frac{2}{3 \sqrt[3]{9}}\left(13+\frac{r}{R}\right)
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

For RHS, using Lemma and AM-GM inequality, we have:

$$
\begin{gathered}
\sum \sqrt[3]{\left(\frac{a}{R_{a}}\right)^{2}}=\sum \sqrt[3]{4 \cos ^{2} \frac{A}{2}}=\frac{1}{\sqrt[3]{9}} \sum \sqrt[3]{4 \cos ^{2} \frac{A}{2} \cdot 3 \cdot 3} \leq \\
\leq \frac{1}{\sqrt[3]{9} \sum \frac{4 \cos ^{2} \frac{A}{2}+3+3}{3}=\frac{2}{3 \sqrt[3]{9}} \sum\left(2 \cos ^{2} \frac{A}{2}+3\right)=} \\
=\frac{2}{3 \sqrt[3]{9}}\left(2 \sum \cos ^{2} \frac{A}{2}+9\right)=\frac{2}{3 \sqrt[3]{9}}\left(2 \frac{4 R+r}{2 R}+9\right)=\frac{2}{3 \sqrt[3]{9}}\left(13+\frac{r}{R}\right)
\end{gathered}
$$

Equality holds if and only if triangle is equilateral. For LHS, using Lemma and AM-GM, we have:

$$
\begin{aligned}
\sum \sqrt[3]{\left(\frac{a}{R_{a}}\right)^{2}} & =\sum^{\sqrt[3]{4 \cos ^{2} \frac{A}{2}} \geq 3 \sqrt[3]{64 \prod \cos ^{2} \frac{A}{2}}=12^{\sqrt[3]{\square} \cos ^{2} \frac{A}{2}}=} \\
& =12 \sqrt[3]{\left(\frac{s}{4 R}\right)^{2}} \stackrel{\text { Mitrinovic }}{s^{2} \geq 27 r^{2}} \geq 12 \sqrt[3]{\frac{27 r^{2}}{16 R^{2}}}=9 \sqrt[3]{\left(\frac{2 r}{R}\right)^{2}} .
\end{aligned}
$$

Equality holds if and only if triangle is equilateral.
Remark. In same class of problems.
5) In $\triangle A B C, I$-incenter, $\boldsymbol{R}_{a}, R_{b}, R_{c}$-circumradii of $\triangle B I C, \triangle C I A, \triangle A I B$ the following relationship holds:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
3 \sqrt[3]{\frac{s}{4 R}} \leq \frac{a}{R_{a}}+\frac{b}{R_{b}}+\frac{c}{R_{c}} \leq \frac{3 \sqrt{3}}{2}
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Lemma 1. 6) In $\triangle A B C, I$-incenter, $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}, \boldsymbol{R}_{\boldsymbol{c}}$-circumradii of $\triangle B I C, \triangle C I A, \triangle A I B$ the following relationship holds:

$$
R_{a}=2 r \sin \frac{A}{2}
$$

Proof. Using identity $F=\frac{a b c}{4 R}$ in $\triangle I B C$, we have:

$$
\begin{aligned}
R_{a}=\frac{I B \cdot I C \cdot B C}{4 F_{\triangle I B C}} & =\frac{I B \cdot I C \cdot a}{4 \frac{I B \cdot I C \cdot \sin (B I C)}{2}}=\frac{a}{2 \cos \frac{A}{2}}=\frac{2 R \cdot \sin A}{2 \cos \frac{A}{2}}= \\
& =\frac{2 R \cdot 2 \sin \frac{A}{2} \cos \frac{A}{2}}{2 \cos \frac{A}{2}}=2 R \cdot \sin \frac{A}{2}
\end{aligned}
$$

Lemma2. 7) In $\triangle A B C, I$-incenter, $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}, \boldsymbol{R}_{\boldsymbol{c}}$-circumradii of
$\triangle B I C, \triangle C I A, \triangle A I B$ the following relationship holds:

$$
\frac{a}{R_{a}}+\frac{b}{R_{b}}+\frac{c}{R_{c}}=2 \sum \cos \frac{A}{2}
$$

Proposed by Marin Chirciu-Romania
Proof. Using $a=2 R \sin A, R_{a}=2 r \sin \frac{A}{2}$, we have:

$$
\sum \frac{a}{R_{a}}=\sum \frac{2 R \sin A}{2 R \sin \frac{A}{2}}=\sum \frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{\sin \frac{A}{2}}=2 \sum \cos \frac{A}{2}
$$

Let's get back to the main problem.
For RHS, using Lemma and Jensen inequality, we have:

$$
\sum \cos \frac{A}{2} \leq \frac{3 \sqrt{3}}{2} \Rightarrow \sum \frac{a}{R_{a}}=\sum \cos \frac{A}{2} \leq \frac{3 \sqrt{3}}{2}
$$

For LHS, using Lemma and Jensen inequality, we have:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\sum \frac{a}{R_{a}}=\sum \cos \frac{A}{2} \geq 3 \sqrt[3]{\prod \cos \frac{A}{2}}=3 \sqrt[3]{\frac{s}{4 R}}
$$

Equality holds if and only if triangle is equilateral.
8) In $\triangle A B C, I$-incenter, R_{a}, R_{b}, R_{c}-circumradii of $\triangle B I C, \triangle C I A, \triangle A I B$ the following relationship holds:

$$
\frac{18 r}{R} \leq\left(\frac{a}{R_{a}}\right)^{2}+\left(\frac{b}{R_{b}}\right)^{2}+\left(\frac{c}{R_{c}}\right)^{2} \leq 9
$$

Proposed by Marin Chirciu-Romania

Solution by proposer

Lemma 1. 9) In $\triangle A B C, I$-incenter, $\boldsymbol{R}_{a}, \boldsymbol{R}_{\boldsymbol{b}}, \boldsymbol{R}_{\boldsymbol{c}}$-circumradii of $\triangle B I C, \triangle C I A, \triangle A I B$ the following relationship holds:

$$
R_{a}=2 r \sin \frac{A}{2}
$$

Proof. Using identity $F=\frac{a b c}{4 R}$ in $\triangle I B C$, we have:

$$
\begin{aligned}
R_{a}=\frac{I B \cdot I C \cdot B C}{4 F_{\triangle I B C}} & =\frac{I B \cdot I C \cdot a}{4 \frac{I B \cdot I C \cdot \sin (B I C)}{2}}=\frac{a}{2 \cos \frac{A}{2}}=\frac{2 R \cdot \sin A}{2 \cos \frac{A}{2}}= \\
= & \frac{2 R \cdot 2 \sin \frac{A}{2} \cos \frac{A}{2}}{2 \cos \frac{A}{2}}=2 R \cdot \sin \frac{A}{2}
\end{aligned}
$$

Lemma 2. 10)) In $\triangle A B C, I$-incenter, $\boldsymbol{R}_{a}, \boldsymbol{R}_{\boldsymbol{b}}, \boldsymbol{R}_{\boldsymbol{c}}$-circumradii of $\triangle B I C, \triangle C I A, \triangle A I B$ the following relationship holds:

$$
\left(\frac{a}{R_{a}}\right)^{2}+\left(\frac{b}{R_{b}}\right)^{2}+\left(\frac{c}{R_{c}}\right)^{2}=8+\frac{2 r}{R}
$$

Proposed by Marin Chirciu-Romania
Proof. Using $a=2 r \sin A, R_{a}=2 R \sin \frac{A}{2}$, we get:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \sum\left(\frac{a}{R_{a}}\right)^{2}= \sum\left(\frac{2 R \sin A}{2 R \sin \frac{A}{2}}\right)^{2}=\sum\left(\frac{\sin A}{\sin \frac{A}{2}}\right)^{2}=\sum\left(\frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{\sin \frac{A}{2}}\right)^{2}= \\
&= 4 \sum \cos ^{2} \frac{A}{2}=4\left(2+\frac{r}{2 R}\right)=4\left(2+\frac{r}{2 R}\right)=8+\frac{2 r}{R} \\
& \text { Let's get back to the main problem. }
\end{aligned}
$$

For RHS, using Lemma and Euler inequality, we have:

$$
\sum\left(\frac{a}{R_{a}}\right)^{2}=8+\frac{2 r}{R} \stackrel{\text { Euler }}{\leq} 8+1=9
$$

For LHS, using Lemma and Euler inequality, we get:

$$
\sum\left(\frac{a}{R_{a}}\right)^{2}=\frac{2(4 R+r)}{R} \stackrel{\text { Euler }}{\geq} \frac{2(8 r+r)}{R}=\frac{18 r}{R}
$$

Equality holds if and only if triangle is equilateral.

REFERENCE:

ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro

